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Abstract  

Gene-environment interactions may enhance our understanding of blood pressure (BP) biology. 

We conducted a meta-analysis of multi-population genome-wide association studies of BP traits 

accounting for gene-depressive symptomatology (DEPR) interactions. Our study included 

564,680 adults from 67 cohorts and 4 population backgrounds (African (5%), Asian (7%), 

European (85%), and Hispanic (3%)). We discovered seven previously unreported BP loci 

showing gene-DEPR interaction. These loci mapped to genes implicated in neurogenesis 

(TGFA, CASP3), lipid metabolism (ACSL1), neuronal apoptosis (CASP3), and synaptic activity 

(CNTN6, DBI). We also showed evidence for gene-DEPR interaction at nine known BP loci, 

further suggesting links between mood disturbance and BP regulation. Of the 16 identified loci, 

11 loci were derived from non-European populations. Post-GWAS analyses prioritized 36 genes, 

including genes involved in synaptic functions (DOCK4, MAGI2) and neuronal signaling (CCK, 

UGDH, SLC01A2). Integrative druggability analyses identified 11 druggable candidate gene 

targets linked to pathways involved in mood disorders as well as known antihypertensive drugs. 

Our findings emphasize the importance of considering gene-DEPR interactions on BP, 

particularly in non-European populations. Our prioritized genes and druggable targets highlight 

biological pathways connecting mood disorders and hypertension and suggest opportunities for 

BP drug repurposing and risk factor prevention, especially in individuals with DEPR. 
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Introduction 

Hypertension and high blood pressure (BP) (MIM: 145500) are major risk factors for 

cardiovascular disease, stroke, chronic kidney disease, and vascular dementia, significantly 

contributing to global morbidity and mortality 1. Despite the widespread availability of effective 

anti-hypertensive medications, the prevalence of hypertension has doubled worldwide over the 

past three decades and is projected to affect 1.6 billion individuals by 2025 2. Moreover, while 

the age-adjusted prevalence of hypertension has declined in some regions, global disparities in 

hypertension rates have widened 3,4.  

Genetic and environmental factors can independently increase the risk of hypertension, but 

gene-environment interaction (GxE) may provide a more comprehensive understanding of the 

genetic contributions to the disease 5-7. A recent genome-wide association study (GWAS) of BP 

identified a total of 2,103 independent genetic signals, which accounts for approximately 60% of 

the heritability of BP 8. Consequently, a substantial portion of heritability remains unexplained. 

Incorporating GxE in genetic analyses of BP may yield additional information about its genetic 

architecture and provide avenues to improve health by more precisely characterizing risk of 

high BP in the context of potentially modifiable environmental, lifestyle, and behavioral risk 

factors 9.  

The influence of psychosocial factors on BP level is well known 10-12. Psychosocial stress 

increases the incidence of hypertension, and is associated with poor hypertension control, 

unhealthy lifestyle behaviors, and non-compliance with treatment regimens 13. The relationship 

between depressive symptoms and BP is complex. While some studies have shown an 

association of depressive symptoms with incidence of hypertension 14-16, others have reported 

an association of depressive symptoms with lower BP levels 17-19. A recent study provided 

evidence of depression as a causal risk factor of hypertension using Mendelian Randomization 
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20. Our previous study examined the effect modification of genetic factors by dichotomous 

psychosocial factors on BP in up to 128,894 individuals 21. This highlighted the significance of 

gene-psychosocial factors interactions in gene discovery for BP, especially among individuals of 

African ancestry. However, the statistical power and population diversity of the study were 

limited. To address these shortcomings, we increased the sample size up to five-fold by 

incorporating now available biobank data. In addition, we defined psychosocial exposures as 

both dichotomous and quantitative, potentially improving the statistical power to identify 

additional BP loci. We report genome-wide association meta-analyses of systolic BP (SBP), 

diastolic BP (DBP), and pulse pressure (PP) in the context of depressive symptomatology 

(DEPR) in a sample of up to 564,680 participants from populations of African (AFR), Asian 

(ASN), European (EUR), and Hispanic (HIS) backgrounds.  

 

 

Methods 

Study design and participants 

All participating cohorts were part of Gene-Lifestyle Interactions Working Group of the Cohorts 

for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium 22. Except for 

the UK Biobank, the study included adult men and women aged 18 years or older from four 

population groups defined based on self-reported participant’s race and ethnicity: AFR 

(including self-reported Black), ASN (including East Asian and South Asian), EUR (including self-

reported White), and HIS. The UK Biobank used the Pan-UKB data to define population groups 

based on shared genetic similarity and demographic history 23. GWAS considering the 

interaction between gene and DEPR were conducted within each individual study by population 
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group. Population-specific meta-analyses were then performed using summary statistics, 

followed by cross-population meta-analyses based on the population-specific results (Figure 1).  

Ethics approval and consent:  

All participating studies obtained written informed consent from their participants and ethics 

approval from the appropriate institutional review boards. Details about the participating studies 

are provided in the Supplemental Material. 

 

Blood pressure traits 

Three BP traits were considered as outcome variables: SBP, DBP, and PP. Pulse pressure was 

calculated as the difference between SBP and DBP. When multiple BP readings were taken 

during the same examination, the average of all SBP or DBP readings were used. For 

participants taking anti-hypertensive medications, SBP and DBP values were adjusted by adding 

15 mm Hg and 10 mm Hg, respectively, to the measured values 24,25. Extreme values for each BP 

variable were winsorized if they were more than six standard deviations (SDs) above or below 

the mean.  

 

Depressive symptomatology (DEPR) exposures  

Each participating study collected information on DEPR using validated screening 

questionnaires.  Across the studies, depressive symptoms were assessed using 13 distinct 

validated instruments, with additional variability arising from differences in the number of 

questionnaire items and scoring ranges (Table S1). Measurements of DEPR and BP were taken 

during the same examination. We defined two variables as exposures: dDEPR and qDEPR.  

The dDEPR exposure was defined as a binary variable by dichotomizing DEPR measures using 

recommended standard cut off points specific to each screening instrument. Individuals with 
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higher depressive symptom score were categorized as the exposed group and coded as E=1. 

The specific cut-off points used to define the dDEPR for each study are provided in Table S1. 

Descriptive statistics on depression score are provided in Table S2.  

The qDEPR exposure was defined as a standardized residual after adjusting for age and sex 

effects within each cohort. For studies that included multiple population groups, the variable was 

computed separately for each population. First, DEPR scores were winsorized if a value was 

more than 6 SDs above or below the mean. The scores were then regressed on age, sex, and 

age × sex interaction in the sex-combined samples. The resulting age- and sex-adjusted 

residuals were standardized using the Z-score in the combined sample. Thus, in each study, the 

mean and SD of qDEPR were approximately 0 and 1, respectively, as shown in Table S3. For 

the sex-stratified analyses, we used the same qDEPR estimates that were residualized and 

standardized in the sex-combined group were used. No additional residualization or 

normalization was performed within sex-specific group. 

 

Genotype data  

Most of the participating studies performed genotyping using Illumina or Affymetrix. Imputations 

were primarily carried out using Trans-Omics for Precision Medicine (TOPMed) or Haplotype 

Reference Consortium (HRC) reference panels. Details on genotyping and imputation are 

presented in Table S4. Before analysis, genotype data for each cohort were restricted to SNPs 

mapping to autosomal chromosomes, with MAF ≥ 0.1% across all samples and an imputation 

quality ≥ 0.3. Indels (insertions and deletions) were also included.  

 

Individual study statistical analyses  
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Each cohort performed analyses by population subgroup using two statistical models designed 

for different purposes. Model 1 was a joint effect model that accounts for the SNP main effect, 

DEPR effect, and the interaction effect between SNP and DEPR: 

𝐸(𝐵𝑃) = 𝛽0 +  𝛽𝑆𝑁𝑃𝑆𝑁𝑃 + 𝛽𝐷𝐸𝑃𝑅𝐷𝐸𝑃𝑅 +  𝛽𝑆𝑁𝑃×𝐷𝐸𝑃𝑅𝑆𝑁𝑃 × 𝐷𝐸𝑃𝑅 + 𝛽𝐶𝐶   

Where DEPR was either dDEPR or qDEPR, and C was a vector of covariates, including age, 

age2, sex, field centers (if relevant), and population-specific principal components, as well as any 

additional cohort-specific covariates, if applicable (Table S4). In model 1, additional DEPR × 

covariate interaction terms with age, age2, and sex were included in the model to minimize 

potential false positive findings that could result from confounding effects 26. For the sex-

stratified analyses, both sex and DEPR x sex were excluded from the model. A 1 degree of 

freedom (1df) interaction test was performed to evaluate SNP x DEPR interaction effect alone 

under the null hypothesis that βSNPxDEPR = 0. A 2df joint test was used to simultaneously assess 

the SNP main effect and SNP x DEPR interaction effects, under the null hypothesis that βSNP = 

βSNPx DEPR = 0 27. When both the SNP main effect and interaction effects exist, the 2df joint test 

typically provides more power than the 1df interaction test 27.  

Model 2 was a SNP marginal effect model: 

𝐸(𝐵𝑃) = 𝛽0 +  𝛽𝑆𝑁𝑃𝑆𝑁𝑃 + 𝛽𝐶𝐶 

The SNP marginal P-value (P.Marginal) was used to identify SNPs with significant evidence of 

interaction effects by comparing P.Marginal to the 1df interaction P-value (P.Int) in Model 1. To 

ensure a fair comparison, we conducted a standard GWAS (Model 2) with the same covariates 

used in Model 1 other than the DEPR x covariate interaction terms.  

Analyses excluded subjects without genotype data or with missing data for the DEPR exposure 

or any covariates. Each study selected one of the specialized software tools to run analyses: 

GEM (https://github.com/large-scale-gxe-methods/GEM), LinGxEScanR 
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(https://github.com/USCbiostats/LinGxEScanR), or MMAP 

(https://github.com/MMAP/MMAP.github.io), as described in Table S4. For the studies with 

related subjects, MMAP was used to account for familial relatedness using linear mixed models.  

 

Quality control of study-specific and meta-analyses results 

Quality control (QC) was performed for both study-specific and meta-analyses results using 

EasyQC2 software (www.genepi-regensburg.de/easyqc2). For results submitted in build hg19, 

genomic coordinates were lifted over to build hg38. At the study-level, QC involved different 

SNP filters for the two exposures. For the dDEPR, SNPs were excluded if degree of freedom 

(DF) was less than 20 in the unexposed, exposed, or total samples. The DF was calculated as 

minor allele count * imputation quality score. For the qDEPR, SNPs were removed if the DF was 

less than 20 in the total samples. To identify systematic errors in data preparation, allele 

frequency (AF) discrepancy, outliers, and missing data were assessed visually through 

comparison of results to reference panels derived by imputation of population-specific 1000 

Genomes phase 3 version 5 (p3v5) panels to the TOPMed reference panels using the TOPMed 

imputation server. Any resulting concerns were addressed through consultation with the 

contributing studies. To evaluate study-devel systematic inflation, genomic control (GC) inflation 

factors were also estimated (Table S5), and thus, GC correction was not applied at the study 

level.  Next, meta-level QC was performed within each population group (AFR: 18 cohorts; ASN: 

8 cohorts, EUR: 36 cohorts, HIS: 5 cohorts) to assess improper transformation of BP variables, 

unstable numerical computation, and excessive inflation.  

 

Meta-analyses 

Jo
urn

al 
Pre-

pro
of

https://github.com/MMAP/MMAP.github.io
http://www.genepi-regensburg.de/easyqc2


12 
 

Meta-analyses were performed using an inverse-variance weighted fixed-effect model for the 

1df interaction test and an inverse-covariance-matrix-weighted model for the 2df joint test 28,29, 

each method chosen to appropriately weight studies based on the precision of their estimates. 

Analyses were first conducted separately for each population group, and then the results were 

combined for CPMA. The primary focus was on analyses within the sex-combined group, 

considering three phenotypes and two exposures. For the identified loci in the sex-combined 

group analyses, we performed sex-stratified analyses to assess differences in GxE by sex. The 

first GC correction was applied to the population-specific meta-analyses and subsequently once 

more to the CPMA 28. Quantile-quantile (QQ) plots and GC inflation factors are shown in Figure 

S1-10. In the 2df joint test, there were mild to moderate inflations, mainly due to the significance 

at previously reported loci for BP.  

 

Identification of independent associated loci 

The EasyStrata2 software was used to prioritize the top loci among significant results identified 

in 1df interaction and 2df joint tests 30. For the CPMA, SNPs had to be present in at least two 

population groups with a minimum sample size of 20,000 individuals. In the EUR-specific meta-

analyses, SNPs were reported if they appeared in at least three studies and in at least 3,000 

individuals. These criteria were relaxed for other population groups due to smaller sample size, 

as shown in Table S6. Only SNPs with MAF greater than 1% were reported for both population-

specific and cross-population meta-analyses. SNPs located within 1 Mb of the major 

histocompatibility complex (MHC) region were excluded.   

We considered SNPs with significant evidence of DEPR interaction effects on BP as top SNPs 

based on the following criteria: (1) SNPs with significant 1df interaction effect (P.Int < 5 x 10-8). In 

population-specific analyses, SNPs were also required to show no evidence of heterogeneity 
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(P.Het > 10-6); (2) SNPs with significant 2df joint effects (P.Joint < 5 x 10-8), and P.Int < 

Bonferroni-corrected P adjusted for the number of 2df joint variants identified in the respective 

CPMA or population-specific subgroup (e.g, for CPMA: dDEPR: 0.05/904= 5.53 x 10-5; qDEPR: 

0.05/316 = 1.58 x 10-4), and P.Int < P.Marginal. False discovery rates (FDR) were also calculated 

using EastyStrata2.  

To identify independent loci among all significant variants, we grouped the significant variants 

within 500-kilobase regions and identified independent loci by linkage disequilibrium (LD) R2 < 

0.1, using TOPMed-imputed 1000G reference panels.  If variants within regions were missing in 

the LD panels, the most significant variant within each region was reported. The independent 

loci were considered novel if the SNPs are located ± 500 kb away from the known loci 

previously reported in BP GWAS (Table S7).  For the identified independent loci, we additionally 

examined heterogeneity of the interaction effects by sex using the results from the sex-stratified 

analyses. Heterogeneity of SNP x DEPR effects between men and women was tested using two-

sample Z tests 31. The significance threshold for heterogeneity tests was defined at Bonferroni-

corrected threshold based on the number of the identified independent loci.   

 

DEPR-stratified analyses 

For the SNPs identified in dDEPR analyses, we further derived SNP effect on BP by DEPR status 

using the joint model’s summary statistics32. For each SNP, the actual sample size and the 

number of exposed groups were used to derive summary statistics. This approach provides 

greater precision and avoids assumptions that may introduce errors. 

 

Gene-based analyses 
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We performed gene-based tests on meta-analysis summary statistics for the 1df interaction 

results using MAGMA implemented in FUMA 33 and VEGAS2 34, as the 2df joint test does not 

provide an interpretable interaction effect estimate and therefore could not be used for the 

gene-based analyses. Both tools computed gene-based p-values by considering variants within 

each gene. The MAGMA method utilized a multiple linear regression model 35, while VEGAS2 

analyses were conducted using the ‘top10’ parameter, which selects the top 10% variants within 

a gene, taking into account the number of variants and LD. This approach allowed us to include 

SNPs with stronger signals and exclude those that might dilute the summary statistics 34. For 

both MAGMA and VEGAS2, we used 1000 Genomes phase 3 reference panels specific to AFR, 

EAS (for ASN), EUR, AMR (for HIS) populations to compute LD for population-specific analyses. 

In MAGMA, the CPMA was conducted using the “all” 1000 Genomes phase 3 reference panel in 

the FUMA setting. For VEGAS2, we performed meta-analyses of population-specific gene-based 

results using Stouffer’s method, with p-values weighted by sample size. Gene-wide significance 

in MAGMA was defined as P < 2.61 x 10-6, correcting for 19,122 protein-coding genes. VEGAS2 

included 19,263 protein-coding genes, leading to a gene-wide significance threshold of P < 2.61 

x 10-6.  

 

Gene-set or Pathway-based analysis 

We conducted gene-set analysis using MAGMA in FUMA to identify associations between gene 

sets and biological pathways. The analyses were performed based on the gene-based results 

from MAGMA, with statistical significance threshold at P < 2.94 x 10-6, correcting for 17,009 

gene sets. As a sensitivity analysis, we performed pathway-based analysis using 

VEGAS2Pathway 36, based on population-specific gene-based association results generated with 
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VEGAS2. The meta-analyses were conducted using Stouffer’s method. VEGAS2Pathway 

included 2,748 pathways, resulting in a significance threshold of empirical P < 1.82 x 10-5. 

 

Functional Annotations 

All identified independent loci were assessed for potential functional annotations using multiple 

tools. First, we used the FUMA v1.5.2 to annotate functional information of the novel and known 

loci 33. At the genomic region level, the FUMA SNP2GENE pipeline was used to prioritize genes 

based on the results of the top SNPs and SNPs in LD (r2 > 0.4 within 250 kb) through three gene 

mapping approaches: positional mapping, GTEx v8 eQTL mapping, and 3D chromatin 

interaction mapping (FDR ≤ 1 x 10-6, 250bp upstream and 500bp downstream of the 

transcription start site [TSS] by default settings). At the variant level, we used QTLbase 37 and 

Open Target Genetics 38 databases to explore xQTL that link our loci to tissue or cell type 

specific functions. The xQTL include gene expression (eQTL), DNA methylation (mQTL), histone 

modification (hQTL), splicing event (sQTL), protein expression (pQTL), alternative 

polyadenylation (apaQTL), and others. To investigate whether the identified loci were associated 

with other phenotypes, we utilized a phenome-wide association studies (PheWAS) tool 

implemented in Open target genetics and GWAS ATLAS 39. Using all the prioritized genes, we 

performed FUMA GENE2FUNC analysis to test enrichment of the gene sets and provide 

expression of those prioritized genes (adjusted p-value < 0.05).  

 

Druggability analyses 

To assess the clinical potential of the candidate genes, we conducted integrative druggability 

analyses40. We first used the Drug-Gene Interaction database (DGIdb; v4.2.0) to query high or 

medium priority and determine the potential druggability of the candidate gene targets. Genes 
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were annotated for biological pathways and functions using the Kyoto Encyclopedia of Genes 

and Genomes (KEGG) database. Using DGIdb (https://dgidb.org/about/overview/about-us), We 

annotated the druggability target categories and queried all interacting drugs reported in 44 

databases (Ensembl, HGNC, NCBI, ChemIDplus, Drugs@FDA, HemOnc, NCIt, RxNorm, 

Wikidata, CancerCommons, CGI, ChEMBL, CIViC, ClearityFoundationBiomarkers, 

ClearityFoundationClinicalTrial, COSMIC, DoCM, DrugBank, DTC, FDA, GuidetoPharmacology, 

JAX-CKB, MyCancerGenome, MyCancerGenomeClinicalTrial, OncoKB, PharmGKB, TALC, 

TdgClinicalTrial, TEND, TTD, BaderLab, CarisMolecularIntelligence, dGene, 

FoundationOneGenes, GO, HingoraniCasas, HopkinsGroom, HumanProteinAtlas, IDG, 

MskImpact, Oncomine, Pharos, RussLampel, Tempus). We queried protein targets for available 

active ligands in ChEMBL. We queried gene targets in the druggable genome using the most 

recent druggable genome list established from the NIH Illuminating the Druggable Genome 

Project (https://github.com/druggablegenome/IDGTargets) available through the Pharos web 

platform. We also queried FDA-approved drugs, late-stage clinical trials and disease indications 

in the DrugBank, ChEMBL, ClinicalTrials.gov databases and provided results for the top MESH 

and DrugBank indications and clinical trials.  

 

 

Results 

Overview 

A total of 564,680 individuals from four populations were included in the study, comprising 85% 

EUR, 7% ASN, 5% AFR, and 3% HIS. Overall, 52% of participants were female. Descriptive 

statistics are provided in Table S8. Because the quantitative DEPR exposure was not available in 

some biobanks, sample sizes were larger for dichotomous DEPR (dDEPR) than quantitative 
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DEPR (qDEPR). As shown in Figure 1, the dDEPR analyses included 563,538 individuals after 

excluding two studies where the number of individuals with DEPR (Nexp) was less than 10 (Table 

S2). Among individuals with dDEPR, the median DEPR prevalence was 10.3%, with an 

interquartile range of 12.9% (Table S2). The qDEPR analyses consisted of 294,029 participants 

from EUR (80%), ASN (7%), AFR (7%), and HIS (6%) populations.   

 

dDEPR analyses 

We identified nine independent loci that showed evidence of association with BP traits modified 

by dDEPR in cross-population meta-analyses (CPMA) or population-specific meta-analyses 

(Table 1). In the DEPR-stratified analyses, the directions of SNP effect observed in the exposed 

group were consistent with the directions of the corresponding interaction effects (Table S9). Of 

these, three loci tagged by rs1664073690 (1q31.3), rs10178576 (2q13.3), and rs113521945 

(4q35.1) were novel. The other six loci tagged by rs115760284 (3p22.1), rs147967138 

(7q21.11), rs757194 (7q31.1), rs7979305 (12p12.1), rs75095906 (13q32.1), and rs9931605 

(16q23.2) were previously reported for BP (Table S10). Eight of the nine loci were identified via 

the 1df interaction test (P.Int < 5 x 10-8) (Table 1). In the 2df joint test, a total of 904 loci were 

associated with at least one BP trait (350 loci were associated with SBP, 337 loci were 

associated with DBP, and 364 loci were associated with PP). Among them, one previously 

reported BP locus (rs757194 on 7q31.1) showed evidence of association with SBP through 

interaction with dDEPR using the specified criteria (P.Joint= 7.99 x 10-9; P.Int= 1.39 x 10-7).  

The three top single nucleotide polymorphisms (SNPs) at novel loci (1q31.3, 2q13.3, and 

4q35.1) were identified in the CPMA and showed no evidence of heterogeneity across 

population groups (P.Het > 0.003) (Table 1). Two of them were common variants with minor 

allele frequency (MAF) greater than 0.05 in at least one population group while one 
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(rs1664073690 on 1q31.3) had a low frequency (MAF =0.02). This variant was present at low 

frequency in EUR and HIS but was absent in both ASN and AFR. rs10178576 (2q13.3) was 

common in AFR (MAF = 0.11) but was not observed in either ASN or EUR populations (Figure 

2). rs113521945 (4q35.1) was observed across all four population groups. While a significant 

interaction was observed only in EUR, the direction of the effect was consistent across all four 

groups (Figure 2). 

Among the six top SNPs at known BP loci (3p22.1, 7q21.11, 7q31.1, 12p12.1, 13q32.1, and 

16q23.2), four SNPs on 3p22.1, 7q21.11, 7q31.1, and 12p12.1 showed the most significant 

associations or were exclusively observed in non-EUR populations (Figure 2). Notably, three of 

them (rs115760284 on 3p22.1, rs757194 on 7q31.1, and rs7979305 on 12p12.1) were absent in 

both EUR and ASN but were present at low frequency in AFR (0.01 ≤ MAF ≤0.05) and were rare 

in HIS (MAF < 0.01) (Table 1). Interestingly, rs115760284 (3p22.1) showed some heterogeneity 

between AFR and HIS (I2 > 80%, P.Het < 0.01), with a greater effect size in AFR (Figure 2). 

Moreover, a locus on 7q21.11 was detected solely in ASN population among 26,307 individuals, 

with no evidence of heterogeneity across ASN studies (P.Het > 0.003). Two loci tagged by 

rs75095906 (13q32.1) and rs9931605 (16q23.2) were identified in the CPMA analyses, with no 

evidence of heterogeneity by population group. Across all nine top SNPs identified in the dDEPR 

analyses, no evidence of sex heterogeneity was observed. However, four of the nine SNPs could 

not be evaluated due to a limited sample size in males passing QC.  

 

qDEPR analyses 

We identified seven independent loci that showed evidence of association with BP traits 

modified by qDEPR in CPMA or population-specific meta-analyses (Table 2). Four loci tagged 

by rs77572777 (2q14.2), rs148780833 (3p26.3), rs748650739 (3q13.11), and rs140618249 
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(17p13.3) were not previously reported. The other three loci tagged by rs59284269 (3p25.3), 

rs145132348 (4p14), and rs114544309 (12q13.13) were previously reported for BP (Table 

S10). Five loci, including two not previously reported, were identified using the 1df interaction 

test (P.Int < 5 x 10-8) (Table 2). In the 2df joint test, a total of 316 loci were associated with at 

least one BP trait (144 loci were associated with SBP, 160 loci were associated with DBP, and 

157 loci were associated with PP). Among them, two novel loci tagged by rs77572777 (2q14.2) 

and rs748650739 (3q13.11) were associated with PP through interaction with qDEPR. Notably, 

two of the novel loci rs148780833 (3p26.3) and rs140618249 (17p13.3) identified in the 1df test 

(P.Int < 5 x 10-8) also showed evidence of an association with SBP through interaction with 

qDEPR using the 2df joint test (P.Joint < 5 x 10-8). 

The four top SNPs tagging the novel loci include rs77572777 (2q14.2) and rs748650739 

(3q13.11) from the HIS-specific analyses, and rs148780833 (3p26.3) and rs140618249 

(17p13.3) from the CPMA. None of these four SNPs showed evidence of heterogeneity across 

populations or studies (P.Het > 0.003) and all were of low frequency (MAF= 0.01-0.02). Except 

for rs77572777 on 2q14.2, the three other SNPs were polymorphic only in AFR and HIS 

populations. 

Among the three known loci (3p25.3, 4p14, and 12q13.13) identified in the qDEPR analyses, two 

loci on 4p14 and 12q13.13 were not observed in EUR population. Of these two, the 4p14 locus 

tagged by rs145132348 and identified in AFR-specific analyses showed no heterogeneity across 

AFR studies contributing to the meta-analyses in this population (Figure 3). The other locus on 

12q13.13 tagged by rs114544309 and identified in CPMA showed the most significant 

association in HIS, with some evidence of heterogeneity between AFR and HIS and a greater 

effect size in HIS (Figure 3). rs59284269 (3p25.3) identified in CPMA showed no evidence of 
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heterogeneity by population group. No evidence of sex heterogeneity was observed across all 

seven top SNPs identified in the qDEPR analyses.  

 

Comparison between dDEPR and qDEPR analyses 

Of the 16 identified loci (Tables 1 and 2), four top SNPs (rs77572777, rs148780833, 

rs748650739, and rs114544309) were identified exclusively in the qDEPR analyses (Figure S11 

and 12). This appears to largely reflect differences in included studies in the two types of 

analyses (Figure S13). In the CPMA, approximately 15 million SNPs were included in the 

dDEPR and 21 million SNPs in the qDEPR analyses. Notably, nearly 6 million SNPs were 

analyzed only in the qDEPR analyses, mainly because they were filtered out in the dDEPR 

analyses by the stringent study-level filters. Conversely, fewer than half a million SNPs were 

analyzed exclusively in dDEPR analyses, likely due to some large biobank samples where only 

dichotomous exposure was available while the quantitative exposure was not. The four SNPs 

identified only in qDEPR analyses were filtered out of the dDEPR analyses during study-level QC 

(rs148780833) or at the meta-analysis QC because they were present in only one study 

(rs77572777 and rs748650739), or in only one population (rs114544309) (Figure S12). The 

remaining 12 loci were present in both dDEPR and qDEPR analyses. As illustrated in Figure S11 

and 12, there was a consistency in direction between the two analyses even though magnitude 

of effects and statistical significance varied between them. 

 

Gene-based and pathway analyses 

Using 1df interaction test results, Multi-marker Analysis of GenoMic Annotation (MAGMA) and 

Versatile Gene-Based Association Study 2 (VEGAS2) ranked genes and pathways based on the 

combined association of SNPs within a gene with BPs. Both MAGMA and VEGAS2 gene-based 
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tests identified a gene-wide significant association for GLTPD2 (MIM: 620824), with similar 

results observed for several other genes among the top 20 genes (Table S11). An additional 

gene, TMEM199 (MIM: 616815), was discovered by VEGAS2. These two genes were not 

identified at genome-wide significance in the GWAS. Pathway analyses suggest DEPR-specific 

biochemical pathways that influence BP, including retinoid signaling, remodeling of acyl chains 

of phosphatidylethanolamine, nucleotide-binding oligomerization domain containing 2 (NOD2) 

protein signaling, and response to stress (Table S12).  

 

Functional annotation and gene prioritization 

Functional annotation was conducted for all SNPs in LD (r2 >0.4) with the top SNPs tagging all 

identified novel and known BP loci. All the top SNPs were annotated as either intergenic or 

intronic variants, suggesting a potential role for regulatory mechanisms. Among 31 genes 

identified by FUMA, six genes were predicted to be highly intolerant to loss-of-function mutation 

based on probability of loss-of-function intolerance (pLI) score > 0.9, including CMIP (MIM: 

610112), ZBTB47 (MIM: 619969), DOCK4 (MIM: 607679), UBE2K (MIM: 602846), PDS5A (MIM: 

613200), and GRASP (MIM: 612027) (Table S13). Multiple genes exhibited high CADD scores 

(>12.37) among SNPs in LD, suggesting potential deleterious effects. Three additional genes 

were identified through associations with various quantitative trait loci (xQTL), which include 

CASP3 (MIM: 600636), DBI (MIM: 125950), and UGGT2 (MIM: 605898). PheWAS results 

showed associations with hematological, psychiatric, behavioral, and medication-related 

phenotypes, suggesting possible pleiotropic effects of the identified loci. Details on functional 

annotations are described in Table S14.   

A total of 36 genes were prioritized by functional annotations of both novel and known loci, as 

well as gene-based analyses. These prioritized genes showed enrichment of gene expression in 
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the brain and whole blood (Figure S14). Additionally, they demonstrated evidence of 

enrichment in two pathways involved in myogenesis and immune system in dendrite cells, as 

well as enrichment in four potential microRNA regulatory targets (Table S15).  

 

Druggability analyses 

We investigated the potential druggability of the identified 36 candidate gene product targets 

using an integrative approach as previously described 40. We queried dDEPR and qDEPR 

exposure candidate gene targets using the Drug-Gene Interaction database (DGIdb), which 

identified 11 genes annotated as members of the druggable genome (Table S16). Several of 

these gene targets are implicated in metabolic pathways (ACSL1[MIM: 152425], DBI, UGDH 

[MIM: 603370], SLCO1A2 [MIM: 602883]), vascular wall signaling (TGFA [MIM: 190170], CAV3 

[MIM: 601253], SSUH2 [MIM: 617479], DOCK4), DNA damage response or apoptosis (CASP3, 

RFC1[MIM: 102579], RECQL [MIM: 600537]), and neuroactive ligand-receptor interaction (VIPR1 

[MIM: 192321], CCK [MIM: 118440]). We identified 11 genes with FDA approved drug 

interactions that have been evaluated in late-stage clinical trials using DrugBank, ChEMBL, and 

ClinicalTrials.gov databases (Table S17). Two of these gene targets (CASP3 and UGDH) were 

identified as targets of aspirin, a well-established and safe drug used to treat pain, inflammation, 

and reduce cardiovascular events. UBE2K was identified as a target of the central nervous 

system stimulant, dextroamphetamine, used to treat attention-deficit disorder (ADHD) and 

narcolepsy, however its use has been federally controlled due to the high potential for abuse. 

CCK was also identified as a target of the vasodilator, diazoxide, which is used to manage 

hypoglycemia due to pancreatic cancer or other conditions. Several genes (CCK, SLCO1A2, 

UGGT2) were identified as targets of drugs (diazoxide, nadolol, hydrochlorothiazide) used to 

treat hypertension, suggesting opportunities for drug repositioning and risk factor prevention.  
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Discussion 

In this large-scale genome-wide interaction study, we identified 16 genetic loci whose 

association with BP was modified by DEPR defined as a dichotomous or a quantitative exposure. 

These data provide support for molecular mechanisms connecting DEPR and BP and highlight 

several druggable gene targets that could be further investigated for clinical potential for BP 

regulation in individuals with DEPR.   

Nearly 70% of our findings were derived from non-EUR populations, likely due to differences in 

allele frequency across populations and/or to population differences in SNP x DEPR interaction 

effect sizes. Notably, several of the identified SNPs were monomorphic in EUR. Variations in 

MAF across population groups have been shown to contribute to differences in disease 

prevalence across populations 41. The risk of hypertension varies considerably across 

populations, being more prevalent in AFR and HIS populations 42,43. More than half of our 

findings come from AFR and/or HIS. AFR populations generally exhibit greater genetic diversity 

and more pronounced allele frequency differences compared to other populations 44. Self-

identified HIS populations in the US include admixed individuals with varying proportions of 

EUR, AFR, and Amerindian genetic backgrounds, adding further complexity. Interestingly, 

patterns of associations were similar in AFR and HIS populations at several loci near the genes 

TGFA, TRAK1 (MIM: 608112), CNTN6 (MIM: 607220), and OR1A1 (MIM: 618046). GWAS of BP 

have identified differences in BP loci by population groups, while partial generalization of BP loci 

between populations has also been reported 45-47. Thus, there is a critical need for expanding 

genetic studies of BP in non-EUR populations. In our study, among nine known BP loci identified 

with evidence for gene-DPER interaction, six loci (3p22.1, 7q21.11, 7q31.1, 12p12.1, 4p14, and 
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12q13.13) were derived from non-EUR populations while they were previously discovered as BP 

loci in EUR population. This further underscores the importance of considering DEPR effect 

modification on BP for diverse populations.  

Multiple studies have shown mixed results regarding the association between depressive 

symptomatology and hypertension 14,19,48. Despite this variability, depression has been 

consistently linked to an increased risk of cardiovascular morbidity and mortality 49. Typically, 

depression arises in response to stressful events, and stress is a major risk factor for 

hypertension 50. Both hypertension and depression show higher prevalence among individuals of 

non-EUR populations, highlighting significant racial and ethnic disparities 42,43,51,52.  

Functional annotation of the novel loci revealed genes implicated in neurogenesis, lipid 

metabolism, neuronal apoptosis, and synaptic activity. A locus on chromosome 2 mapped to an 

intron of the TGFA gene, which encodes a ligand for the epidermal growth factor receptor and 

plays a crucial role in neural cell proliferation and differentiation 53,54. Previous studies suggested 

TGFA’s role in neurogenesis and angiogenesis in adult injured brain and the immune system 

55,56. Furthermore, genetic variants in TGFA have been associated with response to 

antidepressant treatment in GWAS 57,58. ACSL1 encodes an isozyme of the long-chain fatty-acid-

coenzyme A ligase family, which operates in lipid biosynthesis and fatty acid degradation. 

Animal models have demonstrated that ACSL1 modulates lipid metabolism, inflammation, and 

oxidative stress in kidney disease 59,60. In fact, the kidney plays a critical role in BP regulation 61. 

The ACSL1 locus was associated with DNA methylation levels (mQTL) of ACSL1 in blood. 

Functional annotations of this previously unreported locus also highlight several additional 

genes, including CASP3. CASP3 encodes a cysteine-aspartic acid protease (Caspase-3) that 

plays a critical role in neuronal apoptosis, neurogenesis, and synaptic activity 62-65. Notably, the 

ACSL1 locus was associated with the splicing event of CASP3 in brain tissue. Interestingly, a 
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recent study highlighted the role of Caspase-3 in pathogenesis of depressive disorders 66. 

CNTN6 encodes Contactin-6, a neuronal cell adhesion molecule that facilitates neurite 

outgrowth and synaptogenesis 67. Mutations in this gene increase the risk for autism spectrum 

disorders 68. DBI encodes a diazepam binding inhibitor, which is regulated by hormones and 

acts as a neuropeptide in brain synapses 69. Our results showed an intergenic variant 

(rs77572777 on 2q14.2) with an expression quantitative trait locus (eQTL) of DBI in brain tissue. 

A previous study reported that DBI expression in the brain decreased with long-term social 

isolation stress 70. An increased level of the protein encoded by DBI has been suggested as a 

prognostic value in cardiovascular disease 71. 

Several known loci for BP were identified through interactions with DEPR in our study and 

implicated several genes previously reported to be associated with mental disorders. These 

genes include DOCK4, HS6ST3 (MIM: 609401), and MAGI2 (MIM: 609401). The DOCK4 locus 

was associated with SBP in the AFR population. DOCK4 is a member of the dedicator of 

cytokinesis family and is involved in cell migration 72. Animal models have suggested a role of 

DOCK4 in excitatory synaptic transmission and social behavior 73. Variants in DOCK4 have been 

associated with response to antidepressants, autism spectrum disorder, and schizophrenia 74,75. 

A recent GWAS of stress-induced vasomotion identified an association with variants in DOCK4, 

which were also linked to an increased risk of adverse cardiovascular events 76. HS6ST3 

encodes heparin sulfate sulfotransferases involved in proliferation, inflammation, and blood 

coagulation. Variants within or near this gene have been associated with schizophrenia, major 

depressive disorder, and coronary artery calcified atherosclerotic plaque 77-79.  MAGI2 encodes a 

synaptic scaffolding molecule and shows high expression in the brain and postsynaptic density 

area of spine 80. In our data, the MAGI2 locus was observed only in ASN population, and variants 
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in this gene have been associated with depressive symptoms in an East Asian cohort as well as 

in other population groups 81-83. 

Our druggability analyses suggest potential opportunities for drug repurposing and risk factor 

prevention. The identified genes include CASP3 and UGDH as targets for aspirin and CCK, 

SLC01A2, and UGGT2 for antihypertensive medications. UGDH encodes an integral Golgi 

membrane protein involved in signal transduction and cell migration. A previous study has 

shown its nominal association with brain electrical activity linked to psychiatric conditions 

including depression, and suggested that this association may be population-specific 84. This is 

consistent with our finding that the associated SNP (rs145132348 on 4p14) was identified only 

in individuals of AFR and HIS populations. CCK encodes cholecystokinin (CCK), a digestive 

enzyme and a neuropeptide that regulates emotional states 85,86. Patients with major depression 

showed increased CCK levels in cerebrospinal fluid 87. CCK enzyme also plays role in BP 

regulation and predicts cardiovascular mortality in elder females 88,89. SLCO1A2 (or OATP1A2) 

encodes a sodium-independent transporter that is crucial for transporting hormones across the 

blood-brain barrier into the central nervous system and has been suggested as a potential 

modulator of mood disorders 90-92. UGGT2 encodes a soluble protein of the endoplasmic 

reticulum and has been associated with impulsive behaviors 93,94. It is important to note that 

some of these drug-gene interactions may also reflect the medication use for individuals with 

chronic depression and warrant follow-up to determine their direct impact on hypertension and 

cardiovascular risk 19. 

Findings from our prior study 21 were generally not replicated in this study, likely due to the use 

of a different modeling strategy that includes additional adjustment for potential confounders. 

One notable exception is the reported gene-DEPR interaction at the FSTL5 (MIM: 620128) 

locus, which was identified by the 2df joint test in a previous study, tagged by two SNPs 

Jo
urn

al 
Pre-

pro
of



27 
 

(rs138187213 and rs5863461). In our dDEPR analyses, both SNPs showed associations in the 

1df interaction test (rs138187213, P.Int= 8.48 x 10-4; rs5863461, P.Int= 2.89 x 10-4). Similar 

results were observed in the qDEPR analyses, with both SNPs showing evidence of interactions 

(rs138187213, P.Int= 8.19 x 10-5; rs5863461, P.Int= 1.06 x 10-4).  

Our study benefits from a large sample size with diverse population backgrounds, which allows 

for a comprehensive analysis of the interactions across different populations. Moreover, our 

methodological approach using two complementary definitions of DEPR sought to enhance 

discoveries. The dDEPR analyses, with a larger sample size, provided greater statistical power, 

while the qDEPR analyses were designed to capture subtle variations in exposure and 

potentially reveal associations that might have been missed in the dDEPR analyses. Notably, we 

observed a substantial number of SNPs analyzed in the qDEPR but not included in the dDEPR, 

likely due to stringent filters required for binary exposure analyses. The qDEPR analyses 

enabled us to identify additional loci at genome-wide level, possibly due to the assumption of 

linearity between the exposure and outcome being met for those specific loci. Furthermore, the 

consistency of associations across both analytical approaches reinforces robustness of our 

findings.   

Several limitations should be acknowledged. First, the sample size for non-EUR population 

groups was relatively small compared to the EUR population, which may have limited the 

discovery of population-specific findings. For this reason, we combined East ASN and South 

ASN populations into a single population group although that may introduce heterogeneity. 

While combining distinct populations can introduce complexity due to underlying genetic and 

cultural differences, this approach was chosen to increase statistical power. Second, we relied 

on self-reported race and ethnicity information, which may have led to population groupings that 

do not fully capture underlying genetic diversity. This limitation also suggests that depressive 
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symptoms may reflect sociodemographic factors that are not fully accounted for in our models. 

Third, DEPR was captured by several different validated instruments in the participating cohorts 

with different sensitivities and specificities to detect depressive symptoms, which may have 

introduced heterogeneity and measurement error, potentially reducing statistical power. 

Nevertheless, we chose to include all available cohorts in order to maximize sample size and 

retain the greatest statistical power possible. Lastly, while extensive functional annotation and 

druggability analyses provide biological validation/support for our findings, replication in 

independent samples was not possible in this study since dividing cohorts into discovery and 

replication analyses encountered insufficient power. Because we made extensive efforts at 

recruiting most of the studies known to have DEPR data, identifying suitable independent 

cohorts with large sample size and DEPR data availability for replication remains a major 

challenge. This is a particular issue for interactions identified only in non-European population 

groups, often in relatively modest sample sizes.  

In conclusion, we identified multiple genetic loci associated with BP traits that were modified by 

DEPR. These data emphasize the importance of considering DEPR as an effect modifier in BP 

gene discovery, particularly in non-EUR populations. They also provide insights into the genetic 

basis of the relationships between DEPR and BP, and highlight the potential of applying such 

information to enhance more personalized approaches to hypertension management in 

individuals with DEPR.   
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Figure Legends 

Figure 1. Study Overview 

A. For each BP trait, association analyses were conducted accounting for SNP x depressive 

symptomatology (DEPR) interaction effects using two exposures: dichotomous DEPR (dDEPR) 

and quantitative (qDEPR). For each population group, study-specific results were combined to 

perform 1df interaction test and 2df joint test. Population-specific meta-analyses were carried 

out separately for each group: African (AFR), Asian (ASN), European (EUR), and Hispanic (HIS) 

and subsequently combined for cross-population meta-analyses. B. A total of 16 independent 

loci were identified through SNP x DEPR interaction effects, including seven novel and nine 

known loci for BP. C. Gene prioritization was performed using FUMA, gene-based analyses, and 

xQTL. Druggability analyses of 36 prioritized genes identified 11 druggable gene targets.  

 

Figure 2. Forest plots of interaction effects at novel and known loci identified in the dDEPR 

analyses 

Black squares and error bars represent the effect size and its 95% CI for each population in 

CPMA or for each study in population-specific meta-analyses. Red diamond represents the 

overall effect size calculated in the meta-analysis where the center indicates the point estimate 

and its edges represent 95% CI of the estimate.  

CPMA, cross-population meta-analyses; AFR, African; ASN, Asian, EUR, European; HIS, 

Hispanic; b, the interaction effects estimated in the 1df interaction test (Effect is in mmHg); SE, 

standard error of interaction effects estimated in the 1df interaction test; CI, confidence interval 

 

Figure 3. Forest plots of interaction effects at novel and known loci identified in the qDEPR 

analyses 

Black squares and error bars represent the effect size and its 95% CI for each population in 

CPMA or for each study in population-specific meta-analyses. Red diamond represents the 

overall effect size calculated in the meta-analysis where the center indicates the point estimate 

and its edges represent 95% CI of the estimate. 

CPMA, cross-population meta-analyses; AFR, African; ASN, Asian, EUR, European; HIS, 

Hispanic; b, the interaction effects estimated in the 1df interaction test (Effect is in mmHg); SE, 

standard error of interaction effects estimated in the 1df interaction test; CI, confidence interval 
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Table 1. Novel and known Loci associated with BP traits discovered through SNP × dDEPR interactions 

 

Allele E, effect allele; Allele A, non effect allele; EAF, effect allele frequency; MAF, minor allele frequency; AFR, African; EUR, European; ASN, Asian; HIS, 

Hispanic; Int Effect, interaction effects estimated in the 1df interaction test (Effect is in mmHg); Int SE, standard error of interaction effects estimated in the 1df 

interaction test; P Int, P value of interaction effects in the 1df interaction test; P Joint, P value of joint effects of SNP main effect and interaction effect in 2df joint 

test; P.Sex.Het, sex heterogeneity P value in two-sample Z tests 
 

*rs1664073690, rs10178576, rs113521945: top SNPs at novel loci (at least 500 Kbp away from any previously reported BP locus) 
ⴕrs1664073690: absent in the 1000G Phase3 reference panels 
 aP.FDR: interaction FDR P value for 1df interaction test; joint FDR P value for 2df joint test 
bP.Het: heterogeneity P value across population groups in CPMA; heterogeneity P value across studies in ancestry-specific meta-analyses  

 

 

 

  

Locus 
CHR:position 

(hg38) 

Alleles  

(E/A) 
rsID 

Analysis  

group 
EAF 

MAF                

AFR/EUR/ASN/HIS 

Nearest  

gene 
Position 

Int 

Effect 

Int 

SE 

P 

Int 

P 

Joint 

P 

FDRa 

P 

Hetb 

Sample  

size 

P.Sex 

.Het 

1q31.3 1:194548555 A/G rs1664073690*ⴕ CPMA-SBP 0.98 0/0.02/0/0.01 CDC73 intergenic 7.07 1.25 1.44 x 10-8 9.93 x 10-4 0.09 0.30 30577 NA 

2q13.3 2:70509396 C/T rs10178576* CPMA-PP 0.91 0.11/0/0/0.02 TGFA intronic 2.59 0.46 2.16 x 10-8 5.11 x 10-7 0.24 0.61 39482 0.56 

3p22.1 3:42213248 G/T rs115760284 CPMA-SBP 0.01 0.01/0/0/0.003 TRAK1 Intronic -13.30 2.39 2.78 x 10-8 0.048 0.10 0.01 22241 NA 

4q35.1 4:184777291 A/G rs113521945* CPMA-DBP 0.91 0.02/0.09/0.05/0.09 ACSL1 intronic -0.57 0.10 2.72 x 10-8 5.74 x 10-7 0.26 0.71 488129 0.05 

7q21.11 7:78342531 A/T rs147967138 ASN-PP 0.04 0/0/0.04/0 MAGI2 Intronic 5.12 0.93 3.34 x 10-8 2.89 x 10-7 0.14 0.62 26307 0.8 

7q31.1 7:112203372 A/G rs757194 AFR-SBP 0.03 0.03/0/0/0.006 DOCK4 Intronic 13.62 2.58 1.39 x 10-7 7.99 x 10-9 0.05 0.73 11644 NA 

12p12.1 12:21435910 C/T rs7979305 AFR-PP 0.95 0.05/0/0/0.007 PYROXD1 intergenic -8.63 1.56 3.09 x 10-8 9.96 x 10-8 0.18 0.26 13093 NA 

13q32.1 13:96826633 A/G rs75095906 CPMA-SBP 0.15 0.03/0.15/0.12/0.1 HS6ST3 Intronic -0.76 0.14 4.29 x 10-8 2.45 x 10-5 0.13 0.79 518557 0.99 

16q23.2 16:81545886 C/T rs9931605 CPMA-SBP 0.81 0.83/0.81/0.78/0.77 CMIP Intronic 0.68 0.12 1.36 x 10-8 1.23 x 10-5 0.09 0.86 543909 0.05 
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Table 2. Novel and known Loci associated with BP traits discovered through SNP × qDEPR interactions 

 

 

Allele E, effect allele; Allele A, non effect allele; EAF, effect allele frequency; MAF, minor allele frequency; AFR, African; EUR, European; ASN, Asian; HIS, 

Hispanic; Int Effect, interaction effects estimated in the 1df interaction test (Effect is in mmHg); Int SE, standard error of interaction effects estimated in the 1df 

interaction test; P Int, P value of interaction effects in the 1df interaction test; P Joint, P value of joint effects of SNP main effect and interaction effect in 2df joint 

test; P.Sex.Het, sex heterogeneity P value in two-sample Z tests 
 

* rs77572777, rs148780833, rs748650739, rs140618249: top SNPs at novel loci 
 ⴕ rs148780833, rs748650739: absent in the 1000G Phase3 reference panels 
aP.FDR: Interaction FDR P value for 1df interaction test; Joint FDR P value for 2df joint test 
bP.Het: Heterogeneity P value across population groups in CPMA; Heterogeneity P value across studies in ancestry-specific meta-analyses 

Locus 
CHR:position 

(hg38) 

Alleles  

(E/A) 
rsID 

Analysis  

group 
EAF 

MAF                 

AFR/EUR/ASN/HIS 

Nearest  

gene 
Position 

Int 

Effect 

Int 

SE 

P 

Int 

P 

Joint 

P 

FDRa 

P 

Hetb 

Sample  

size 

P.Sex 

.Het 

2q14.2 2:118537183 A/G rs77572777* HIS-PP 0.99 0/0.02/0/0.01 RP11-19E11.1 intergenic 2.48 0.44 3.55 x 10-5 1.74 x 10-8 0.06 0.47 16077 0.60 

3p26.3 3:1301059 C/T rs148780833*ⴕ CPMA-SBP 0.01 0.01/0/0/0.002 CNTN6 intronic 5.94 1.04 9.91 x 10-9 2.85 x 10-9 0.11 0.70 27204 0.01 

3p25.3 3:8726816 A/G rs59284269 CPMA-SBP 0.09 0.23/0.02/0/0.06 SSUH2 intronic 0.86 0.16 4.29 x 10-8 8.65 x 10-7 0.18 0.25 251948 0.73 

3q13.11 3:104214171 C/CA rs748650739*ⴕ HIS-PP 0.99 0.05/0/0/0.01 RP11-40M23.1 intergenic 2.25 0.48 3.76 x 10-5 4.66 x 10-8 0.08 0.94 16077 0.16 

4p14 4:39689605 C/T rs145132348 AFR-DBP 0.02 0.03/0/0/0.006 UBE2K intergenic 2.92 0.51 1.19 x 10-8 6.33 x 10-8 0.19 0.82 17147 0.85 

12q13.13 12:52010638 C/T rs114544309 CPMA-DBP 0.01 0.02/0/0/0.008 GRASP intronic 2.45 0.44 1.85 x 10-8 2.56 x 10-7 0.31 0.01 31068 0.37 

17p13.3 17:3225579 C/T rs140618249* CPMA-SBP 0.98 0.02/0/0/0.004 OR1A1 intergenic -4.10 0.74 3.18 x 10-8 3.77 x 10-8 0.18 0.20 28685 0.50 
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We conducted a genome-wide interaction study of blood pressure (BP) traits in 564,680 adults 

that identified 16 BP loci exhibiting gene-depressive symptomatology interactions. Prioritized 

genes at these loci pointed to druggable targets linked to pathways involved in mood disorders 

as well as known antihypertensive drugs. 
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