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Abstract

Gene-environment interactions may enhance our understanding of blood pressure (BP) biology.
We conducted a meta-analysis of multi-population genome-wide association studies of BP traits
accounting for gene-depressive symptomatology (DEPR) interactions. Our study included
564,680 adults from 67 cohorts and 4 population backgrounds (African (5%), Asian (7%),
European (85%), and Hispanic (3%)). We discovered seven previously unreported BP loci
showing gene-DEPR interaction. These loci mapped to genes implicated in neurogenesis
(TGFA, CASP3), lipid metabolism (ACSL 1), neuronal apoptosis (CASP3), and synaptic activity
(CNTN6, DBI). We also showed evidence for gene-DEPR interaction at nine known BP loci,
further suggesting links between mood disturbance and BP regulation. Of the 16 identified loci,
11 loci were derived from non-European populations. Post-GWAS analyses prioritized 36 genes,
including genes involved in synaptic functions (DOCK4, MAGI2) and neuronal signaling (CCK,
UGDH, SLC01A2). Integrative druggability analyses identified 11 druggable candidate gene
targets linked to pathways involved in mood disorders as well as known antihypertensive drugs.
Our findings emphasize the importance of considering gene-DEPR interactions on BP,
particularly in non-European populations. Our prioritized genes and druggable targets highlight
biological pathways connecting mood disorders and hypertension and suggest opportunities for

BP drug repurposing and risk factor prevention, especially in individuals with DEPR.



Introduction

Hypertension and high blood pressure (BP) (MIM: 145500) are maijor risk factors for
cardiovascular disease, stroke, chronic kidney disease, and vascular dementia, significantly
contributing to global morbidity and mortality *. Despite the widespread availability of effective
anti-hypertensive medications, the prevalence of hypertension has doubled worldwide over the
past three decades and is projected to affect 1.6 billion individuals by 2025 2. Moreover, while
the age-adjusted prevalence of hypertension has declined in some regions, global disparities in
hypertension rates have widened 3#.

Genetic and environmental factors can independently increase the risk of hypertension, but
gene-environment interaction (GxE) may provide a more comprehensive understanding of the
genetic contributions to the disease >’. A recent genome-wide association study (GWAS) of BP
identified a total of 2,103 independent genetic signals, which accounts for approximately 60% of
the heritability of BP & Consequently, a substantial portion of heritability remains unexplained.
Incorporating GxE in genetic analyses of BP may yield additional information about its genetic
architecture and provide avenues to improve health by more precisely characterizing risk of
high BP in the context of potentially modifiable environmental, lifestyle, and behavioral risk
factors °.

The influence of psychosocial factors on BP level is well known '%'2, Psychosocial stress
increases the incidence of hypertension, and is associated with poor hypertension control,
unhealthy lifestyle behaviors, and non-compliance with treatment regimens 3. The relationship
between depressive symptoms and BP is complex. While some studies have shown an
association of depressive symptoms with incidence of hypertension '*'6, others have reported
an association of depressive symptoms with lower BP levels . A recent study provided

evidence of depression as a causal risk factor of hypertension using Mendelian Randomization



20, Our previous study examined the effect modification of genetic factors by dichotomous
psychosocial factors on BP in up to 128,894 individuals 2'. This highlighted the significance of
gene-psychosocial factors interactions in gene discovery for BP, especially among individuals of
African ancestry. However, the statistical power and population diversity of the study were
limited. To address these shortcomings, we increased the sample size up to five-fold by
incorporating now available biobank data. In addition, we defined psychosocial exposures as
both dichotomous and quantitative, potentially improving the statistical power to identify
additional BP loci. We report genome-wide association meta-analyses of systolic BP (SBP),
diastolic BP (DBP), and pulse pressure (PP) in the context of depressive symptomatology
(DEPR) in a sample of up to 564,680 participants from populations of African (AFR), Asian

(ASN), European (EUR), and Hispanic (HIS) backgrounds.

Methods

Study design and participants

All participating cohorts were part of Gene-Lifestyle Interactions Working Group of the Cohorts
for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium 22, Except for
the UK Biobank, the study included adult men and women aged 18 years or older from four
population groups defined based on self-reported participant’s race and ethnicity: AFR
(including self-reported Black), ASN (including East Asian and South Asian), EUR (including self-
reported White), and HIS. The UK Biobank used the Pan-UKB data to define population groups
based on shared genetic similarity and demographic history 23. GWAS considering the

interaction between gene and DEPR were conducted within each individual study by population



group. Population-specific meta-analyses were then performed using summary statistics,
followed by cross-population meta-analyses based on the population-specific results (Figure 1).

Ethics approval and consent:

All participating studies obtained written informed consent from their participants and ethics
approval from the appropriate institutional review boards. Details about the participating studies

are provided in the Supplemental Material.

Blood pressure traits

Three BP traits were considered as outcome variables: SBP, DBP, and PP. Pulse pressure was
calculated as the difference between SBP and DBP. When multiple BP readings were taken
during the same examination, the average of all SBP or DBP readings were used. For
participants taking anti-hypertensive medications, SBP and DBP values were adjusted by adding
15 mm Hg and 10 mm Hg, respectively, to the measured values 2%, Extreme values for each BP
variable were winsorized if they were more than six standard deviations (SDs) above or below

the mean.

Depressive symptomatology (DEPR) exposures

Each participating study collected information on DEPR using validated screening
questionnaires. Across the studies, depressive symptoms were assessed using 13 distinct
validated instruments, with additional variability arising from differences in the number of
questionnaire items and scoring ranges (Table S$1). Measurements of DEPR and BP were taken
during the same examination. We defined two variables as exposures: dDEPR and qDEPR.

The dDEPR exposure was defined as a binary variable by dichotomizing DEPR measures using

recommended standard cut off points specific to each screening instrument. Individuals with



higher depressive symptom score were categorized as the exposed group and coded as E=1.
The specific cut-off points used to define the dDEPR for each study are provided in Table $1.
Descriptive statistics on depression score are provided in Table S2.

The qDEPR exposure was defined as a standardized residual after adjusting for age and sex
effects within each cohort. For studies that included multiple population groups, the variable was
computed separately for each population. First, DEPR scores were winsorized if a value was
more than 6 SDs above or below the mean. The scores were then regressed on age, sex, and
age x sex interaction in the sex-combined samples. The resulting age- and sex-adjusted
residuals were standardized using the Z-score in the combined sample. Thus, in each study, the
mean and SD of qDEPR were approximately 0 and 1, respectively, as shown in Table S3. For
the sex-stratified analyses, we used the same qDEPR estimates that were residualized and
standardized in the sex-combined group were used. No additional residualization or

normalization was performed within sex-specific group.

Genotype data

Most of the participating studies performed genotyping using Illlumina or Affymetrix. Imputations
were primarily carried out using Trans-Omics for Precision Medicine (TOPMed) or Haplotype
Reference Consortium (HRC) reference panels. Details on genotyping and imputation are
presented in Table S4. Before analysis, genotype data for each cohort were restricted to SNPs
mapping to autosomal chromosomes, with MAF = 0.1% across all samples and an imputation

quality = 0.3. Indels (insertions and deletions) were also included.

Individual study statistical analyses



Each cohort performed analyses by population subgroup using two statistical models designed
for different purposes. Model 1 was a joint effect model that accounts for the SNP main effect,
DEPR effect, and the interaction effect between SNP and DEPR:

E(BP) = Bo + BsnpSNP + BpeprDEPR + BsnpxpeprSNP X DEPR + B¢ C
Where DEPR was either dDEPR or qDEPR, and C was a vector of covariates, including age,
age?, sex, field centers (if relevant), and population-specific principal components, as well as any
additional cohort-specific covariates, if applicable (Table S$4). In model 1, additional DEPR x
covariate interaction terms with age, age?, and sex were included in the model to minimize
potential false positive findings that could result from confounding effects %. For the sex-
stratified analyses, both sex and DEPR x sex were excluded from the model. A 1 degree of
freedom (1df) interaction test was performed to evaluate SNP x DEPR interaction effect alone
under the null hypothesis that Bsnexoerr = 0. A 2df joint test was used to simultaneously assess
the SNP main effect and SNP x DEPR interaction effects, under the null hypothesis that Bsne =
Bsnex perr = 0 2. When both the SNP main effect and interaction effects exist, the 2df joint test
typically provides more power than the 1df interaction test #’.
Model 2 was a SNP marginal effect model:

E(BP) = Bo + BsnpSNP + BcC

The SNP marginal P-value (P.Marginal) was used to identify SNPs with significant evidence of
interaction effects by comparing P.Marginal to the 1df interaction P-value (P.Int) in Model 1. To
ensure a fair comparison, we conducted a standard GWAS (Model 2) with the same covariates
used in Model 1 other than the DEPR x covariate interaction terms.
Analyses excluded subjects without genotype data or with missing data for the DEPR exposure
or any covariates. Each study selected one of the specialized software tools to run analyses:

GEM (https://github.com/large-scale-gxe-methods/GEM), LinGxEScanR
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(https://github.com/USCbiostats/LinGxEScanR), or MMAP

(https://github.com/MMAP/MMAP.github.io), as described in Table S4. For the studies with

related subjects, MMAP was used to account for familial relatedness using linear mixed models.

Quality control of study-specific and meta-analyses results
Quality control (QC) was performed for both study-specific and meta-analyses results using

EasyQC2 software (www.genepi-regensburg.de/easyqc?). For results submitted in build hg19,

genomic coordinates were lifted over to build hg38. At the study-level, QC involved different
SNP filters for the two exposures. For the dDEPR, SNPs were excluded if degree of freedom
(DF) was less than 20 in the unexposed, exposed, or total samples. The DF was calculated as
minor allele count * imputation quality score. For the gDEPR, SNPs were removed if the DF was
less than 20 in the total samples. To identify systematic errors in data preparation, allele
frequency (AF) discrepancy, outliers, and missing data were assessed visually through
comparison of results to reference panels derived by imputation of population-specific 1000
Genomes phase 3 version 5 (p3v5) panels to the TOPMed reference panels using the TOPMed
imputation server. Any resulting concerns were addressed through consultation with the
contributing studies. To evaluate study-devel systematic inflation, genomic control (GC) inflation
factors were also estimated (Table S5), and thus, GC correction was not applied at the study
level. Next, meta-level QC was performed within each population group (AFR: 18 cohorts; ASN:
8 cohorts, EUR: 36 cohorts, HIS: 5 cohorts) to assess improper transformation of BP variables,

unstable numerical computation, and excessive inflation.

Meta-analyses
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Meta-analyses were performed using an inverse-variance weighted fixed-effect model for the
1df interaction test and an inverse-covariance-matrix-weighted model for the 2df joint test 252°,
each method chosen to appropriately weight studies based on the precision of their estimates.
Analyses were first conducted separately for each population group, and then the results were
combined for CPMA. The primary focus was on analyses within the sex-combined group,
considering three phenotypes and two exposures. For the identified loci in the sex-combined
group analyses, we performed sex-stratified analyses to assess differences in GXE by sex. The
first GC correction was applied to the population-specific meta-analyses and subsequently once
more to the CPMA 28, Quantile-quantile (QQ) plots and GC inflation factors are shown in Figure
$1-10. In the 2df joint test, there were mild to moderate inflations, mainly due to the significance

at previously reported loci for BP.

Identification of independent associated loci

The EasyStrata2 software was used to prioritize the top loci among significant results identified
in 1df interaction and 2df joint tests *. For the CPMA, SNPs had to be present in at least two
population groups with a minimum sample size of 20,000 individuals. In the EUR-specific meta-
analyses, SNPs were reported if they appeared in at least three studies and in at least 3,000
individuals. These criteria were relaxed for other population groups due to smaller sample size,
as shown in Table S$6. Only SNPs with MAF greater than 1% were reported for both population-
specific and cross-population meta-analyses. SNPs located within 1 Mb of the major
histocompatibility complex (MHC) region were excluded.

We considered SNPs with significant evidence of DEPR interaction effects on BP as top SNPs
based on the following criteria: (1) SNPs with significant 1df interaction effect (P.Int < 5 x 10%). In

population-specific analyses, SNPs were also required to show no evidence of heterogeneity
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(P.Het > 10°); (2) SNPs with significant 2df joint effects (P.Joint < 5 x 10%), and P.Int <
Bonferroni-corrected P adjusted for the number of 2df joint variants identified in the respective
CPMA or population-specific subgroup (e.g, for CPMA: dDEPR: 0.05/904= 5.53 x 10°%; qDEPR:
0.05/316 = 1.58 x 10*), and P.Int < P.Marginal. False discovery rates (FDR) were also calculated
using EastyStrata2.

To identify independent loci among all significant variants, we grouped the significant variants
within 500-kilobase regions and identified independent loci by linkage disequilibrium (LD) R? <
0.1, using TOPMed-imputed 1000G reference panels. If variants within regions were missing in
the LD panels, the most significant variant within each region was reported. The independent
loci were considered novel if the SNPs are located + 500 kb away from the known loci
previously reported in BP GWAS (Table S7). For the identified independent loci, we additionally
examined heterogeneity of the interaction effects by sex using the results from the sex-stratified
analyses. Heterogeneity of SNP x DEPR effects between men and women was tested using two-
sample Z tests *'. The significance threshold for heterogeneity tests was defined at Bonferroni-

corrected threshold based on the number of the identified independent loci.

DEPR-stratified analyses

For the SNPs identified in dDEPR analyses, we further derived SNP effect on BP by DEPR status
using the joint model’s summary statistics®. For each SNP, the actual sample size and the
number of exposed groups were used to derive summary statistics. This approach provides

greater precision and avoids assumptions that may introduce errors.

Gene-based analyses
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We performed gene-based tests on meta-analysis summary statistics for the 1df interaction
results using MAGMA implemented in FUMA 32 and VEGAS2 *, as the 2df joint test does not
provide an interpretable interaction effect estimate and therefore could not be used for the
gene-based analyses. Both tools computed gene-based p-values by considering variants within
each gene. The MAGMA method utilized a multiple linear regression model %, while VEGAS2
analyses were conducted using the ‘top10’ parameter, which selects the top 10% variants within
a gene, taking into account the number of variants and LD. This approach allowed us to include
SNPs with stronger signals and exclude those that might dilute the summary statistics 4. For
both MAGMA and VEGAS2, we used 1000 Genomes phase 3 reference panels specific to AFR,
EAS (for ASN), EUR, AMR (for HIS) populations to compute LD for population-specific analyses.
In MAGMA, the CPMA was conducted using the “all” 1000 Genomes phase 3 reference panel in
the FUMA setting. For VEGAS2, we performed meta-analyses of population-specific gene-based
results using Stouffer’s method, with p-values weighted by sample size. Gene-wide significance
in MAGMA was defined as P < 2.61 x 105, correcting for 19,122 protein-coding genes. VEGAS2
included 19,263 protein-coding genes, leading to a gene-wide significance threshold of P < 2.61

x 108,

Gene-set or Pathway-based analysis

We conducted gene-set analysis using MAGMA in FUMA to identify associations between gene
sets and biological pathways. The analyses were performed based on the gene-based results
from MAGMA, with statistical significance threshold at P < 2.94 x 10, correcting for 17,009
gene sets. As a sensitivity analysis, we performed pathway-based analysis using

VEGAS2Pathway *¢, based on population-specific gene-based association results generated with
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VEGAS2. The meta-analyses were conducted using Stouffer’'s method. VEGAS2Pathway

included 2,748 pathways, resulting in a significance threshold of empirical P < 1.82 x 10°°.

Functional Annotations

All identified independent loci were assessed for potential functional annotations using multiple
tools. First, we used the FUMA v1.5.2 to annotate functional information of the novel and known
loci . At the genomic region level, the FUMA SNP2GENE pipeline was used to prioritize genes
based on the results of the top SNPs and SNPs in LD (r? > 0.4 within 250 kb) through three gene
mapping approaches: positional mapping, GTEx v8 eQTL mapping, and 3D chromatin
interaction mapping (FDR < 1 x 10, 250bp upstream and 500bp downstream of the
transcription start site [TSS] by default settings). At the variant level, we used QTLbase %" and
Open Target Genetics *® databases to explore xQTL that link our loci to tissue or cell type
specific functions. The xQTL include gene expression (eQTL), DNA methylation (mQTL), histone
modification (hQTL), splicing event (sQTL), protein expression (pQTL), alternative
polyadenylation (apaQTL), and others. To investigate whether the identified loci were associated
with other phenotypes, we utilized a phenome-wide association studies (PheWAS) tool
implemented in Open target genetics and GWAS ATLAS *. Using all the prioritized genes, we
performed FUMA GENE2FUNC analysis to test enrichment of the gene sets and provide

expression of those prioritized genes (adjusted p-value < 0.05).

Druggability analyses
To assess the clinical potential of the candidate genes, we conducted integrative druggability
analyses®. We first used the Drug-Gene Interaction database (DGldb; v4.2.0) to query high or

medium priority and determine the potential druggability of the candidate gene targets. Genes
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were annotated for biological pathways and functions using the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database. Using DGIdb (https://dgidb.org/about/overview/about-us), We
annotated the druggability target categories and queried all interacting drugs reported in 44
databases (Ensembl, HGNC, NCBI, ChemIDplus, Drugs@FDA, HemOnc, NCIt, RxNorm,
Wikidata, CancerCommons, CGIl, ChEMBL, CIViC, ClearityFoundationBiomarkers,
ClearityFoundationClinicalTrial, COSMIC, DoCM, DrugBank, DTC, FDA, GuidetoPharmacology,
JAX-CKB, MyCancerGenome, MyCancerGenomecCilinicalTrial, OncoKB, PharmGKB, TALC,
TdgClinicalTrial, TEND, TTD, BaderLab, CarisMolecularintelligence, dGene,
FoundationOneGenes, GO, HingoraniCasas, HopkinsGroom, HumanProteinAtlas, IDG,
Mskimpact, Oncomine, Pharos, RussLampel, Tempus). We queried protein targets for available
active ligands in ChEMBL. We queried gene targets in the druggable genome using the most
recent druggable genome list established from the NIH Illluminating the Druggable Genome
Project (https://github.com/druggablegenome/IDGTargets) available through the Pharos web
platform. We also queried FDA-approved drugs, late-stage clinical trials and disease indications
in the DrugBank, ChEMBL, ClinicalTrials.gov databases and provided results for the top MESH

and DrugBank indications and clinical trials.

Results

Overview

A total of 564,680 individuals from four populations were included in the study, comprising 85%
EUR, 7% ASN, 5% AFR, and 3% HIS. Overall, 52% of participants were female. Descriptive
statistics are provided in Table $8. Because the quantitative DEPR exposure was not available in

some biobanks, sample sizes were larger for dichotomous DEPR (dDEPR) than quantitative
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DEPR (gDEPR). As shown in Figure 1, the dDEPR analyses included 563,538 individuals after
excluding two studies where the number of individuals with DEPR (Nex,) was less than 10 (Table
$2). Among individuals with dDEPR, the median DEPR prevalence was 10.3%, with an
interquartile range of 12.9% (Table S2). The gDEPR analyses consisted of 294,029 participants

from EUR (80%), ASN (7%), AFR (7%), and HIS (6%) populations.

dDEPR analyses

We identified nine independent loci that showed evidence of association with BP traits modified
by dDEPR in cross-population meta-analyses (CPMA) or population-specific meta-analyses
(Table 1). In the DEPR-stratified analyses, the directions of SNP effect observed in the exposed
group were consistent with the directions of the corresponding interaction effects (Table S9). Of
these, three loci tagged by rs1664073690 (1931.3), rs10178576 (2q13.3), and rs113521945
(4935.1) were novel. The other six loci tagged by rs115760284 (3p22.1), rs147967138
(7921.11), rs757194 (7931.1), rs7979305 (12p12.1), rs75095906 (13932.1), and rs9931605
(16923.2) were previously reported for BP (Table $10). Eight of the nine loci were identified via
the 1df interaction test (P.Int < 5 x 108) (Table 1). In the 2df joint test, a total of 904 loci were
associated with at least one BP trait (350 loci were associated with SBP, 337 loci were
associated with DBP, and 364 loci were associated with PP). Among them, one previously
reported BP locus (rs757194 on 7g31.1) showed evidence of association with SBP through
interaction with dDEPR using the specified criteria (P.Joint=7.99 x 10°; P.Int= 1.39 x 107).

The three top single nucleotide polymorphisms (SNPs) at novel loci (1931.3, 2gq13.3, and
4q35.1) were identified in the CPMA and showed no evidence of heterogeneity across
population groups (P.Het > 0.003) (Table 1). Two of them were common variants with minor

allele frequency (MAF) greater than 0.05 in at least one population group while one
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(rs1664073690 on 1g31.3) had a low frequency (MAF =0.02). This variant was present at low
frequency in EUR and HIS but was absent in both ASN and AFR. rs10178576 (2q13.3) was
common in AFR (MAF = 0.11) but was not observed in either ASN or EUR populations (Figure
2). rs113521945 (4g35.1) was observed across all four population groups. While a significant
interaction was observed only in EUR, the direction of the effect was consistent across all four
groups (Figure 2).

Among the six top SNPs at known BP loci (3p22.1, 7921.11, 7931.1, 12p12.1, 13932.1, and
164g23.2), four SNPs on 3p22.1, 7g21.11, 7931.1, and 12p12.1 showed the most significant
associations or were exclusively observed in non-EUR populations (Figure 2). Notably, three of
them (rs115760284 on 3p22.1, rs757194 on 7g31.1, and rs7979305 on 12p12.1) were absent in
both EUR and ASN but were present at low frequency in AFR (0.01 < MAF <0.05) and were rare
in HIS (MAF < 0.01) (Table 1). Interestingly, rs115760284 (3p22.1) showed some heterogeneity
between AFR and HIS (1> > 80%, P.Het < 0.01), with a greater effect size in AFR (Figure 2).
Moreover, a locus on 79g21.11 was detected solely in ASN population among 26,307 individuals,
with no evidence of heterogeneity across ASN studies (P.Het > 0.003). Two loci tagged by
rs75095906 (13g32.1) and rs9931605 (16g23.2) were identified in the CPMA analyses, with no
evidence of heterogeneity by population group. Across all nine top SNPs identified in the dDEPR
analyses, no evidence of sex heterogeneity was observed. However, four of the nine SNPs could

not be evaluated due to a limited sample size in males passing QC.

qDEPR analyses
We identified seven independent loci that showed evidence of association with BP traits
modified by gDEPR in CPMA or population-specific meta-analyses (Table 2). Four loci tagged

by rs77572777 (2q14.2), rs148780833 (3p26.3), rs748650739 (3q13.11), and rs140618249
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(17p13.3) were not previously reported. The other three loci tagged by rs59284269 (3p25.3),
rs145132348 (4p14), and rs114544309 (12g13.13) were previously reported for BP (Table
$10). Five loci, including two not previously reported, were identified using the 1df interaction
test (P.Int < 5 x 10®) (Table 2). In the 2df joint test, a total of 316 loci were associated with at
least one BP trait (144 loci were associated with SBP, 160 loci were associated with DBP, and
157 loci were associated with PP). Among them, two novel loci tagged by rs77572777 (2914.2)
and rs748650739 (3q13.11) were associated with PP through interaction with gDEPR. Notably,
two of the novel loci rs148780833 (3p26.3) and rs140618249 (17p13.3) identified in the 1df test
(P.Int < 5 x 10®) also showed evidence of an association with SBP through interaction with
gDEPR using the 2df joint test (P.Joint < 5 x 10%).

The four top SNPs tagging the novel loci include rs77572777 (2914.2) and rs748650739
(3g13.11) from the HIS-specific analyses, and rs148780833 (3p26.3) and rs140618249
(17p13.3) from the CPMA. None of these four SNPs showed evidence of heterogeneity across
populations or studies (P.Het> 0.003) and all were of low frequency (MAF= 0.01-0.02). Except
for rs77572777 on 2q14.2, the three other SNPs were polymorphic only in AFR and HIS
populations.

Among the three known loci (3p25.3, 4p14, and 12g13.13) identified in the gDEPR analyses, two
loci on 4p14 and 12g13.13 were not observed in EUR population. Of these two, the 4p14 locus
tagged by rs145132348 and identified in AFR-specific analyses showed no heterogeneity across
AFR studies contributing to the meta-analyses in this population (Figure 3). The other locus on
12913.13 tagged by rs114544309 and identified in CPMA showed the most significant
association in HIS, with some evidence of heterogeneity between AFR and HIS and a greater

effect size in HIS (Figure 3). rs59284269 (3p25.3) identified in CPMA showed no evidence of
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heterogeneity by population group. No evidence of sex heterogeneity was observed across all

seven top SNPs identified in the gDEPR analyses.

Comparison between dDEPR and qDEPR analyses

Of the 16 identified loci (Tables 1 and 2), four top SNPs (rs77572777, rs148780833,
rs748650739, and rs114544309) were identified exclusively in the gDEPR analyses (Figure S$11
and 12). This appears to largely reflect differences in included studies in the two types of
analyses (Figure $13). In the CPMA, approximately 15 million SNPs were included in the
dDEPR and 21 million SNPs in the gDEPR analyses. Notably, nearly 6 million SNPs were
analyzed only in the gDEPR analyses, mainly because they were filtered out in the dDEPR
analyses by the stringent study-level filters. Conversely, fewer than half a million SNPs were
analyzed exclusively in dDEPR analyses, likely due to some large biobank samples where only
dichotomous exposure was available while the quantitative exposure was not. The four SNPs
identified only in gDEPR analyses were filtered out of the dDEPR analyses during study-level QC
(rs148780833) or at the meta-analysis QC because they were present in only one study
(rs77572777 and rs748650739), or in only one population (rs114544309) (Figure $12). The
remaining 12 loci were present in both dDEPR and qDEPR analyses. As illustrated in Figure S11
and 12, there was a consistency in direction between the two analyses even though magnitude

of effects and statistical significance varied between them.

Gene-based and pathway analyses
Using 1df interaction test results, Multi-marker Analysis of GenoMic Annotation (MAGMA) and
Versatile Gene-Based Association Study 2 (VEGAS2) ranked genes and pathways based on the

combined association of SNPs within a gene with BPs. Both MAGMA and VEGAS2 gene-based
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tests identified a gene-wide significant association for GLTPD2 (MIM: 620824), with similar
results observed for several other genes among the top 20 genes (Table S11). An additional
gene, TMEM199 (MIM: 616815), was discovered by VEGAS2. These two genes were not
identified at genome-wide significance in the GWAS. Pathway analyses suggest DEPR-specific
biochemical pathways that influence BP, including retinoid signaling, remodeling of acyl chains
of phosphatidylethanolamine, nucleotide-binding oligomerization domain containing 2 (NODZ2)

protein signaling, and response to stress (Table $12).

Functional annotation and gene prioritization

Functional annotation was conducted for all SNPs in LD (r? >0.4) with the top SNPs tagging all
identified novel and known BP loci. All the top SNPs were annotated as either intergenic or
intronic variants, suggesting a potential role for regulatory mechanisms. Among 31 genes
identified by FUMA, six genes were predicted to be highly intolerant to loss-of-function mutation
based on probability of loss-of-function intolerance (pLI) score > 0.9, including CMIP (MIM:
610112), ZBTB47 (MIM: 619969), DOCK4 (MIM: 607679), UBE2K (MIM: 602846), PDS5A (MIM:
613200), and GRASP (MIM: 612027) (Table S13). Multiple genes exhibited high CADD scores
(>12.37) among SNPs in LD, suggesting potential deleterious effects. Three additional genes
were identified through associations with various quantitative trait loci (xQTL), which include
CASP3 (MIM: 600636), DBI (MIM: 125950), and UGGT2 (MIM: 605898). PheWAS results
showed associations with hematological, psychiatric, behavioral, and medication-related
phenotypes, suggesting possible pleiotropic effects of the identified loci. Details on functional
annotations are described in Table S14.

A total of 36 genes were prioritized by functional annotations of both novel and known loci, as

well as gene-based analyses. These prioritized genes showed enrichment of gene expression in
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the brain and whole blood (Figure S14). Additionally, they demonstrated evidence of
enrichment in two pathways involved in myogenesis and immune system in dendrite cells, as

well as enrichment in four potential microRNA regulatory targets (Table $15).

Druggability analyses

We investigated the potential druggability of the identified 36 candidate gene product targets
using an integrative approach as previously described “°. We queried dDEPR and gDEPR
exposure candidate gene targets using the Drug-Gene Interaction database (DGldb), which
identified 11 genes annotated as members of the druggable genome (Table S16). Several of
these gene targets are implicated in metabolic pathways (ACSL 1[MIM: 152425], DBI, UGDH
[MIM: 603370], SLCO1A2 [MIM: 602883]), vascular wall signaling (TGFA [MIM: 190170], CAV3
[MIM: 601253], SSUHZ [MIM: 617479], DOCK4), DNA damage response or apoptosis (CASP3,
RFC1[MIM: 102579], RECQL [MIM: 600537]), and neuroactive ligand-receptor interaction (VIPR1
[MIM: 192321], CCK [MIM: 118440]). We identified 11 genes with FDA approved drug
interactions that have been evaluated in late-stage clinical trials using DrugBank, ChEMBL, and
ClinicalTrials.gov databases (Table $17). Two of these gene targets (CASP3 and UGDH) were
identified as targets of aspirin, a well-established and safe drug used to treat pain, inflammation,
and reduce cardiovascular events. UBEZK was identified as a target of the central nervous
system stimulant, dextroamphetamine, used to treat attention-deficit disorder (ADHD) and
narcolepsy, however its use has been federally controlled due to the high potential for abuse.
CCK was also identified as a target of the vasodilator, diazoxide, which is used to manage
hypoglycemia due to pancreatic cancer or other conditions. Several genes (CCK, SLCO1A2,
UGGT2) were identified as targets of drugs (diazoxide, nadolol, hydrochlorothiazide) used to

treat hypertension, suggesting opportunities for drug repositioning and risk factor prevention.

22



Discussion

In this large-scale genome-wide interaction study, we identified 16 genetic loci whose
association with BP was modified by DEPR defined as a dichotomous or a quantitative exposure.
These data provide support for molecular mechanisms connecting DEPR and BP and highlight
several druggable gene targets that could be further investigated for clinical potential for BP
regulation in individuals with DEPR.

Nearly 70% of our findings were derived from non-EUR populations, likely due to differences in
allele frequency across populations and/or to population differences in SNP x DEPR interaction
effect sizes. Notably, several of the identified SNPs were monomorphic in EUR. Variations in
MAF across population groups have been shown to contribute to differences in disease
prevalence across populations *'. The risk of hypertension varies considerably across
populations, being more prevalent in AFR and HIS populations #243. More than half of our
findings come from AFR and/or HIS. AFR populations generally exhibit greater genetic diversity
and more pronounced allele frequency differences compared to other populations *. Self-
identified HIS populations in the US include admixed individuals with varying proportions of
EUR, AFR, and Amerindian genetic backgrounds, adding further complexity. Interestingly,
patterns of associations were similar in AFR and HIS populations at several loci near the genes
TGFA, TRAK1 (MIM: 608112), CNTN6 (MIM: 607220), and OR1A1 (MIM: 618046). GWAS of BP
have identified differences in BP loci by population groups, while partial generalization of BP loci
between populations has also been reported *’. Thus, there is a critical need for expanding
genetic studies of BP in non-EUR populations. In our study, among nine known BP loci identified

with evidence for gene-DPER interaction, six loci (3p22.1, 7921.11, 7q31.1, 12p12.1, 4p14, and
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12q13.13) were derived from non-EUR populations while they were previously discovered as BP
loci in EUR population. This further underscores the importance of considering DEPR effect
modification on BP for diverse populations.

Multiple studies have shown mixed results regarding the association between depressive
symptomatology and hypertension 4194, Despite this variability, depression has been
consistently linked to an increased risk of cardiovascular morbidity and mortality . Typically,
depression arises in response to stressful events, and stress is a major risk factor for
hypertension *°. Both hypertension and depression show higher prevalence among individuals of
non-EUR populations, highlighting significant racial and ethnic disparities 42435152,

Functional annotation of the novel loci revealed genes implicated in neurogenesis, lipid
metabolism, neuronal apoptosis, and synaptic activity. A locus on chromosome 2 mapped to an
intron of the TGFA gene, which encodes a ligand for the epidermal growth factor receptor and
plays a crucial role in neural cell proliferation and differentiation 3%, Previous studies suggested
TGFA'’s role in neurogenesis and angiogenesis in adult injured brain and the immune system
%556, Furthermore, genetic variants in TGFA have been associated with response to
antidepressant treatment in GWAS %°8, ACSL 1 encodes an isozyme of the long-chain fatty-acid-
coenzyme A ligase family, which operates in lipid biosynthesis and fatty acid degradation.
Animal models have demonstrated that ACSL 7 modulates lipid metabolism, inflammation, and
oxidative stress in kidney disease >*%. In fact, the kidney plays a critical role in BP regulation °'.
The ACSL 1 locus was associated with DNA methylation levels (mQTL) of ACSL1 in blood.
Functional annotations of this previously unreported locus also highlight several additional
genes, including CASP3. CASP3 encodes a cysteine-aspartic acid protease (Caspase-3) that
plays a critical role in neuronal apoptosis, neurogenesis, and synaptic activity ®2%°. Notably, the

ACSL1 locus was associated with the splicing event of CASP3 in brain tissue. Interestingly, a
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recent study highlighted the role of Caspase-3 in pathogenesis of depressive disorders °°.
CNTNG6 encodes Contactin-6, a neuronal cell adhesion molecule that facilitates neurite
outgrowth and synaptogenesis ¢’. Mutations in this gene increase the risk for autism spectrum
disorders 8. DBI encodes a diazepam binding inhibitor, which is regulated by hormones and
acts as a neuropeptide in brain synapses . Our results showed an intergenic variant
(rs77572777 on 2q14.2) with an expression quantitative trait locus (eQTL) of DB/ in brain tissue.
A previous study reported that DBl expression in the brain decreased with long-term social
isolation stress 7°. An increased level of the protein encoded by DB/ has been suggested as a
prognostic value in cardiovascular disease 7.

Several known loci for BP were identified through interactions with DEPR in our study and
implicated several genes previously reported to be associated with mental disorders. These
genes include DOCK4, HS6ST3 (MIM: 609401), and MAGI2 (MIM: 609401). The DOCK4 locus
was associated with SBP in the AFR population. DOCK4 is a member of the dedicator of
cytokinesis family and is involved in cell migration 2. Animal models have suggested a role of
DOCK4 in excitatory synaptic transmission and social behavior 73. Variants in DOCK4 have been
associated with response to antidepressants, autism spectrum disorder, and schizophrenia 775,
A recent GWAS of stress-induced vasomotion identified an association with variants in DOCK4,
which were also linked to an increased risk of adverse cardiovascular events 6. HS6ST3
encodes heparin sulfate sulfotransferases involved in proliferation, inflammation, and blood
coagulation. Variants within or near this gene have been associated with schizophrenia, major
depressive disorder, and coronary artery calcified atherosclerotic plaque 7"°. MAGI2 encodes a
synaptic scaffolding molecule and shows high expression in the brain and postsynaptic density

area of spine ®. In our data, the MAGI2 locus was observed only in ASN population, and variants
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in this gene have been associated with depressive symptoms in an East Asian cohort as well as
in other population groups 8",

Our druggability analyses suggest potential opportunities for drug repurposing and risk factor
prevention. The identified genes include CASP3 and UGDH as targets for aspirin and CCK,
SLCO1A2, and UGGTZ for antihypertensive medications. UGDH encodes an integral Golgi
membrane protein involved in signal transduction and cell migration. A previous study has
shown its nominal association with brain electrical activity linked to psychiatric conditions
including depression, and suggested that this association may be population-specific 8. This is
consistent with our finding that the associated SNP (rs145132348 on 4p14) was identified only
in individuals of AFR and HIS populations. CCK encodes cholecystokinin (CCK), a digestive
enzyme and a neuropeptide that regulates emotional states 8. Patients with major depression
showed increased CCK levels in cerebrospinal fluid &. CCK enzyme also plays role in BP
regulation and predicts cardiovascular mortality in elder females 88, SLCO1A2 (or OATP1A2)
encodes a sodium-independent transporter that is crucial for transporting hormones across the
blood-brain barrier into the central nervous system and has been suggested as a potential
modulator of mood disorders %2, UGGT2 encodes a soluble protein of the endoplasmic
reticulum and has been associated with impulsive behaviors 3%, It is important to note that
some of these drug-gene interactions may also reflect the medication use for individuals with
chronic depression and warrant follow-up to determine their direct impact on hypertension and
cardiovascular risk .

Findings from our prior study 2' were generally not replicated in this study, likely due to the use
of a different modeling strategy that includes additional adjustment for potential confounders.
One notable exception is the reported gene-DEPR interaction at the FSTL5 (MIM: 620128)

locus, which was identified by the 2df joint test in a previous study, tagged by two SNPs
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(rs138187213 and rs5863461). In our dDEPR analyses, both SNPs showed associations in the
1df interaction test (rs138187213, P.Int= 8.48 x 10*; rs5863461, P.Int= 2.89 x 10*). Similar
results were observed in the gDEPR analyses, with both SNPs showing evidence of interactions
(rs138187213, P.Int= 8.19 x 10, rs5863461, P.Int= 1.06 x 10*).

Our study benefits from a large sample size with diverse population backgrounds, which allows
for a comprehensive analysis of the interactions across different populations. Moreover, our
methodological approach using two complementary definitions of DEPR sought to enhance
discoveries. The dDEPR analyses, with a larger sample size, provided greater statistical power,
while the gDEPR analyses were designed to capture subtle variations in exposure and
potentially reveal associations that might have been missed in the dDEPR analyses. Notably, we
observed a substantial number of SNPs analyzed in the gDEPR but not included in the dDEPR,
likely due to stringent filters required for binary exposure analyses. The gDEPR analyses
enabled us to identify additional loci at genome-wide level, possibly due to the assumption of
linearity between the exposure and outcome being met for those specific loci. Furthermore, the
consistency of associations across both analytical approaches reinforces robustness of our
findings.

Several limitations should be acknowledged. First, the sample size for non-EUR population
groups was relatively small compared to the EUR population, which may have limited the
discovery of population-specific findings. For this reason, we combined East ASN and South
ASN populations into a single population group although that may introduce heterogeneity.
While combining distinct populations can introduce complexity due to underlying genetic and
cultural differences, this approach was chosen to increase statistical power. Second, we relied
on self-reported race and ethnicity information, which may have led to population groupings that

do not fully capture underlying genetic diversity. This limitation also suggests that depressive
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symptoms may reflect sociodemographic factors that are not fully accounted for in our models.
Third, DEPR was captured by several different validated instruments in the participating cohorts
with different sensitivities and specificities to detect depressive symptoms, which may have
introduced heterogeneity and measurement error, potentially reducing statistical power.
Nevertheless, we chose to include all available cohorts in order to maximize sample size and
retain the greatest statistical power possible. Lastly, while extensive functional annotation and
druggability analyses provide biological validation/support for our findings, replication in
independent samples was not possible in this study since dividing cohorts into discovery and
replication analyses encountered insufficient power. Because we made extensive efforts at
recruiting most of the studies known to have DEPR data, identifying suitable independent
cohorts with large sample size and DEPR data availability for replication remains a major
challenge. This is a particular issue for interactions identified only in non-European population
groups, often in relatively modest sample sizes.

In conclusion, we identified multiple genetic loci associated with BP traits that were modified by
DEPR. These data emphasize the importance of considering DEPR as an effect modifier in BP
gene discovery, particularly in non-EUR populations. They also provide insights into the genetic
basis of the relationships between DEPR and BP, and highlight the potential of applying such
information to enhance more personalized approaches to hypertension management in

individuals with DEPR.
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Figure Legends
Figure 1. Study Overview

A. For each BP trait, association analyses were conducted accounting for SNP x depressive
symptomatology (DEPR) interaction effects using two exposures: dichotomous DEPR (dDEPR)
and quantitative (qQDEPR). For each population group, study-specific results were combined to
perform 1df interaction test and 2df joint test. Population-specific meta-analyses were carried
out separately for each group: African (AFR), Asian (ASN), European (EUR), and Hispanic (HIS)
and subsequently combined for cross-population meta-analyses. B. A total of 16 independent
loci were identified through SNP x DEPR interaction effects, including seven novel and nine
known loci for BP. C. Gene prioritization was performed using FUMA, gene-based analyses, and
xQTL. Druggability analyses of 36 prioritized genes identified 11 druggable gene targets.

Figure 2. Forest plots of interaction effects at novel and known loci identified in the dDEPR
analyses

Black squares and error bars represent the effect size and its 95% CI for each population in
CPMA or for each study in population-specific meta-analyses. Red diamond represents the
overall effect size calculated in the meta-analysis where the center indicates the point estimate
and its edges represent 95% ClI of the estimate.

CPMA, cross-population meta-analyses; AFR, African; ASN, Asian, EUR, European; HIS,
Hispanic; b, the interaction effects estimated in the 1df interaction test (Effect is in mmHg); SE,
standard error of interaction effects estimated in the 1df interaction test; Cl, confidence interval

Figure 3. Forest plots of interaction effects at novel and known loci identified in the qDEPR
analyses

Black squares and error bars represent the effect size and its 95% CI for each population in
CPMA or for each study in population-specific meta-analyses. Red diamond represents the
overall effect size calculated in the meta-analysis where the center indicates the point estimate
and its edges represent 95% ClI of the estimate.

CPMA, cross-population meta-analyses; AFR, African; ASN, Asian, EUR, European; HIS,
Hispanic; b, the interaction effects estimated in the 1df interaction test (Effect is in mmHg); SE,
standard error of interaction effects estimated in the 1df interaction test; Cl, confidence interval
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Table 1. Novel and known Loci associated with BP traits discovered through SNP x dDEPR interactions

Locus CHR:position Alleles rsiD Analysis EAF MAF Nearest Position Int Int P P P P Sar_nple P.Sex

(hg38) (E/A) group AFR/EUR/ASN/HIS gene Effect SE Int Joint FDR® Het® size .Het
1931.3 1:194548555 A/G  rs1664073690" CPMA-SBP 0.98 0/0.02/0/0.01 CDC73 intergenic 7.07 1.25 1.44x10® 9.93x10* 0.09 0.30 30577 NA
2913.3  2:70509396 CIT rs10178576° CPMA-PP 0.91 0.11/0/0/0.02 TGFA intronic 259 046 2.16x10® 511x107 0.24 0.61 39482 0.56
3p22.1  3:42213248 GIT rs115760284 CPMA-SBP 0.01 0.01/0/0/0.003 TRAK1 Intronic  -13.30 2.39 2.78 x10® 0.048 0.10 0.01 22241 NA
4935.1  4:184777291 A/G rs113521945° CPMA-DBP 0.91 0.02/0.09/0.05/0.09 ACSL1 intronic  -0.57 0.10 2.72x10® 574x107 0.26 0.71 488129 0.05
7921.11  7:78342531 AT rs147967138 ASN-PP 0.04 0/0/0.04/0 MAGI2 Intronic 512 0.93 3.34x10® 289x107 0.14 0.62 26307 0.8
79311  7:112203372  A/G rs757194 AFR-SBP 0.03 0.03/0/0/0.006 DOCK4 Intronic  13.62 2.58 1.39x107 7.99x10° 0.05 0.73 11644 NA
12p12.1  12:21435910  C/T rs7979305 AFR-PP 0.95 0.05/0/0/0.007 PYROXD1 intergenic -8.63 1.56 3.09x10® 9.96x10% 0.18 0.26 13093 NA
13932.1 13:96826633  A/G rs75095906 CPMA-SBP 0.15 0.03/0.15/0.12/0.1 HS6ST3  Intronic  -0.76 0.14 4.29x10® 245x10% 0.13 079 518557 0.99
16023.2 16:81545886  C/T rs9931605 CPMA-SBP 0.81 0.83/0.81/0.78/0.77 CMIP Intronic  0.68 0.12 1.36x10% 1.23x10° 0.09 0.86 543909 0.05

Allele E, effect allele; Allele A, non effect allele; EAF, effect allele frequency; MAF, minor allele frequency; AFR, African; EUR, European; ASN, Asian; HIS,
Hispanic; Int Effect, interaction effects estimated in the 1df interaction test (Effect is in mmHg); Int SE, standard error of interaction effects estimated in the 1df
interaction test; P Int, P value of interaction effects in the 1df interaction test; P Joint, P value of joint effects of SNP main effect and interaction effect in 2df joint

test; P.Sex.Het, sex heterogeneity P value in two-sample Z tests

'rs1664073690, rs10178576, rs113521945: top SNPs at novel loci (at least 500 Kbp away from any previously reported BP locus)

rs1664073690: absent in the 1000G Phase3 reference panels

3P.FDR: interaction FDR P value for 1df interaction test; joint FDR P value for 2df joint test
bP.Het: heterogeneity P value across population groups in CPMA; heterogeneity P value across studies in ancestry-specific meta-analyses
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Table 2. Novel and known Loci associated with BP traits discovered through SNP x qDEPR interactions

CHR:position Alleles rsiD Analysis EAF MAF Nearest Position Int Int P P P P  Sample P.Sex

Locus (hg38) (EIA) group AFR/EUR/ASN/HIS gene Effect SE Int Joint  FDR® Het® size .Het

2q14.2  2:118537183  A/G rs77572777 HIS-PP 0.99 0/0.02/0/0.01 RP11-19E11.1 intergenic 2.48 0.44 3.55x10° 1.74x10® 0.06 047 16077 0.60
3p26.3 3:1301059 C/T  rs148780833t CPMA-SBP 0.01 0.01/0/0/0.002 CNTN6 intronic ~ 5.94 1.04 9.91x10° 2.85x10° 0.11 070 27204 0.01
3p25.3 3:8726816 AIG rs59284269 CPMA-SBP 0.09  0.23/0.02/0/0.06 SSUH2 intronic  0.86 0.16 4.29x10® 8.65x 107 0.18 0.25 251948 0.73

3g13.11  3:104214171 C/CA  rs748650739' HIS-PP 0.99 0.05/0/0/0.01 RP11-40M23.1 intergenic 225 048 3.76x10° 4.66x10® 0.08 094 16077 0.16

4p14 4:39689605 CIT rs145132348  AFR-DBP  0.02 0.03/0/0/0.006 UBE2K intergenic 292 051 1.19x10® 6.33x10% 0.19 0.82 17147 0.85
12913.13  12:52010638 CIT rs114544309 CPMA-DBP 0.01 0.02/0/0/0.008 GRASP intronic 245 044 1.85x10® 256x107 0.31 0.01 31068 0.37
17p13.3  17:3225579 C/T  rs140618249° CPMA-SBP 0.98 0.02/0/0/0.004 OR1A1 intergenic  -4.10 0.74 3.18x10% 3.77x10® 0.18 0.20 28685 0.50

Allele E, effect allele; Allele A, non effect allele; EAF, effect allele frequency; MAF, minor allele frequency; AFR, African; EUR, European; ASN, Asian; HIS,
Hispanic; Int Effect, interaction effects estimated in the 1df interaction test (Effect is in mmHg); Int SE, standard error of interaction effects estimated in the 1df
interaction test; P Int, P value of interaction effects in the 1df interaction test; P Joint, P value of joint effects of SNP main effect and interaction effect in 2df joint
test; P.Sex.Het, sex heterogeneity P value in two-sample Z tests

"rs77572777, rs148780833, rs748650739, rs140618249: top SNPs at novel loci

T rs148780833, rs748650739: absent in the 1000G Phase3 reference panels

aP.FDR: Interaction FDR P value for 1df interaction test; Joint FDR P value for 2df joint test

bP.Het: Heterogeneity P value across population groups in CPMA; Heterogeneity P value across studies in ancestry-specific meta-analyses
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Step 3. Identification of independent loci

A Sample size by population group and exposure
AFR ASN EUR HIS Total
dDEPR 29,626 39,389 477,445 17078 563538
GDEPR 19,756 20,483 237,407 16383 294,029
Overall 29,626 40,531 477,445 17078 564,680

Step 1. Population-specific meta-analyses (AFR, ASN, EUR, HIS)
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We conducted a genome-wide interaction study of blood pressure (BP) traits in 564,680 adults
that identified 16 BP loci exhibiting gene-depressive symptomatology interactions. Prioritized
genes at these loci pointed to druggable targets linked to pathways involved in mood disorders
as well as known antihypertensive drugs.



