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Polygenic prediction of body mass index and 
obesity through the life course and across 
ancestries

 

Polygenic scores (PGSs) for body mass index (BMI) may guide early 
prevention and targeted treatment of obesity. Using genetic data from 
up to 5.1 million people (4.6% African ancestry, 14.4% American ancestry, 
8.4% East Asian ancestry, 71.1% European ancestry and 1.5% South Asian 
ancestry) from the GIANT consortium and 23andMe, Inc., we developed 
ancestry-specific and multi-ancestry PGSs. The multi-ancestry score 
explained 17.6% of BMI variation among UK Biobank participants of 
European ancestry. For other populations, this ranged from 16% in East 
Asian-Americans to 2.2% in rural Ugandans. In the ALSPAC study, children 
with higher PGSs showed accelerated BMI gain from age 2.5 years to 
adolescence, with earlier adiposity rebound. Adding the PGS to predictors 
available at birth nearly doubled explained variance for BMI from  
age 5 onward (for example, from 11% to 21% at age 8). Up to age 5, 
adding the PGS to early-life BMI improved prediction of BMI at age 18 
(for example, from 22% to 35% at age 5). Higher PGSs were associated 
with greater adult weight gain. In intensive lifestyle intervention trials, 
individuals with higher PGSs lost modestly more weight in the first year 
(0.55 kg per s.d.) but were more likely to regain it. Overall, these data show 
that PGSs have the potential to improve obesity prediction, particularly 
when implemented early in life.

Obesity is a major public health concern that causes or exacerbates 
many chronic diseases and leads to reduced life expectancy1–3. By 2035, 
more than half of the global population is projected to be living with 
overweight or obesity4. Although intensive lifestyle interventions (ILIs), 
bariatric surgery and weight loss medications are effective treatment 
options5,6, they are not without risk and likely to remain inaccessible to 
most people. Thus, preventing obesity remains paramount.

In contrast to many other chronic conditions, obesity often mani-
fests itself during childhood and tends to persist into adulthood7–9. 
Therefore, predictors available in early life, such as genetic variants, 
which are fixed at conception, could be of particular value. In recent 
years, PGSs that capture an individual’s inherited polygenic susceptibil-
ity to a trait or disease have shown great promise in enhancing disease 

risk prediction and population screening10,11. However, it remains 
unclear how, when and under what circumstances PGSs for obesity 
might demonstrate utility for risk prediction.

The widely used PGS for obesity by Khera et al.12, based on a 
genome-wide association study (GWAS) of BMI in over 339,000 peo-
ple of predominantly European ancestry, explains approximately 
8.5% of the variation in BMI in adults. However, as a PGS based on one 
ancestry population may have weak transferability to other ancestry 
populations13,14, there is a growing recognition that PGSs that represent 
a broad range of populations are needed to ensure quality healthcare 
for all15.

By leveraging the results of the largest GWAS meta-analyses 
for BMI from the Genetic Investigation of ANthropometric Traits 
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diversity among participants (see Supplementary Tables 2 and 3 
for study-specific population descriptors). Using PRS-CS(x)16,17, 
we created ancestry-specific and multi-ancestry PGSs leveraging 
up to 1.3 million common variants. We first identified the optimal 
genome-wide shrinkage parameter and linear combination weights 
for PRS-CS(x) that achieved the highest explained variance for BMI 
in six ancestry subpopulations of the UK Biobank (UKBB)18, including 
individuals of Middle Eastern-like ancestry (MID). For the EUR-tuning 
population, we selected a random subset of 20,000 unrelated indi-
viduals (Methods and Supplementary Tables 3 and 4).

Overall, a multi-ancestry PGS consisting of a linear combina-
tion of five ancestry-specific PGSs (PGSLC) was the best-performing 
score (Methods, Fig. 2a and Supplementary Tables 5 and 6). In abso-
lute terms, the explained variance of this multi-ancestry PGS for 
BMI ranged between 7.2% (AFR) and 17.5% (EUR), with a median of 
14.0% (Fig. 2a and Supplementary Table 5). The multi-ancestry PGS 
resulted in a higher explained variance than the PGSs trained only 
with GWAS summary statistics most closely corresponding to the 
target population (‘ancestry-matched’) (Supplementary Table 5). 
This was particularly evident for the populations of African-like and 
Central/South Asian-like ancestry (2.6-fold and 2.8-fold increase, 
respectively), consistent with the smaller GWAS sample sizes avail-
able for these populations. The performance of a PGS consisting of 
near-independent, genome-wide significant variants from the overall 
multi-ancestry GWAS meta-analysis was generally intermediate to that 

(GIANT) consortium and 23andMe, we derived ancestry-specific and 
multi-ancestry PGSs for BMI and obesity to examine their performance 
(1) across diverse adult populations, (2) across childhood and adoles-
cence and (3) in the context of ILIs aimed at weight loss (Fig. 1).

Results
Selecting the best-performing PGS
To develop a PGS for BMI, we used GWAS meta-analysis summary 
statistics for BMI from over 200 studies from the GIANT consor-
tium and 23andMe (Supplementary Tables 1 and 2), excluding eight 
studies used for tuning parameters and for testing performance 
(Methods). The GWAS summary statistics included contributions 
from over 5.1 million people of diverse populations based on a com-
bination of self-identified ethnicity and genetic similarity: 71.1% of 
participants were of predominantly European ancestry; 14.4% were 
of Hispanic ethnicity with typically admixed ancestries; 8.4% were 
of predominantly East Asian ancestry; 4.6% were of predominantly 
African ancestry (primarily admixed African American popula-
tions); and 1.5% were of predominantly South Asian ancestry. We 
refer to these groups, and to the most closely aligning, geneti-
cally inferred population groups from our PGS tuning and testing 
studies, as being of European-like ancestry (EUR), East Asian-like 
ancestry (EAS), American-like ancestry (AMR), African-like ances-
try (AFR) and South Asian-like ancestry (SAS), respectively, while 
acknowledging that these groupings oversimplify the actual genetic 
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Fig. 1 | Study overview. PGSs were constructed using ancestry-specific GWAS 
summary statistics, using ancestry-specific (PRS-CS) and ancestry-combined 
(PRS-CSx) approaches. Tuning of the global shrinkage parameter (ϕ) and optimal 
weights for the linear combination version of PRS-CSx was performed in the 
UKBB. The best-performing score across multiple ancestries was taken forward 

to independent validation studies (linear combination version of PRS-CSx with  
ϕ 1 × 10−2). Population descriptors shown in the figure reflect a combination  
of self-identified ethnicity and genetic similarity. Created in BioRender: Smit, R. 
(2025): https://BioRender.com/fglrflj.
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Fig. 2 | Explained variance for BMI in adult populations. a, Explained variance 
for BMI in UKBB tuning populations, defined as adjusted R2 of the rank-based 
inverse-normal transformed BMI (by sex) predicted by the PGS, incremental to 
age, genotyping array and ancestry principal components. Error bars represent 
95% confidence intervals (CIs) from 1,000 bootstrap resamples. The ancestry-
matched PGS is the best-performing PRS-CS score using ancestry-specific  
GWAS summary statistics. The genome-wide significant score reflects a weighted 
sum of near-independent SNPs obtained from approximate COJO multi-SNP 
analyses of a fixed-effect meta-analysis of all contributing GWASs. The multi-
ancestral PGSLC reflects the best-performing PRS-CSx score consisting of a  
linear combination of five ancestry-specific scores, with weights being specific  
to the validation population (for example, AFR). Population labels follow  
PAN-UKBB assignment of genetically determined ancestry. Sample sizes  
(distinct individuals): African 6,154; Admixed American 971; Middle Eastern 1,553;  

East Asian 2,660; Central/South Asian 8,005; European 20,000. b, Explained 
variance for BMI within validation populations, comparing the multi-ancestry 
PGSLC to a previously published score (PGSKhera) based on a smaller BMI 
GWAS meta-analysis. Same R2 definition and CI estimation as in a. Population 
descriptors reflect a combination of self-identified ethnicity and genetic 
similarity. For the MVP’s non-Hispanic Asian (AS) group, the result shown is for 
the PGSLC using the linear combination weights derived from UKBB-EAS. Sample 
sizes (distinct individuals), from left to right: AFR 12,263, 2,332, 18,701; AMR 
10,281, 8,096; AS 4,201; EAS 1,359; SAS 1,177; EUR 13,673, 69,828, 340,224.  
c, Separation in BMI, body fat percentage (BF%) and waist-to-hip ratio (WHR) 
across deciles of the PGSLC within the validation subset of the UKBB participants 
of European-like ancestry (n ~ 340,000). All traits were rank-based inverse-
normal transformed by sex.
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of the ancestry-matched and multi-ancestry PGSs, with the exception 
of populations of East Asian-like and European-like ancestry, in whom 
it performed worse than either (Fig. 2a).

Predicting prevalent obesity in adulthood
Having tuned parameters in a subset of the UKBB, we took PGSLC for-
ward to independent validation populations, estimating the predic-
tion accuracy for BMI and obesity in 482,135 participants from the 
UKBB, the Million Veteran Program (MVP)19,20, the BioMe Biobank21 
and the Uganda General Population Cohort (GPC-UGR)22. Individu-
als were grouped by population group (AMR 22,612, AFR 29,454, EAS 
1,617, EUR 423,420, SAS 1,164 and non-Hispanic Asian (AS) 4,201) 
(MVP-specific population label) (Methods and Supplementary Tables 3 
and 4). The prevalence of obesity varied substantially across popula-
tions and cohorts, with those having obesity class I or higher (that is, 
BMI ≥ 30 kg m−2 in AFR, AMR and EUR populations and BMI ≥ 27.5 kg m−2 
for Asian-like ancestry populations23) ranging from 4.3% for the 
GPC-UGR to more than 45% for all ancestry subgroups in the MVP 

and mean BMI ranging from 22.2 kg m−2 to 30.6 kg m2 (Extended Data 
Fig. 1 and Supplementary Table 4).

The performance of the PGSLC was highest in individuals of 
European-like ancestry from the UKBB, with an explained variance 
of 17.6%. A pronounced lower performance was seen for populations 
with greater proportions of African-like ancestry, with the explained 
variance being 6.3% and 5.1% in African American populations (from 
BioMe and MVP, respectively) and 2.2% in the GPC-UGR population 
from rural southwestern Uganda (Fig. 2b and Supplementary Table 7). 
Overall, we observed a median explained variance of 10.3% across our 
testing populations.

Compared to the previously reported PGS by Khera et al. 
(PGSKhera)12, which was based on a smaller BMI GWAS of up to 339,224 
individuals of primarily European ancestry24, we observed a 1.9–2.6-fold 
increase in explained variance for BMI (Fig. 2b).

Within the UKBB participants of European-like ancestry, the 
explained variance was marginally higher in males than in females 
(males: 17.9%; females: 17.3%) and higher in younger compared to 
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Fig. 3 | Prediction of prevalent obesity outcomes in adults. a, Separation in 
prevalence of obesity (BMI ≥ 30 kg m−2) across 1% groups of PGSKhera and PGSLC 
within the validation subset of the UKBB participants of European-like ancestry 
(n ~ 340,000), with reference lines for the bottom and top 1% groups. Error 
bars show 95% confidence intervals (CIs) based on the normal approximation 
to the binomial distribution. The horizontal lines correspond to the average 
prevalence (black, dotted) and the prevalence of obesity within the top and 
bottom 1% of PGSKhera and PGSLC (red and blue, respectively). b, Odds ratios 
with 95% CIs for prevalent obesity class I or higher, per s.d. of PGSKhera and 
PGSLC, adjusted for age, sex, principal components of ancestry and genotyping 

array. All PGSs were standardized using the mean and s.d. of the PGS within 
individuals who did not have obesity class I or higher, to account for differences 
in prevalence across validation populations. Sample sizes (distinct individuals), 
from left to right: AFR 12,263, 2,332, 18,701; AMR 10,281, 8,096; AS 4,201; EAS 
1,359; SAS 1,177; EUR 13,673, 69,828, 340,224. c, AUC classification of prevalent 
obesity outcomes in the BioMe Biobank, the MVP and the UKBB. Models 
including PGSs (included as a continuous predictor) additionally include 
principal components of ancestry. CBS10, self-reported comparative body size 
at age 10 years. Restricted to estimates where the number of individuals with the 
obesity outcome was at least 50.
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older participants (≤50 years: 18.8%; >50 years: 17.0%) (Supplemen-
tary Table 8), both directionally consistent with sex-specific and 
age-specific genetic differences previously observed for BMI25,26. 
Within this same cohort, an s.d. increase of PGSLC was associated with 
a 1.98 kg m−2 higher BMI (equivalent to 5.7 kg of body weight for a 1.7-m 
tall person) (Supplementary Table 9). The corresponding mean separa-
tion across deciles of PGSLC was less pronounced for body fat percent-
age and waist-to-hip ratio compared to BMI (Fig. 2c), revealing that 
the score does not equally capture differences in body composition.

We further evaluated the overall performance and discrimina-
tion of the PGS for prevalent obesity. Among European-like ances-
try population groups, the PGSLC showed an improved capacity 
to differentiate between participants with and without obesity 

(BMI ≥ 30 kg m−2) compared to PGSKhera. Specifically, the prevalence 
in the top 1% of the PGSLC was 69.5% versus 54.9% for PGSKhera and, in 
the bottom 1%, 1.7% versus 5.1%, respectively (Fig. 3a and Extended 
Data Fig. 2). Across populations, an s.d. increase in PGSLC was associ-
ated with a median 1.9–2.6-fold increase in odds of obesity class I or 
higher (Fig. 3b). We observed larger effects for more severe obesity 
(Extended Data Fig. 3 and Supplementary Tables 9 and 10). The area 
under the receiver operating characteristic curve (AUC) similarly 
increased with the severity of obesity and neared 0.80 for severe 
obesity in multiple populations (Fig. 3c). The AUC for PGSLC on its own 
was consistently larger than those for age and sex, PGSKhera and within 
the UKBB self-reported comparative body size at age 10 (Fig. 3c and 
Supplementary Table 11).
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Fig. 4 | PGSLC performance during childhood and adolescence. a, Repeated 
cross-sectional linear regression associations of standardized PGSLC with BMI 
and height, with both standardized within sample by sex and timepoint.  
Data are presented as regression coefficient with 95% confidence interval (CI). 
Ponderal index was used instead of BMI at birth. Associations were adjusted 
for age and principal components of ancestry. Sample sizes, based on repeated 
measurements, from left to right, for BMI: 4,740, 638, 847, 814, 769, 41, 732, 729, 
725, 720, 699, 5,816, 4,863, 5,570, 5,368, 5,187, 4,910, 4,556, 4,024, 3,603, 2,780; 
and height: 4,802, 638, 847, 814, 771, 741, 734, 729, 726, 723, 701, 5,820, 5,160, 
5,572, 5,379, 5,188, 4,956, 4,561, 4,032, 3,606, 2,782. b, Sequentially plotted mean 
BMI trajectories from the age of 4 months to 24 years with knot points from 
linear spline multilevel models, accounting for sex and principal components 
of ancestry, of PGSLC (bottom 10%, middle 80%, top 10%). c, Contribution of 

PGSLC to explained variance (adjusted R2) for BMI, rank-based inverse-normal 
transformed by sex and timepoint. Ponderal index was used instead of BMI at 
birth. Data are presented as R2 values computed from the original dataset, with 
error bars representing 95% confidence intervals (2.5th–97.5th percentiles) 
estimated from 1,000 bootstrap resamples. Predictors available at birth were 
birthweight, maternal education, pre-pregnancy maternal BMI, maternal age 
at date of birth and household social status. The left panel shows explained 
variance for BMI at the timepoint shown on the x axis. In contrast, the right 
panel shows explained variance for BMI measured at 18 years, with early-life BMI 
measurement shown on the x axis used as predictors. Sample sizes, based on 
repeated measurements, from left to right: 3,800, 839, 714, 1,192, 4,062, 3,044, 
940, 594, 737, 725, 890, 3,310.
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After an ancestry adjustment (Methods and Extended Data Fig. 4), 
the median odds ratio for obesity class I or higher across BioMe’s popu-
lation groups was 3.6 for those in the top 10% of PGSLC (compared to 
bottom 90%) and 4.1 for the top 5% (versus those in the bottom 95%) 
(Supplementary Table 12), with greater separation between these two 
tail estimates for European-like and Asian-like ancestry groups.

Childhood and adolescence
We investigated whether PGSLC has predictive value at an early age 
within the Avon Longitudinal Study of Parents and Children (ALSPAC), 
a geographically homogeneous prospective birth cohort from the 
southwest of England with follow-up until early adulthood (Methods 
and Supplementary Table 3)27–29. Repeated cross-sectional associa-
tions with BMI showed small effects for PGSLC soon after birth with 
much stronger effects emerging in early childhood, from 0.12 s.d. per 
s.d. of PGSLC at 12 months to nearly quadruple that size (0.45 s.d. per 
s.d. of PGSLC) by age 12 years, after which effects plateaued (Fig. 4a). 
The PGS was also associated, albeit less strongly, with height in early 
childhood with effects increasing until age 12 years, after which they 
returned to zero by mid-adolescence, suggesting that genetic predis-
position for higher BMI early in life promotes increased body size in 
general, including postnatal linear growth, but that this early growth 
does not translate into differences in height after puberty (Extended 
Data Fig. 5). This is in line with childhood overweight and obesity’s 
known associations with earlier pubertal timing30. Over time, BMI in 
children with a higher genetic predisposition (PGS ≥10th percentile) 
increased at a faster rate than those with a lower genetic predisposi-
tion, most evident after age 2.5 years (Methods, Fig. 4b and Supple-
mentary Table 13). Both boys and girls with a very early age of adiposity 
rebound (≤43 months), a well-established predictor of future obesity 

risk31, had a higher mean PGS than those with later ages of adiposity 
rebound (Supplementary Table 14).

We then examined whether the PGS adds predictive value over 
and above clinically available predictors of obesity. When added to 
predictors that are measurable at birth (birthweight, maternal educa-
tion, pre-pregnancy maternal BMI, maternal age at date of birth and 
household social status), the PGS showed no clear added value for 
predicting ponderal index at birth or BMI at ages 3 years and 5 years 
(Methods and Fig. 4c, left panel). However, for predicting BMI at later 
ages (8, 11 and 15 years), the contribution of the predictors at birth 
plateaued, whereas inclusion of the PGS roughly doubled the total 
explained variance from 11% to 21% at age 8 and from 13% to 26% at age 
15 (Fig. 4c, left panel).

For the prediction of BMI in early adulthood, the contribution 
of the PGS especially shines through in the first few years after birth. 
BMI measured at age 8 explained 44% of the variation in BMI at age 
18, and adding the PGS to the prediction model only raised this to 
49%. In contrast, at younger ages, adding the PGS to measured BMI 
led to larger relative increases in the explained variance for BMI 
at 18 years, from 1.5-fold at age 5 (from 22% to 35%) to more than 
three-fold (from 8% to 26%) at 1 year of age (Fig. 4c, right panel, and 
Supplementary Table 15).

From early adulthood to middle life
Within the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer 
Screening Trial (Methods)32, both males and females with a higher 
PGS experienced a greater change in self-reported weight and BMI 
between age 20 and age 50. Across populations, the per-5-year change 
per s.d. in PGSLC was consistently larger for females than for males 
(median of 0.35 kg for females versus 0.21 kg for males and 0.14 kg m−2 
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versus 0.07 kg m−2 for BMI), also when corrected for initial weight or 
BMI (Supplementary Table 16).

The addition of the PGS to a model with birth year, sex and BMI at 
age 20 was associated with modest increases in discriminative ability 
for predicting obesity at age 50 (incremental AUC ranged from 0.01 
to 0.03; Fig. 5). There was evidence of statistical interaction between 
the PGS and BMI at age 20 for obesity at age 50 (Methods and Sup-
plementary Table 17), which translated into a larger incremental AUC 
of the PGS for those who did not have overweight or obesity at age 20 
(range, 0.02–0.05; Fig. 5), without strong evidence of sex specificity 
(Extended Data Fig. 6).

Response to ILIs
Lifestyle modification remains a cornerstone of weight management, 
with multicomponent ILIs having shown success in achieving clinically 
relevant weight loss33. However, ILIs require substantial, sustained 
investment from both healthcare providers and patients, with large vari-
ation in weight loss and unintentional weight regain being common34–36. 
To examine whether polygenic predisposition to obesity might modify 
the effectiveness of such interventions, we examined whether the PGS 
was associated with weight loss during the first year of an ILI, and with 
weight regain thereafter, in two randomized controlled trials with simi-
lar intervention arms aimed at achieving 7% weight loss: the Diabetes 
Prevention Program (DPP33) and the Look AHEAD (Action for Health in 
Diabetes37) studies (Methods).

Among 3,909 participants (Supplementary Table 4), individuals 
with a higher PGSLC lost more weight during the first year in response 
to the ILI compared to the control group (−0.55 kg per s.d. in PGS, 95% 
confidence interval: −0.94 to −0.16) (Fig. 6), when adjusting for starting 
weight. In addition, among those who lost at least 3% of their baseline 
weight during the first year, a higher PGS was associated with more 
weight regain in the following years (up to 3 years) (0.48 kg per PGS 
s.d., 95% confidence interval: 0.00–0.95) (Fig. 6). These findings were 
directionally consistent across (self-)reported population groups.

Discussion
We used GWAS summary statistics from the GIANT consortium 
and 23andMe, encompassing over 5.1 million people, to cre-
ate ancestry-specific and multi-ancestry PGSs capturing genetic 

predisposition to weight gain and obesity. Our multi-ancestry PGS more 
than doubled the explained variance for BMI compared to the widely 
used PGS by Khera et al.12. Additionally, we demonstrate the potential 
added value of the PGS in two distinct clinical applications: predicting 
adult BMI at an early age and weight change in response to ILIs.

Across diverse populations, the increases in explained variance 
for BMI were accompanied by substantial improvements in effect 
sizes and discrimination metrics for obesity, with the PGSs’ stan-
dalone AUC nearing 0.80 for severe obesity. Consistent with other 
polygenic traits, our results underscore the importance of training 
sample size in driving PGS performance improvements. Nonetheless, 
our results also show diminishing returns of sample size increases, as 
has been observed for other polygenic traits38, with a 15-fold increase 
in total sample size (compared to PGSKhera, ~10-fold in EUR alone) 
leading to a 2–3-fold increase in prediction accuracy. We leveraged 
PRS-CSx’s unique ability to integrate GWAS summary statistics from 
all five broad ancestry population groups from the meta-analyses 
from GIANT and 23andMe17. However, recent Bayesian methods have 
shown promising results with smaller sample sizes by including addi-
tional variants and functional annotation, meriting consideration 
for future comparisons39,40. Although our results highlight the value 
of multi-ancestry PGS to increase PGS performance, a considerable 
performance gap persists for populations with substantial African-like 
genetic ancestry compared to other populations. This discrepancy is 
likely due to the underrepresentation of individuals with African-like 
ancestry in the training GWAS, particularly from continental Africa41, 
and differences in minor allele frequency (MAF) and linkage disequi-
librium (LD) patterns42,43. The lower performance of the PGS in the 
GPC-UGR is in line with those seen therein for PGSs for other traits and 
the limited transferability of PGS performance between African ances-
try populations, reflecting genetic and environmental differences as 
well as their interactions22,44–47, emphasising that much remains to be 
done to improve the performance of genetic risk prediction across the 
genetically diverse populations within Africa. For example, it remains 
unclear whether a finer classification of broad ancestry groups in GWAS 
meta-analyses and PGS development could improve downstream PGS 
generalizability, especially given the dominant role of GWAS sam-
ple size. Given the observed performance gap, careful implementa-
tion of the score is essential to avoid potentially introducing public 
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health disparities. For example, establishing a standardized ancestry 
threshold14,48 may improve the accuracy of population-specific risk 
stratification and ensure that the score is returned only in populations 
where it meets an acceptable performance threshold.

Within ALSPAC, the PGS—which was developed for adult BMI—
already shows an effect on BMI early in life. Effect sizes rapidly increased 
with age and were accompanied by clear divergence of BMI trajectories 
throughout childhood and adolescence. As a result, the PGS showed 
added value beyond clinically available predictors assessed at birth 
for predicting BMI measured after age 5. This is in line with previous 
research on the dynamic relationship between genetic variation and 
adiposity in early life12,49,50. Particularly elucidating are the observa-
tions from the Norwegian Mother, Father and Child Cohort Study 
(MoBa) with repeated measurements across narrow age windows51. 
They show that BMI has a rapidly changing genetic architecture during 
the first 8 years of life with a ‘late rise’ cluster of variants, emerging in 
late childhood, which show limited association before the adiposity 
rebound but have persistent effects on BMI into adult life51. This also 
explains why our PGS shows its value for predicting adult BMI during 
the earliest years of life, up to age 5, when measured BMI has limited 
value as a predictor. With a growing number of obesity prevention tri-
als commencing in early life52,53, our results provide important context 
at what age(s) PGSs for obesity, potentially in tandem with PGSs of 
obesity-related complications, could be considered promising candi-
date predictors to help guide risk stratification and the implementation 
of such interventions.

In the PLCO study, a higher PGS was associated with weight gain 
over a 30-year period from early adulthood to midlife. Additionally, 
for individuals aged 20, knowing their PGS modestly improved the 
prediction of obesity at age 50, more so for those without overweight 
or obesity at age 20. This suggests that particularly individuals with an 
early adulthood BMI below their genetically predicted BMI are at risk 
of gaining weight to match their innate predisposition. Our findings 
are consistent with those from the CARDIA study54, showing that PGSs 
for obesity only marginally improve the prediction of midlife BMI when 
combined with early adulthood BMI measurements, contrasting with 
its predictive value in early life.

Analyzing clinical trial data of ILIs, we observed that individuals 
with a higher PGS lost modestly more weight during the first year. 
However, this group was also at higher risk of weight regain after this 
most intensive portion of the intervention had concluded. This may 
seem counterintuitive to the expectation that those with a higher 
genetic risk will benefit less from weight loss interventions. However, 
this observation is supported by a strong body of literature reporting 
that those most genetically predisposed to obesity are also those most 
responsive to changes in an obesogenic environment55–63. However, the 
literature on the role of genetics modifying response to weight loss 
interventions remains sparse and ambiguous, reflecting differences 
in variants considered, methods and study design, highlighting the 
need for well-powered PGSs64–73. It will be of interest to investigate 
whether PGSs for obesity have predictive utility for the fast-growing 
arsenal of pharmacotherapies aimed at weight loss. Separately, the 
current results offer crucial context when conveying genetic results of 
obesity risk to participants, which has generally shown either no or even 
short-lived adverse effects on risk-reducing behavior74–77. Rather, our 
findings emphasize that individuals with a high genetic predisposition 
to obesity may respond more to lifestyle changes and, thus, contrast 
with the determinist view that genetic predisposition is unmodifiable78. 
This is further reinforced by evidence that polygenic susceptibility can 
mitigate or exacerbate the impact of pathogenic variants in MC4R, 
underscoring the complexity of genetic influences on obesity79. We 
look forward to the findings of the Electronic MEdical Records and 
GEnomics (eMERGE) network’s PGS-based genome-informed risk 
assessment being returned to 25,000 diverse adults and children for 
11 conditions, including obesity/BMI14.

Taken together, we show that BMI PGSs can be used for prediction 
of adult obesity throughout the life course, particularly in early life, 
and for severe obesity. This PGS represents a substantial improvement 
compared to previous scores and may help to identify individuals at 
high risk to allow for timely prevention or treatment of obesity, such 
as through integration in a broader predictive framework jointly mod-
eling genetic and environmental risk.
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Methods
Study populations
The list of studies contributing to the GWAS meta-analyses for BMI, 
which served as the training data for the presented PGSs, is provided 
in Supplementary Table 1. The study populations described below 
are those that contributed as a PGS tuning or validation population.

The UKBB is a prospective cohort study that enrolled approx-
imately 500,000 people from across the UK, aged 40–69 years at 
recruitment, between 2006 and 2010 (ref. 18). At recruitment, par-
ticipants completed detailed questionnaires, underwent a range of 
physical measures and provided blood, urine and saliva samples. BMI 
was calculated using height (measured in whole centimeters) and 
weight (to the nearest 0.1 kg). Females who were pregnant at the time 
of assessment were excluded from our analysis. As a measure of com-
parative childhood body size, participants were asked: ‘When you were 
10 years old, compared to average, would you describe yourself as:  
(i) thinner, (ii) plumper, (iii) about average?’.

The MVP has recruited over 1 million people from Veteran Affairs 
(VA) Medical Centers across the United States since 2011 (ref. 19).  
Veterans who volunteer provide a blood sample for biobanking, com-
plete baseline and lifestyle questionnaires and consent to allow access 
to clinical data from VA electronic health records (EHRs). For the cur-
rent study, PGS performance was assessed in the MVP’s third release of 
genomic data (R3) using additional participants without overlap, with 
earlier data releases contributing to the GIANT GWAS meta-analyses. 
Phenotypic and genomic data related to the association analysis of  
BMI were previously described20.

The Institute for Personalized Medicine BioMe Biobank, founded 
in 2007, is an ancestrally and culturally highly diverse EHR-linked biore-
pository enrolling participants non-selectively from across the Mount 
Sinai Health System in New York City21. At enrollment, participants 
consent to link their DNA and plasma samples to deidentified EHRs. 
The clinical and EHR information is complemented by a baseline ques-
tionnaire that gathers demographic and lifestyle information. BMI was 
calculated using weight and height from baseline and outpatient EHR 
measurements, using median height and weight measured at or within 
60 days before/after the enrollment visit, after several cleaning steps 
(Supplementary Table 3).

The GPC-UGR is a population-based open cohort study estab-
lished in 1989 by the Medical Research Council (UK) in collaboration 
with the Uganda Virus Research Institute (UVRI) to monitor the HIV 
epidemic and its determinants in neighboring villages in rural south-
western Uganda, in the Kyamulibwa subcounty of the Kalungu district, 
approximately 120 km from Entebbe town. Since 2010, its mandate 
has expanded to incorporate the epidemiology and genetics of both 
communicable and non-communicable diseases22. The GPC-UGR was 
initially recruited and assessed through annual house-to-house census 
and survey rounds until 2012, when biannual surveys commenced. 
For the current study, we included individuals aged 18 years and older 
who have been either whole-genome genotyped or whole-genome 
sequenced80,81.

The ALSPAC is a prospective birth cohort from the southwest of 
England established to investigate environmental and genetic char-
acteristics that influence health, development and growth of children 
and their parents27–29. Full details of the cohort and study design are 
available at http://www.alspac.bris.ac.uk. In brief, pregnant females 
residing in Avon, UK, with expected dates of delivery between 1 April 
1991 and 31 December 1992 were invited to take part in the study. The 
initial number of pregnancies enrolled was 14,541, with 13,988 children 
who were alive at 1 year of age. The children resulting from these preg-
nancies have been followed-up to date with measures obtained through 
regular questionnaires and clinical visits, providing information on a 
range of behavioral, lifestyle and biological data. More specifically, 
a 10% sample of the ALSPAC cohort, known as the Children in Focus 
(CiF) group, attended clinics at the University of Bristol at various time 

intervals between 4 months and 61 months of age, whereas the entire 
ALSPAC cohort was invited to attend regular research clinics from age 
7. When the oldest children were approximately age 7, an attempt was 
made to bolster the initial sample with eligible individuals who had 
failed to join the study originally. The total sample size available for 
analyses using any data collected after the age of 7 is, therefore, 15,447 
pregnancies, with 14,901 children who were alive at 1 year of age. Study 
data were collected and managed using Research Electronic Data 
Capture (REDCap) tools hosted at the University of Bristol82. REDCap 
is a secure, web-based software platform designed to support data 
capture for research studies. Details on sample selection for the current 
analyses are presented in Supplementary Table 3. Please note that the 
study website contains details of all data that are available through a 
fully searchable data dictionary and variable search tool (http://www. 
bristol.ac.uk/alspac/researchers/our-data/).

The PLCO Cancer Screening Trial was a multicenter randomized 
controlled trial in the United States that enrolled males and females 
aged 55–74 years from 1993 to 2001 to evaluate the effectiveness of 
different screening programs on cancer mortality32. In the baseline 
questionnaire, participants self-reported their weight at age 20 years, 
age 50 years and baseline as well as their height. For the current study, 
we restricted the analyses to genotyped participants who had not con-
tributed to the underlying GWAS meta-analyses and had information 
available on their weight and BMI at both age 20 and age 50.

The DPP was a 27-site parallel-arm randomized controlled trial 
designed to determine whether either the oral diabetes drug met-
formin or an ILI (primarily fat gram, calorie and physical activity goals) 
aimed at approximately 7% weight loss, compared to inactive tablets 
and standard lifestyle recommendations, could prevent or delay type 
2 diabetes onset in ethnically diverse high-risk individuals with predia-
betes and overweight or obesity33. For the current study, we excluded 
individuals from the metformin arm as well as those from a fourth 
intervention arm, troglitazone, which was discontinued at an early 
stage. Moreover, we focused on the individuals comprising the three 
largest race and ethnicity categories (White, Black and Hispanic, as 
reported by database of Genotypes and Phenotypes (dbGAP) variable 
phv00201855.v2.p1) who had consented to being genotyped.

Look AHEAD was a 16-site parallel-arm randomized controlled 
trial that assessed the long-term effects of an ILI in ethnically diverse 
patients with overweight or obesity and type 2 diabetes on cardiovas-
cular morbidity and mortality37. The lifestyle intervention was modeled 
after the DPP lifestyle intervention and similarly aimed at 7% weight 
loss but with more ambitious individual goals for several intervention 
components83. Although those in both trial arms were provided one 
session of education on diabetes and cardiovascular risk at baseline, 
the comparison arm thereafter received the option of attending only 
three sessions per year on nutrition, physical activity and social sup-
port, with no explicit weight loss goals. As for the DPP, we restricted 
our analyses to genotyped participants who self-reported as being of 
African American/Black, Hispanic and White race and ethnicity on the 
baseline questionnaire.

Population descriptors and study-provided population labels and 
genotyping, phenotyping and participant characteristics are presented 
in Supplementary Tables 3 and 4. No new data (that is, measurements) 
were collected for this study, and no participant compensation was 
provided for the analyses conducted.

Our research complies with all relevant ethical regulations. The 
UKBB study was approved by the North West Multi-Centre Research 
Ethics Committee (ref. 11/NW/0382), and all participants provided 
written informed consent to participate in the UKBB study. The VA 
central institutional review board (IRB) approved the MVP study pro-
tocol in accordance with the principles outlined in the Declaration 
of Helsinki. Informed consent was obtained from all participants. 
The BioMe Biobank Program (IRB no. 07-0529) operates under a 
Mount Sinai IRB-approved research protocol. All study participants 
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provided written informed consent. The Uganda Genome Resource was 
approved by the Science and Ethics Committee of the UVRI Research 
and Ethics Committee (UVRI-REC no. HS 1978), the Uganda National 
Council for Science and Technology (UNCST no. SS 4283) and the East of 
England-Cambridge South (formerly Cambridgeshire 4) NHS Research 
Ethics Committee UK. Ethical approval for the study was obtained from 
the ALSPAC Ethics and Law Committee and the local research ethics 
committees. Consent for biological samples has been collected in 
accordance with the Human Tissue Act (2004). Informed consent for 
the use of data collected via questionnaires and clinics was obtained 
from participants following the recommendations of the ALSPAC Ethics 
and Law Committee at the time. The PLCO study was approved by the 
human subjects review boards at the National Cancer Institute and at 
the 10 study centers (National Institutes of Health IRB no. OH97CN041). 
Written informed consent was given by all participants. The DPP and 
Look AHEAD trials were approved by the IRB at each center, and all 
participants gave written informed consent.

PGS construction and tuning
To derive our scores, we used summary statistics from the ongoing 
GWAS meta-analyses for BMI conducted by the GIANT consortium 
(https://portals.broadinstitute.org/collaboration/giant/index.php/
GIANT_consortium) in collaboration with 23andMe. Prior to each 
GWAS, BMI (kg m−2) underwent rank-based inverse-normal transfor-
mation by sex, similarity to major ancestry group (AFR, AMR, EAS, 
EUR, SAS) and case–control status as appropriate, with age, age2, 
principal components of population structure and study-specific 
covariates regressed out. Ancestry group assignment was defined 
independently by each contributing study, as previously described84. 
Additive GWAS analyses were performed primarily using RVTESTS 
for 1000 Genomes Project (1000G) phase 3 or Haplotype Reference 
Consortium (HRC)-imputed data85. For 23andMe, which performed its 
GWAS on BMI using self-reported height and weight, see Supplemen-
tary Table 2 for details on phenotyping, ancestry group assignment 
and GWAS methodology. Quality control of the study-specific files 
was conducted using EasyQC86, followed by fixed-effect meta-analysis 
by ancestry group using RAREMETAL87. When performing the GWAS 
meta-analyses to train the PGSs with, we purposely excluded data from 
several populations (ALSPAC, BioMe and UKBB). No additional genomic 
control was applied to the resulting summary statistics.

For PGS derivation, we employed PRS-CS and its multi-ancestral 
extension PRS-CSx (versions 1.0.0)16,17. In short, PRS-CS(x) uses a Bayes-
ian regression framework and assumes a continuous shrinkage prior 
on single-nucleotide polymorphism (SNP) effects. Whereas PRS-CS 
focuses on creating ancestry-specific scores, informed only by the 
GWAS summary statistics and LD information of a given population, 
PRS-CSx uses a shared prior to couple SNP effects across populations 
and explicitly models population-specific allele frequencies and LD 
patterns to create multi-ancestry scores. Both methods were imple-
mented using the software’s default settings (that is, gamma–gamma 
priors set to a = 1 and b = 0.5, Markov chain Monte Carlo (MCMC) 
total and burn-in iterations set at 1,000 times and 500 times the num-
ber of discovery populations and MC thinning factor set at 5), with 
input being ancestry-matched summary statistics and PRS-CS(x) 
developer-provided 1000G LD reference panels of common HapMap3 
variants (AFR, AMR, EAS, EUR, SAS). PRS-CS(x) uses a global scaling 
parameter (Φ), which requires tuning. In addition to small-scale grid 
testing of Φ (1 × 10−6, 1 × 10−4, 1 × 10−2, 1), we ran PRS-CS(x) using its 
‘auto’ option, which learns Φ automatically from the GWAS summary 
statistics. Finally, PRS-CSx was performed separately using its default 
‘linear combination’ as well as its ‘meta’ version. In the first, a set of 
population-specific PGSs is outputted (that is, five in our case), for 
which the optimal linear combination needs to be derived for each 
target population (for example, AFR) in a population-matched tun-
ing dataset. For ‘meta’, the population-specific posterior SNP effects 

are integrated using an inverse-variance weighted meta-analysis in 
the Gibbs sampler, producing a single score that can theoretically be 
applied regardless of the target population.

The variants considered for PGS derivation were those present 
in the 1000G reference panels mentioned above (HapMap3 variants 
(n = 1–1.2 million across panels), which were common in 1000G popula-
tions, excluding ambiguous A/T or G/C variants), which additionally 
had an INFO > 0.3 (that is, imputation quality) in the overall UKBB. 
Ancestry-specific summary statistics were further restricted to the 
variants with a variant-specific sample size of at least a third of the 
maximum sample size for that ancestry.

Tuning of Φ and derivation of PRS-CSx’s linear combination  
weights were performed in the same subsets of the UKBB. More spe-
cifically, we used genetically determined relatedness and ancestry 
assignments provided by the Pan-UKBB Team (https://pan.ukbb.broa-
dinstitute.org, UKBB return 2442) to subset the UKBB into groups 
of unrelated individuals of African-like, Admixed American-like, 
Central/South Asian-like, East Asian-like, European-like (random 
subset of 20,000 individuals) and Middle Eastern-like ancestry. The 
target-population-specific (for example, AFR) linear combination 
weights for PRS-CSx (for each Φ) were derived from a joint linear regres-
sion model of rank-based inverse-normal transformed BMI (by sex and 
population) on the five population-specific scores (each standardized 
to mean zero and unit variance in the corresponding tuning dataset—for 
example, UKBBAFR), age, 10 principal components and genotyping array.

Explained variance for BMI was defined as the incremental 
adjusted R2 from linear regression for rank-based inverse-normal trans-
formed BMI (by sex and population), when adding the PGS predictor 
to a model containing age, principal components and genotyping 
array. Confidence intervals (95%) were determined using bootstrap-
ping with 1,000 repetitions. As comparator, we created a score of 
quasi-independent associations after performing approximate con-
ditional and joint (COJO) multiple-SNP analysis88, as implemented in 
GCTA89, using the results from the multi-ancestral GWAS summary sta-
tistics when leaving out only the UKBB. We used genotypes from a previ-
ously described set of 50,000 unrelated UKBBEUR participants84 as our 
LD reference panel for GCTA-COJO, with parameters set to: –diff-freq 
0.1; –maf 0.01; –cojo-collinear 0.9; –cojo-p 5 × 10−9. The scores with the 
highest explained variance across multiple tuning population datasets 
(PRS-CSx linear combination and meta versions, with Φ 1 × 10−2) were 
then taken forward to the validation populations, which performed 
study-level variant filtering on imputation quality when constructing 
each PGS (Supplementary Table 3). The results of PGSmeta are presented 
throughout the supplementary tables.

Of note, in August 2023, a new version of PRS-CSx was released 
(version 1.1.0) to address potential reductions in performance due to 
truncating of GWAS summary statistics P values below 1 × 10−323. Given 
our inclusion of several variants with P values below this threshold 
(among the PGS variants: n = 154 for EUR, n = 12 for AMR), we reran 
PRS-CSx with Φ 1 × 10−2 but did not observe markedly different results 
in PGS performance within the UKBB tuning populations (Supplemen-
tary Table 18).

PGS performance in adulthood
In addition to explained variance (%) for BMI, several population- 
stratified metrics for overall performance and discrimination were 
calculated in the validation studies with adult participants:

 A. Nagelkerke R2, with a null model of age, sex, principal com-
ponents and genotyping array, for prevalent obesity catego-
ries based on World Health Organization (WHO) BMI cutoff 
points (membership of category or above versus rest), using 
Asian-specific cutoffs where applicable (Supplementary 
Table 3)23. Confidence intervals (95%) were calculated using 
bootstrapping with 1,000 repetitions.
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 B. Mean difference in BMI, both untransformed and after rank- 
based inverse-normal transformation by sex, per s.d. increase in 
PGS. Covariates included age, sex (where applicable), principal 
components and genotyping array.

 C. Odds ratio per s.d. of PGS for prevalent WHO obesity  
outcome. Same covariates as under (B). Here, the PGSs  
were standardized to mean zero and unit variance using the 
mean and s.d. of the PGS observed within participants  
without the outcome (for example, individuals who do  
not fall within obesity class I (or higher), where this was  
the outcome), to account for prevalence differences  
across studies.

 D. AUC statistic for prevalent WHO obesity outcomes. We com-
pare models including (i) age and sex, (ii) genotyping array, 
principal components and PGSKhera, (iii) genotyping array,  
principal components and PGSLC and (iv) models (i)/(iii) com-
bined. In the UKBB, we additionally ran models including and 
excluding self-reported comparative body size at age 10  
(UKBB field ID 1687). Confidence intervals (95%) were calculated 
using DeLong’s method.

In addition, the explained variance for BMI was calculated sepa-
rately in age strata (≤50 years or >50 years, with adjustment for residual 
age differences within age strata) and sex strata of the European UKBB 
participants. The main comparator for all analyses was a previously 
published LDpred-derived PGS for BMI (PGSKhera)12, which was based on 
the results from a GIANT consortium GWAS meta-analysis including up 
to 339,224 individuals of primarily European ancestry24. As BioMe had 
contributed to this meta-analysis, metrics for PGSKhera were determined 
in individuals who had not contributed nor were related to those who 
did (second or stronger degree of relatedness, based on KING-derived 
kinship coefficients). We chose PGSKhera as our comparator as it is the 
most widely recognized and extensively used PGS for BMI within the 
obesity research community, thereby serving as a well-established 
benchmark.

Tail comparisons after ancestry correction
Due to on-average differences in LD structure and allele frequencies, 
the distribution of a PGS (for example, mean and variance) can dif-
fer across ancestral populations. This was also observed for the five 
population-specific PGSs that were linearly combined to create PGSLC 
(Extended Data Fig. 4). As performance metrics that rely on thresh-
olding the PGS distribution (for example, top 10%) may be impacted 
by such on-average differences90, particularly in admixed popula-
tions, we modeled the mean and variance of the population-specific 
PGSs through principal component analysis of the 1000G reference 
panel. For this, we applied a correction described by the eMERGE 
network14,91, which represents a modified version of the approach 
by Khera et al.92. Starting with a publicly available, curated version of 
the 1000G reference panel (https://broadinstitute.github.io/warp/
docs/Pipelines/Imputation_Pipeline/references_overview; gs://
broad-gotc-test-storage/imputation/1000 G_reference_panel), we 
first excluded variants with MAF < 1% across 1000G superpopulations, 
before determining the overlap with genotyped variants available for 
both the UKBB and BioMe. After excluding long-range LD regions, we 
pruned the list of variants using plink (–indep-pairwise 1000 50 0.05) 
and ran principal component analysis with flashpca93, whereafter we 
projected UKBB and BioMe participants to the same 1000G principal 
component space. For each of the five population-specific PGSs under-
lying PGSLC (that is, AFR, AMR, EAS, EUR and SAS), we regressed the 
PGS of 1000G participants against the first 10 principal components 
of ancestry:

PGS = α0 +
10
∑
i=1

αi × PCi

In addition, we modeled its residual variance (δ2) as a function of 
the same principal components:

δ2 = β0 +
10
∑
i=1

βi × PCi

Then, using the projected principal component, predicted mean 
and residual s.d. were calculated and used to create ancestry-adjusted 
z-scores of each PGS for UKBB and BioMe participants:

adjusted zPGS =
∑M

j=1 wj × dosagej − (α0 + ∑10
i=1 αi × PCi)

√β0 + ∑10
i=1 βi × PCi

with ∑M
j=1wj × dosagej  representing the raw PGS.

We observed that mean and variance differences of scores 
across ancestry populations were largely, but not fully, resolved 
through this correction in both study populations (Extended Data 
Fig. 4). In keeping with PRS-CSx’s linear combination approach, 
weights to linearly combine scores were derived within each UKBB 
tuning population and applied to BioMe validation populations. 
The ancestry-adjusted PGSLC was then thresholded at its top 5% and 
10% separately (versus bottom 95% and 90%, respectively), and odds 
ratios for prevalent obesity were calculated, adjusting for age, sex 
and genotyping array. Given the relatively lower number of East Asian 
and South Asian individuals available for these tail comparisons, we 
present pooled estimates.

Multi-ancestry PGS trained only with GIANT consortium data
Although we primarily report on the development and performance 
of the PGSLC trained with the larger GIANT+23andMe BMI GWAS 
meta-analyses results, we initially developed a multi-ancestry PGS 
with the GIANT-only results. For this, we used PRS-CS, combining 
GIANT’s combined multi-ancestral GWAS summary statistics (includ-
ing BioMe but excluding the UKBB and the ALSPAC study) with a pre-
viously described multi-ancestry 1000G-based LD reference panel 
created following the same protocol as described by the PRS-CS 
authors94. We restricted variants to those present in the LD reference 
panel, which additionally had MAF ≥ 0.1% and INFO ≥ 0.8 in the overall 
UKBB, resulting in a total of 1,217,710 variants included. We did not 
specify a genome-wide shrinkage parameter for PRS-CS, which it there-
fore learned from the training data using a fully Bayesian approach 
(its ‘auto’ option). In collaboration with the eMERGE network, this 
GIANT-only PGS was included among a select group of trait-specific 
scores currently being returned as part of a genome-informed risk 
assessment (GIRA) to 25,000 diverse adults and children and their 
healthcare providers in an ongoing prospective cohort study across 
10 clinical sites, as recently described14,48. In line with the aim of return-
ing a high-risk versus a not-high-risk GIRA status to participants, we 
estimated the odds ratio for obesity class I (or higher) for being in the 
top 3% of the PGS distribution (versus bottom 97%) within the subset 
of BioMe participants genotyped with the Global Screening Array 
(with 1000G imputation) who had not contributed to the underly-
ing GIANT GWAS meta-analysis nor were related to those who did. 
Accounting for age, sex and four principal components, we observed 
that values within the top 3% of this PGS were associated with 4.08 
(95% confidence interval: 3.02–5.52) times as high odds for prevalent 
obesity in individuals of self-reported European descent, with 2.54 
(95% confidence interval: 1.55–3.98) for individuals of self-reported 
African descent, with 2.33 (95% confidence interval: 1.64–3.31) for 
individuals of self-reported Hispanic/Latino descent and with 5.73 
(95% confidence interval: 2.28–14.57) for individuals of self-reported 
Asian descent. The weights for this GIANT-only PGS are made available 
through the PGS Catalog alongside the weights for PGSLC and PGSmeta 
(see ‘Data availability’).
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Childhood and adolescence
Within the ALSPAC study, repeated anthropometric measurements 
are available from birth to age 24. We employed both cross-sectional 
and multilevel analyses to provide complementary perspectives: 
cross-sectional analyses facilitate granular comparisons at each 
timepoint, whereas multilevel models capture longitudinal trajec-
tories and population-level divergence over time. First, we assessed 
repeated cross-sectional associations between the standardized PGS  
(PGSLC using linear combination weights from UKBBEUR) and all  
available measures of BMI (or ponderal index at birth) and height. 
Anthropometric measurements were rank-based inverse-normal trans-
formed separately by sex, at each timepoint, and analyses were adjusted 
for age at timepoint and principal components.

Longitudinal analyses using linear spline multilevel models were 
conducted to examine the association between the PGS (bottom 10%, 
middle 80%, top 10%) and change in untransformed BMI and height 
between 4 months and 24 years. Multilevel models estimate the 
mean trajectories of each anthropometric trait while accounting for 
non-independence of repeated measures within individuals, change in 
scale and variance of measures over time and differences in the number 
and timing of measurements between individuals (using all available 
data from all eligible participants under a missing-at-random assump-
tion). Linear splines allow knot points to be fitted at different ages to 
derive periods of change that are approximately linear. All participants 
with at least one measure of the anthropometric traits were included 
under a missing-at-random assumption to minimize selection bias in 
trajectories estimated using linear spline multilevel models (with two 
levels of random effects: measurement occasion (that is, age to the 
nearest integer in years) and individual), allowing individuals to have 
different intercepts and slopes and, thus, their own trajectories. Knot 
points were placed as follows for each anthropometric trait based on 
the distribution and longitudinal pattern of measures between the earli-
est measure and 24 years: at ages 4 months and 8 months and at ages 
2.5 years, 5 years, 8 years and 15 years for BMI and at ages 1 year, 5 years 
and 15 years for height. Interaction terms between PGS and each spline 
were included in the models to estimate the difference in the intercepts 
(earliest anthropometric trait measurement) and slopes (change in 
anthropometric trait from the earliest measure to 24 years) between 
the three PGS categories. Additionally, interaction terms between sex 
and the first 10 genetic principal components with each spline were 
included to estimate the difference in intercepts and slopes between 
males and females; therefore, models were adjusted for sex and princi-
pal components. All longitudinal models were created in MLwiN version  
3.04 called from Stata version 15 using the ‘runmlwin’ command95.

In the CiF subset of the cohort, age at adiposity rebound was avail-
able, categorized as very early (at/before 43 months), early (from 
49 months but before 61 months) and later (after 61 months)96. These 
children represent a 10% sample of the cohort, randomly selected 
for more detailed investigations, and are representative of the entire 
cohort (https://www.bristol.ac.uk/alspac/researchers/cohort-profile/). 
One-way ANOVA was used to test for differences in mean PGS across 
categories, in boys and girls separately and combined.

Added value of the PGS for prediction of BMI (rank-based inverse- 
normal transformed by sex) at given timepoints was quantified as 
incremental explained variance, when adding the PGS to different 
sets of predictors. First, we examined R2 for BMI at birth and at 3, 5, 8, 
11 and 15 years, when adding the PGS to a model containing multiple 
relatively easily obtainable clinical variables that would be available 
at birth (birthweight, maternal education, pre-pregnancy maternal 
BMI, maternal age at date of birth and household social status). Details 
regarding phenotyping of these variables can be found in Supplemen-
tary Table 3. Separately, for R2 for BMI at age 18, we added the PGS to 
separate models containing BMI from a given early-life timepoint  
(1, 2, 3, 4, 5 and 8 years). Confidence intervals (95%) were calculated 
using bootstrapping with 1,000 repetitions.

From early adulthood to middle age
Within PLCO, we assessed the population-statified and sex-stratified 
association between the standardized PGSLC (using linear combination 
weights from the UKBB most closely corresponding to each testing 
population) and per-5-year change between ages 20 and 50 in weight 
and BMI, with and without adjustment for the initial measurement at 
age 20. These analyses were additionally adjusted for birth year, sex 
(where appropriate) and principal components.

We calculated the population-stratified AUC of the PGS for obesity 
outcomes at age 50. For this, we ran models including (i) birth year 
and sex, (ii) birth year, sex, principal components and PGSLC, (iii) birth 
year, sex, principal components and BMI at age 20 and (iv) birth year, 
sex, principal components, BMI at age 20 and PGSLC. We separately ran 
model (iv) when including an interaction term between the PGS and 
BMI at age 20. Based on evidence for statistical interaction between 
the PGS and BMI at age 20 for predicting obesity at age 50 across mul-
tiple populations (Supplementary Table 16), we stratified our analyses 
on the presence of overweight or obesity at age 20 and, addition-
ally, on sex. Confidence intervals (95%) for AUC were calculated using  
DeLong’s method.

PGS and weight change due to ILIs
Although neither intervention nor comparison arms were identical 
across DPP and Look AHEAD, both intervention arms were aimed 
at 7% weight loss while focused on the same process features83, 
and both represent a large shift in lifestyle behavior relative to 
the comparison arms. As such, we decided to pool study-specific 
effect estimates via inverse-variance weighted meta-analysis. In 
each study, we ran analyses after pooling the three largest popula-
tion groups present in both trials: Black and/or African American, 
Hispanic and White (Supplementary Table 3). Population-stratified 
analyses were separately run as well. Within each study-specific 
population, we applied the linear combination weights for PGSLC 
most closely aligned with the target population (AFR, AMR and 
EUR, respectively). These scores were then standardized within the 
matching population, ignoring trial arm, whereafter we standard-
ized again across all individuals for the population-pooled analyses. 
Due to restricting analyses to genotyped individuals from the three 
largest population groups, trial randomization was, by definition, 
broken. To investigate potential shifts in the PGS, we plotted its dis-
tribution by trial arm, which showed minimal shifts in distribution  
(Extended Data Fig. 7).

To investigate weight change, we focused on annual weight meas-
urements. The weight loss nadir in both trials is known to occur at 
the 1-year mark, after which many individuals start regaining weight. 
As such, we separately examined the association of the PGS with (i) 
weight at year 1 (adjusting for baseline weight) and (ii) repeated weight 
measurements beyond year 1 up to year 4 (adjusting for weight at year 1)  
in the subset of individuals who had lost ≥3% of their initial body weight 
in the first year. Analyses were run by trial arm using linear mixed mod-
els with random intercepts, with additional covariates being age, sex, 
principal components, the initial weight measurement (baseline or 
year 1) and random slopes for time (years). In addition, we ran trial–arm 
combined models in which we examined interaction effects between 
trial arm and PGS. These interaction terms are our main estimates of 
interest, as they reflect how genetic predisposition to obesity modi-
fies the intervention’s effect on weight change, relative to the com-
parison arm. Study-specific main and interaction effect estimates were 
separately pooled by means of inverse-variance weighted fixed-effect 
meta-analysis. Participant characteristics are presented in Supple-
mentary Table 4.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.
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Data availability
The PGS variant-level weights for the GIANT-only and GIANT+23andMe 
multi-ancestry PGSs are available for download through the PGS Cata-
log (https://www.pgscatalog.org/, publication ID PGP000724, score IDs 
PGS005198–PGS005204). The source data of the figures are provided 
in the supplementary tables. This research has been conducted using 
UKBB research under application number 1251. The UKBB genotype 
and phenotype data are available through the UKBB at https://www.
ukbiobank.ac.uk. Pan-UKBB relatedness and ancestry determina-
tions can be obtained via UKBB return 2442. Due to US Department 
of Veterans Affairs (VA) regulations and our ethics agreements, the 
analytic datasets used for this study are not permitted to leave the 
Million Veteran Program (MVP) research environment and the VA 
firewall. This limitation is consistent with other MVP studies based on 
VA data. However, the MVP data are made available to researchers with 
an approved VA and MVP study protocol. Information regarding access 
to the BioMe Biobank is available at https://icahn.mssm.edu/research/
ipm/programs/biome-biobank. For access to the Uganda GPC-UGR 
data, contact should be made to the director of the MRC/UVRI & LSHTM 
Uganda Research Unit, Entebbe, by email to mrc@mrcuganda.org. The 
data underlying this article are available upon reasonable request to 
the PLCO Cancer Data Access System: https://cdas.cancer.gov/plco/. 
Requests from researchers to access ALSPAC data and samples are 
welcomed; relevant procedures can be found at https://www.bristol.
ac.uk/alspac/researchers/access/. Data from the Diabetes Prevention 
Program (V9) (https://doi.org/10.58020/3hw5-cf91) reported here 
are available for request at the NIDDK Central Repository (NIDDK-CR) 
website, Resources for Research (R4R) (https://repository.niddk.nih.
gov/). The Diabetes Prevention Program genotype data were down-
loaded from the dbGaP website under phs000681.v2.p1. Researchers 
can access data from the primary Look AHEAD data trial on the NIDDK 
repository. Due to limitations specified in informed consent, the Look 
AHEAD genetic data are not publicly available.

Code availability
We used publicly available software tools for all analyses. These soft-
ware tools are listed in the main text and in the Methods. Of particu-
lar note, we used PRS-CS (https://github.com/getian107/PRScs) and 
PRS-CSx (https://github.com/getian107/PRScsx) to develop the PGSs.
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Extended Data Fig. 1 | Distribution of obesity categories and average BMI in 
adult tuning and validation populations. Distribution of obesity categories 
and mean BMI (+/- standard deviation) across adult tuning and validation 
populations. Asian-specific BMI cutoffs (see Methods) were applied to East Asian 
(EAS), South Asian (SAS), and non-Hispanic Asian (AS) populations, in contrast 
to African (AFR), American (AMR), European (EUR), and Middle Eastern (MID) 

populations. UKBB, UK Biobank; MVP, the Million Veteran Program; GPC-UGR, 
the Uganda General Population Cohort. Sample sizes (distinct individuals), from 
left to right, for Tuning: 6154, 971, 1553, 2660, 8005, 20000; Validation: 12263, 
2332, 18701, 10281, 8096, 4201, 1359, 1177, 13673, 69828, 340224; and BMI: 12263, 
10281, 1359, 1177, 13673, 2332, 18701, 8096, 4201, 69828, 6154, 971, 1553, 2660, 
8005, 340224.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-025-03827-z

Extended Data Fig. 2 | Prevalence of obesity categories across 1%-groups of 
PGSs. Prevalence of obesity category, with 95% confidence intervals based on the 
normal approximation to the binomial distribution, across 1%-groups of PGSKhera 
and PGSLC within the validation subset of the UKBB participants of European 

ancestry (N ~ 340k). The black dotted line denotes the average prevalence in the 
entire subset. The red and blue lines correspond to the prevalence of the obesity 
category within the top and bottom 1% of PGSKhera and PGSLC, respectively.
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Extended Data Fig. 3 | Odds ratio per standard deviation (SD) increase of 
PGSLC for prevalent obesity categories. All PGS were standardised using the 
mean and SD of the PGS of individuals who did not have the outcome of interest 
(that is, those with a BMI value below the threshold for a given obesity category), 
to account for differences in prevalence across validation populations. MVP, 

Million Veteran Program; GPC-UGR, Uganda General Population Cohort; UKB, UK 
Biobank. Sample sizes (distinct individuals) per grouped set of estimates, left to 
right: AFR 12263, 2332, 18701; AMR 10281, 8096; AS 4201; EAS 1359; SAS 1177; EUR 
13673, 69828, 340224.
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Extended Data Fig. 4 | Distributional shifts of ancestry-specific scores before 
and after ancestry-calibration. Distributional shifts of ancestry-specific 
scores which are linearly combined to create PGSLC, across UK Biobank-tuning 
and BioMe-validation populations, before (top) and after (bottom) ancestry–

calibration using 1000 Genomes reference data (Methods). Each plot shows 
a single ancestry-specific score, with separate lines showing the distribution 
across ancestries. For these plots, each score was standardised to mean zero and 
variance one once across all participants of a given study.
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Extended Data Fig. 5 | Association between PGSLC and height trajectory between birth and age 24. Estimated using linear spline multilevel models with repeated 
measures from the ALSPAC cohort.
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Extended Data Fig. 6 | AUC for obesity outcomes at age 50, stratified by sex and overweight/obesity status at age 20. Estimated in the Prostate, Lung, Colorectal 
and Ovarian (PLCO) Cancer Screening Trial. Restricted to estimates where the number of individuals with the obesity outcome was at least 50. Population labels as 
provided by PLCO.
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Extended Data Fig. 7 | Distribution of PGS across intensive lifestyle intervention trial arms. Scores were standardised to mean zero and variance one by population 
group, ignoring assigned trial arm. Vertical lines indicate the mean PGS per arm.
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