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Abstract  A new DNA methylation biomarker, Dun-
edin Pace of Aging Calculated from the Epigenome 
(DunedinPACE), is associated with healthy lifespan 
in several European ancestry cohorts. Few studies 
have examined the relation between dietary quality 
and DunedinPACE in African American and White 
adults with longitudinal assessments. To assess the 
relationship between diet quality and DunedinPACE, 
we used longitudinal data from African American and 
White 30–64 year old adults living above and below 
poverty. Participants’ DunedinPACE scores and die-
tary assessments were calculated at two time points, 
approximately 5 years apart. Numbers of participants 
(n = 421; mean age 49 years) were balanced by race, 
sex, and poverty status. Diet quality was assessed 
using two different dietary indexes: Dietary Inflam-
matory Index (DII) and Healthy Eating Index-2010 

(HEI). Linear mixed model regression examined the 
longitudinal association of DunedinPACE with DII 
and HEI adjusted by age, race, poverty status, BMI, 
and smoking status. Initial mean values of DII were 
3.34 (SD = 2.16) and HEI was 40.67 (SD = 11.69), 
indicating a pro-inflammatory dietary pattern and low 
diet quality in this cohort. The initial mean Duned-
inPACE score was 1.07. We found that a higher DII 
score was associated with higher DunedinPACE score 
(β = 0.009; p < 0.001), higher HEI score was associ-
ated with lower DunedinPACE score (β =  − 0.001; 
p = 0.032), and that these relationships were con-
sistent over time. Overall, lower dietary quality was 
associated with a faster pace of aging captured by 
DunedinPACE score. Our findings demonstrate the 
independent contribution of diet quality to healthy 
aging-related epigenetic mechanisms.
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Introduction

Diet quality is associated with age-associated disease 
and organismal lifespan [1, 2]. Dietary patterns at 
midlife can have consequences later in life including 
reducing risk for age-associated disease and condi-
tions such as Alzheimer’s disease, frailty, and car-
diovascular disease (reviewed in [2]). Understanding 

how diet and nutrition affect the aging process is key 
to improving health and longevity.

A high-quality diet reflects a healthy pattern of 
consumption providing optimal intakes of nutrients 
and dietary constituents, like flavonoids, that are asso-
ciated with lower disease risk. There are many ways 
to measure diet quality. A priori analytical approaches 
to measure diet quality typically score food intake pat-
terns in terms of how closely they align with national 
dietary guidelines, such as the Healthy Eating Index 
(HEI), or in terms of their adherence to a particular 
cuisine such as the Mediterranean Dietary Score. The 
HEI-2010 (hereafter referred to as HEI) assesses diet 
quality from two perspectives—adequacy (nine die-
tary components to increase) and moderation (three 
dietary components to decrease) and uses scoring 
standards that are density-based [3]. The HEI meas-
ures diet quality conformance to the 2010 Dietary 
Guidelines for Americans (DGA [4]) with higher 
scores indicating closer compliance with US dietary 
guidance. In contrast, the Dietary Inflammatory Index 
(DII) was created to estimate the inflammatory poten-
tial of the diet in any human population [5]. The DII 
is based on literature from a variety of different study 
designs ranging from cell cultures to observational 
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and experimental studies with humans from around 
the world, as well as evidence from qualifying labo-
ratory animal experiments. Low scores indicate anti-
inflammatory potential of the diet while high scores 
reflect pro-inflammatory potential. In young adults, 
DII was negatively correlated with the HEI-2010 
(r =  − 0.65, p < 0.01) and other diet quality indices, 
namely the Dietary Approaches to Stop Hyperten-
sion (r =  − 0.52, p < 0.01) and the Alternative HEI 
(r =  − 0.55, p < 0.01) [6].

Recent data indicate that diet may influence aging 
through regulating epigenetic mechanisms, includ-
ing alterations in DNA methylation. DNA meth-
ylation (DNAm) at CpG sites are modified with age 
and are often used as biological indicators of aging, 
called epigenetic age [7–9]. Several different epige-
netic age estimators have been utilized including the 
first-generation clocks by Horvath [10] and Hannum 
[11] and second-generation clocks DNAm PhenoAge 
[12] and the DNAm GrimAge [13]. Third-generation 
clocks were developed including the initial Dunedin 
Pace of Aging Methylation (DunedinPoAm) [14] and 
the most recent Dunedin Pace of Aging Calculated 
From the Epigenome (DunedinPACE) measure [15]. 
The DunedinPACE measure was designed to assess 
the pace of aging by using 20  years of longitudinal 
measurements of 19 different biomarkers of system-
integrity in the Dunedin Birth Cohort Study [15].

The DunedinPACE epigenetic age estimator 
appears to be able to capture influences of lifestyle 
and diet on the pace of aging. For example, data 
from the Comprehensive Assessment of Long-term 
Effects of Reducing Intake of Energy (CALERIE) 
trial found that calorie restriction slowed the pace of 
aging as measured by DunedinPACE but not with the 
second-generation clocks [16]. However, we are only 
beginning to understand how diet interventions may 
affect epigenetic age. Data from the DIRECT-PLUS 
(dietary intervention randomized controlled trial pol-
ypenols-unprocessed) trial indicated that there were 
no differences in biological age, including the Duned-
inPACE measure and other measures, between differ-
ent dietary interventions [17]. A cross-sectional study 
from the Framingham Offspring Cohort of older 
adults (mean age = 67 years) found that a higher Die-
tary Approaches to Stop Hypertension (DASH) score 
was associated with decreased biological age meas-
ures, DunedinPoAM, GrimAge, and PhenoAge [18]. 
Another cross-sectional study from postmenopausal 

women in the Women’s Health Initiative found that 
higher DASH, HEI-2015, and alternative Mediter-
ranean diet (aMED) were negatively associated with 
DunedinPACE and other epigenetic measures [19]. 
Additionally, the Sister Study found that women con-
suming a healthy diet had lower epigenetic age as 
measured using first- and second-generation clocks 
[20]. In Black and White women (n = 342; mean 
age = 39.2  years) aMED, alternate HEI-2010, mean 
sugar intake and also a developed “Epigenetic Nutri-
ent Index” based on nutrient-based approach, were 
associated with GrimAge2 [21]. Another recent study 
found a weak but significant negative relationship 
between HEI and DunedinPACE in healthy Hawaiian 
residents [22]. Therefore, there may be different rela-
tionships between diet and epigenetic age in different 
populations, indicating the importance of analyzing 
data from various populations and assessing multiple 
diet measures to further examine these relationships.

Analysis examining specific dietary components 
indicates that markers of fruit/vegetables are associ-
ated with lower DNAm PhenoAge [12] and DNAm 
GrimAge [13] and higher fat consumption was asso-
ciated with greater DNAm GrimAge [13]. Using 
first-generation clocks, Quach et  al. reported that 
fish, poultry, and fruits/vegetables consumption were 
associated with epigenetic age [23]. Focusing on spe-
cific dietary components limits how overall diets may 
affect epigenetic age. In addition, as most existing 
diet and epigenetic studies are cross-sectional, there is 
a need to incorporate longitudinal analyses.

Here we analyzed the association of the pace of 
aging using the DunedinPACE measure with diet 
quality using two different dietary indexes in a mid-
dle-aged cohort of African American and White 
adults living above and below poverty. Few studies 
incorporate multiple population groups in nutritional 
as well as epigenetic aging studies. We utilized lon-
gitudinal measures of DNAm and diet to assess how 
diet quality affects the pace of aging using data from 
the HANDLS study.

Methods

Study population

Participants were selected from HANDLS, a pro-
spective population-based longitudinal study with a 
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fixed cohort of community-dwelling African Ameri-
can and White participants [24] in Baltimore, Mary-
land. HANDLS was initiated in 2004 with men and 
women aged initially between 30 and 64  years. At 
enrollment, participants self-identified as either Afri-
can American or White. Poverty status was defined as 
above or below 125% of the 2004 US federal poverty 
guidelines for household income [25]. Sex was sex 
assigned at birth. Time 1 examination data were col-
lected through a home visit and examination on medi-
cal research vehicles between August 14, 2004, and 
June 22, 2009; participants were administered a phys-
ical health examination, medical history inquiries, 
two repeated 24-h dietary recalls, and other assess-
ments. Time 2 data were collected between June 23, 
2009, and September 12, 2017; follow-up in-person 
visits were conducted for participants using proto-
cols similar to time 1. The HANDLS study protocol 
was approved by the Institutional Review Board of 
the National Institutes of Health. All participants pro-
vided written informed consent. Participants for the 
current study (Fig. 1) came from a DNAm cohort ran-
domly selected using a factorial design of sex, race, 
and poverty status from HANDLS participants with 
blood samples at time 1 and time 2 [26, 27]. The sam-
ple in this study further required dietary data, body 
mass index (BMI; kg/m2) from measured height and 
weight, and smoking status from the medical history 
(ever/never), resulting in 421 participants with at least 
one visit across time 1 (n = 334) and time 2 (n = 353). 
The average follow-up time was 5.1  years between 
time 1 and time 2.

DNA methylation measures

DNA methylation in peripheral white blood cell sam-
ples was profiled using the Illumina Human Meth-
ylationEPIC BeadChip as described previously [27]. 
The β-value for each CpG site was used for DNAm 
level measures, adjusted for batch effects, and white 
blood cell proportions. The white blood cell propor-
tions of each cell type were estimated using House-
man’s method [28]. Low-quality samples and β-value 
outliers were excluded. For each participant, Dun-
edinPACE scores were calculated at two time points 
based on the β-values using R package DunedinPACE 
developed by Belsky et al. (4).

Dietary inflammatory index

For HANDLS participants, two nonconsecutive 24-h 
dietary recalls were administered to collect food 
and beverage intake information. Data were col-
lected by trained interviewers using the Automated 
Multiple-Pass Method (AMPM) established by the 
United States Department of Agriculture [29]. The 
DII was calculated for each recall day using param-
eters defined by Shivappa et al. [30]. The parameters 
included energy, alcohol, protein, carbohydrate, die-
tary fiber, total fat, saturated fat, monounsaturated 
fat, polyunsaturated fat, omega 3 fatty acids, omega 
6 fatty acids, cholesterol, 11 vitamins, 4 minerals, 6 

Study Sample (n=421)
Inclusion criteria:
Dietary data from at least one visit
Smoking status

HANDLS Par�cipants
(n=3720)

Visit 1 (n=334) Visit 2 (n=353)

DNAm Cohort (n=470)
Factorial design across sex, race, 
poverty status from par�cipants 
with two samples of DNA from 
blood

Fig. 1   Flow chart for sample selection
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flavonoid classes, caffeine, and tea. The DII scores 
were standardized to global referent values [30]. Final 
DII values are the mean across the 2 recall days. The 
possible maximal pro-inflammatory DII score for the 
HANDLS study sample was + 10.44 and the maximal 
anti-inflammatory DII score was − 10.44.

Healthy eating index

The score for each of the 12 components of the HEI 
was calculated using the procedure provided on The 
National Cancer Institute’s Applied Research web-
site [31]. The nine adequacy components included 
total fruits, whole fruits, total vegetables, greens and 
beans, whole grains, dairy, total protein foods, seafood 
and plant proteins, and fatty acids. The three modera-
tion components included refined grains, sodium, and 
empty calories (solid fats, added sugar, and alcohol). A 
detailed description for our calculation of HEI scores 
is available on the HANDLS website [24]. HEI scores 
were calculated for each recall day and averaged to 
obtain the mean. The maximum possible score was 100.

Statistical analysis

Analyses at baseline consisted of tests between 
groups at time 1 using two-sided Student’s t-test for 
continuous variables and Pearson’s chi-square test 
for dichotomous variables. Correlation used Pear-
son’s correlation test. Longitudinal analyses were 
performed using linear mixed model regression to 
account for repeated measurements without exclud-
ing participants with only one time point of data. The 
model included a random intercept for each person. 
Chronological age (years) was included in the mod-
els as a fixed effect in decade units centered at age 50 
([age – 50]/10). Based on previous work [26], a fixed 
quadradic term for age was also included in the mod-
els. Each dietary measure (HEI, DII) was analyzed 
for its relationship with DunedinPACE in a separate 
regression model with the fixed factors of race, pov-
erty status, age, quadradic age, BMI, and smoking 
status. Backward elimination was employed starting 

Table 1   Participant demographic characteristics and dietary 
indexes

1 Standard deviation
2 Body mass index, kg/m2

Variable N = 421
Race, n (%)
   African American 210 (49.9)
   White 211 (50.1)

Sex, n (%)
   Male 219 (52.0)
   Female 202 (48.0)

Poverty Status, n (%)
   Above 212 (50.4)
   Below 209 (49.6)

Time 1
N = 334

Time 2
N = 353

Age, years mean (sd1) 48.6 (8.8) 53.8 (8.5)
DunedinPACE, mean (sd) 1.07 (0.1) 1.10 (0.1)
Dietary Inflammation Index, mean 

(sd)
3.4 (2.2) 3.4 (2.1)

Healthy Eating Index 2010, mean 
(sd)

40.7 (11.7) 44.9 (12.2)

BMI2, mean (sd) 29.8 (7.5) 30.7 (7.7)
Ever smoker, n (%) 229 (69.6) 255 (72.2)

Fig. 2   Relationship of DunedinPACE and Dietary Inflam-
mation Index from linear mixed model regression at two time 
points. Linear mixed model regression was used to analyze the 
relationship of DunedinPACE and Dietary Inflammatory Index 
(DII) and included age, quadradic age, body mass index, ever 
smoked, and an interaction of race and poverty status as fixed 
effects and a random intercept for participant. Data included 
participants with DunedinPACE and dietary data at two time 
points (n = 421). Line from the regression model is shown for 
DII and DunedinPACE and gray indicates the 95% confidence 
interval. A higher DII indicates a pro-inflammatory diet
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with three-way interactions which were examined and 
removed if not significant. Significance was defined 
as two-sided tests using p < 0.05. Analyses were 
performed using R version 4.4.1 [32]. Linear mixed 
model regression was done using the R package lmer, 
and beta coefficient p-values estimated using the R 
package lmerTest.

Results

Study sample characteristics at baseline

At time 1, the mean age for participants was 
48.6  years (SD = 8.8) and ranged from 30.2 to 
64.8  years (Table  1). Over half of the participants 
at time 1 reported having smoked in their lifetime 
(69.6%). There were no significant age differences at 
time 1 between participants with household incomes 
below or above poverty (p = 0.676), between Afri-
can American and White participants (p = 0.702), 
or between men and women (p = 0.723). The mean 
DunedinPACE score at time 1 was 1.07 (SD = 0.14), 
indicating an aging rate 7% older than indicated by 
chronology. DunedinPACE scores and chronological 
age were positively correlated in the sample (Pearson 
correlation r = 0.16, p = 0.004). The study sample at 
time 1 had a mean DII of 3.39 (SD = 2.15) and mean 
HEI of 40.67 (SD = 11.69).

Longitudinal association between DII and 
DunedinPACE

We examined the separate longitudinal relation-
ships between DII and HEI with DunedinPACE. 
Linear mixed model regression revealed significant 
main effects for quadratic age (age2), BMI, smok-
ing status, DII, and a significant two-way interac-
tion between race and poverty status (Table 2). Par-
ticipants with higher DII scores were associated with 
higher DunedinPACE score, indicating faster pace 
of aging (β = 0.009; p < 0.001; Fig.  2). A one stand-
ard deviation change in DII (2.2) corresponded to 
2% faster pace of biological aging than chronologi-
cal aging. Smoking and greater BMI were also asso-
ciated with higher DunedinPACE score (Table  2). 
We confirmed our previous finding of the signifi-
cant two-way interaction between race and poverty 
status that White adults living above poverty status 
had a significantly lower DunedinPACE score than 

Table 2   Linear mixed model regression analysis of associa-
tion of DunedinPACE scores with dietary inflammatory index 
at two time points

1 Age is in decade units, centered at 50 ((age – 50)/10)
2 Body mass index, kg/m2

3 Dietary Inflammatory Index: lower values indicate better diet 
quality

Term Beta coefficient Standard error p-value

Race (white) − 0.040 0.015 0.008
Poverty Status 

(below)
− 0.011 0.015 0.448

Age1 0.010 0.006 0.080
Age (quadradic)  − 0.011 0.006 0.046
BMI2 0.001 0.001 0.032
Ever smoker 0.042 0.012  < 0.001
DII3 0.009 0.003  < 0.001
Race × poverty 

status
0.051 0.021 0.015

Fig. 3   Relationship of DunedinPACE and Healthy Eating 
Index from linear mixed model regression at two time points 
Linear mixed model regression was used to analyze the rela-
tionship of DunedinPACE and Healthy Eating Index (HEI) and 
included age, quadradic age, body mass index, ever smoked, 
and an interaction of race and poverty status as fixed effects 
and a random intercept for participant. Data included partici-
pants with DunedinPACE and dietary data at two time points 
(n = 421). Line from the regression model is shown for HEI 
and DunedinPACE and gray indicates the 95% confidence 
interval. A higher HEI score indicates a healthier diet
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White adults with household incomes below poverty, 
and African American adults either below or above 
poverty (p < 0.001) [26]. The other groups were not 
significantly different from one another. Sex was not 
significantly related to DunedinPACE scores in these 
analyses. There were no significant interactions with 
age indicating that the relationships between Duned-
inPACE and DII, as well as with race and poverty sta-
tus, did not change over time within this study period.

Longitudinal association between HEI and 
DunedinPACE

Linear mixed model regression revealed significant 
main effects for quadratic age (age2), BMI, smok-
ing status, HEI, and a significant two-way interac-
tion between race and poverty status (Table 3). Par-
ticipants with higher HEI scores, indicating diets of 
better quality and greater compliance to the Dietary 
Guidelines for Americans, were associated with 
lower DunedinPACE scores, indicating slower pace 
of aging (β =  − 0.001; p = 0.032; Fig. 3). A one stand-
ard deviation change in HEI (11.7) corresponded to a 
1% slower pace of biological aging than chronologi-
cal aging. We observed similar associations for BMI, 
smoking, and the two-way interaction between race 
and poverty status as in the DII analysis. Sex was not 
significantly related to DunedinPACE scores in these 
analyses. There were no significant interactions with 

age indicating that the relationships between Duned-
inPACE and HEI did not change over time within this 
study period.

Discussion

In a cohort of African American and White adults liv-
ing above or below poverty, we found that lower diet 
quality was associated with a faster pace of aging. We 
also utilized longitudinal nutritional and epigenetic 
data. These data build upon earlier studies that have 
focused on specific dietary components and first- or 
second-generation epigenetic measures [12, 13, 23, 
33]. These studies found that specific dietary compo-
nents, those considered healthy food options includ-
ing fruits/vegetables and fish intake, are associated 
with lower epigenetic age whereas red meat intake 
accelerates epigenetic age. Our data support these 
findings.

In this study, we utilized the DII and HEI, two 
measures of diet quality which are indicators of dif-
ferent aspects of dietary consumption. Therefore, we 
not only acquire data on conformance to the DGA 
but also on the inflammatory potential of the diet. 
Other studies have examined the DASH diet [18] and 
other nutritional indexes (DASH, aMED, Alterna-
tive HEI-2010 or HEI-2015) [19–21] and epigenetic 
age estimators. Our data are consistent with the find-
ings in these reports that healthy diets are associated 
with lower epigenetic age. However, here we have 
used longitudinal data to analyze the relationship 
between two different dietary indexes and the pace 
of aging, using the newest epigenetic measure Dun-
edinPACE. Interestingly in the Framingham Heart 
Study Offspring cohort, a mediation analysis found 
that DNAm may partially explain the relationship 
between diet (as measured using DASH) and mortal-
ity [18]. Consistent with this finding, hypermethyla-
tion of cg18181703 (SOCS3) was found to be asso-
ciated with higher diet quality (Mediterranean-style 
diet score and Alternative HEI) and a reduced risk 
for all-cause mortality in a European ancestry cohort 
[34]. These data point to DNA methylation changes 
as a potential mediator between diet and mortality.

Here we found evidence that a higher inflamma-
tory potential of the diet may contribute to a faster 
pace of aging. A pro-inflammatory diet may lead to 
inflammation, which is a well-known driver of aging 

Table 3   Linear mixed model regression analysis of associa-
tion of DunedinPACE scores with healthy eating index at two 
time points

1 Age is in decade units, centered at 50 ((age – 50)/10)
2 Body mass index, kg/m2

3 Healthy Eating Index 2010: higher values indicate better diet 
quality

Term Beta coefficient Standard error p-value

Race (White)  − 0.049 0.015 0.001
Poverty Status 

(below)
 − 0.012 0.015 0.407

Age1 0.012 0.006 0.051
Age (quadradic)  − 0.011 0.006 0.045
BMI2 0.002 0.001 0.018
Ever smoker 0.038 0.012 0.002
HEI3  − 0.001 0.0004 0.032
Race × poverty 

status
0.058 0.021 0.006
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and age-related diseases [35, 36]. Specific circulat-
ing inflammatory biomarkers have previously been 
associated with epigenetic age acceleration [13, 37]. 
Taken together, these data indicate that eating a diet 
with pro-inflammatory potential may lead to DNAm 
changes that promote chronic inflammation and an 
accelerated aging phenotype.

Both a strength and a limitation to our study is 
the fact that our cohort overall has a low diet qual-
ity and pro-inflammatory dietary pattern. The HEI-
2010 scores were approximately 12–17 points lower 
than those of a representative US sample (HEI Scores 
for Americans. https://​www.​fns.​usda.​gov/​cnpp/​hei-​
scores-​ameri​cans, Updated 4/28/2022). One strength 
is that we utilized longitudinal data of both African 
American and White adults living above and below 
poverty that are often not included in diet and epi-
genetic studies. At the two different visits, data were 
collected on separate days using 24-h recalls, ensur-
ing data from both weekday and weekend days. We 
used the AMPM, an accurate validated method, to 
collect dietary data [29]. However, it should be noted 
that self-reporting of dietary information is subject 
to bias based on social desirability [38]. Another 
strength is that we assessed multiple aspects of diet 
quality through the DII and HEI. One limitation is 
that our data were collected over two visits approxi-
mately 5  years apart, which may be too short of a 
time period in a middle-aged cohort. Collecting both 
DNAm and dietary information at additional time 
points will be important to further decipher the role 
of diet on epigenetics over the lifespan. The effect 
sizes that we reported are significant but fairly small. 
Nonetheless, it has been reported that lifestyle factors 
at midlife are known to contribute to health outcomes 
later in life [39, 40]. Therefore, modifying factors, 
e.g., eating a healthy diet, at midlife may have long-
term consequences for healthy aging.

In this longitudinal cohort study, our findings 
revealed lower dietary quality was associated with a 
higher DundinPACE score. These results support that 
eating a low quality diet may accelerate the biologic 
pace of aging as measured using the DunedinPACE 
DNAm biomarker. Consequently, these data indicate 
that eating a healthy, anti-inflammatory diet can pro-
mote healthy aging.
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