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Abstract
Diabetes is a metabolic and inflammatory disease that disproportionately affects African American populations, yet clini-
cal diagnostics often rely on biomarkers discovered and validated predominantly in White cohorts. This study investi-
gates race-specific lipid and inflammatory features of diabetes to uncover biologically distinct disease signatures that may 
contribute to disparities in diagnosis and management. We analyzed clinical parameters from a well-matched subset of 
the HANDLS cohort (N = 40) and conducted targeted plasma lipidomics and multiplex cytokine profiling across African 
American and White individuals from the HANDLS cohort with and without diabetes. Then we validated key findings using 
a large and diverse cohort of African American and White individuals with type 2 diabetes from the NIH AllofUs program 
(N = 17,339). Our results reveal racially divergent signatures of diabetes. White individuals with diabetes exhibited elevated 
Cholesterol:HDL ratios, triglycerides, and classical inflammatory markers such as hs-CRP. In contrast, African American 
individuals with diabetes displayed minimal lipid elevations but showed increased Th17-related cytokines1. These differences 
were independent of statin use, age, and body mass index. Additionally, correlations between lipid to cytokine ratios and the 
glycemic marker hemoglobin A1C differed sharply by race, suggesting that the pathophysiology of diabetes is not uniform 
across populations. Our findings challenge standard diabetes biomarkers and emphasize the need for more inclusive diag-
nostic frameworks. By identifying population-specific biological patterns of diabetes, this study provides important insight 
into the roots of persistent health disparities and underscores the value of precision approaches to equitable diabetes care.
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Introduction

Diabetes affects an estimated 38.4 million individuals in 
the USA—approximately 11.6% of the population—with 
disproportionately high prevalence among individuals from 
historically marginalized racial and ethnic groups, including 
African Americans [1–3]. While race is a social construct 
and not a biological determinant, it reflects lived experi-
ences, including exposure to structural racism, chronic 
psychosocial stress, disparities in healthcare access, and 
environmental influences—all of which can shape bio-
logical outcomes [4–6]. These race-associated factors may 
contribute to variation in immune and metabolic pathways, 
influencing how diabetes manifests and progresses across 
populations. The pathophysiology of diabetes is character-
ized by substantial heterogeneity, with genetic variation 
contributing to diverse disease mechanisms and clinical 
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presentations across populations [7]. Polygenic risk scores 
have revealed population-specific genetic architectures that 
influence disease susceptibility, progression, and treatment 
response [8, 9]. The impact of genetic variation is likely a 
large contributor to differences in the presentation of type 2 
diabetes across racial and ethnic populations.

Clinical measurements of glucose management like 
hemoglobin A1C (HbA1C) and measurements of insulin 
resistance, the homeostatic model assessment of insulin 
resistance (HOMA-IR) are preferably used in the current 
clinical assessment of diabetes [10–12]. HbA1C, reflecting 
average glycemic control over the preceding 2–3 months 
through non-enzymatic glycation of hemoglobin, serves 
as both a diagnostic criterion and a predictor of diabetic 
complications [13, 14]. HOMA-IR, calculated from fasting 
glucose and insulin levels, provides a validated surrogate 
measure of insulin sensitivity and pancreatic β-cell function, 
capturing the dynamic interplay between insulin secretion 
and peripheral insulin action [15]. In addition to disrupted 
glucose homeostasis which is routinely assessed, presenta-
tion of diabetes is also distinctively characterized by dys-
regulation of lipid metabolism (dyslipidemia) and chronic 
inflammation [16–18]. Efforts to study diabetes-related 
metabolic phenotypes in diverse populations have provided 
insights into the characterization of lipid profiles and inflam-
matory markers in populations with diabetes [19]. Further, 
reports have historically found an increase in systemic mark-
ers such as C-reactive protein (CRP), and the pro-inflam-
matory cytokines interleukin 6 (IL-6) and tumor necrosis 
factor alpha (TNF-α) as features of diabetes [20–22]. More 
recent literature in type 2 diabetes (T2D) research has dis-
covered an elevation of Th17 cytokines (IL-17A, IL-17E, 
IL-17F, IL-21, and IL-22) in people with T2D. Particularly, 
IL-17A has been reported to be elevated in patients with 
T2D compared to patients without T2D [23–25]. Despite 
these findings, most biomarker discovery studies have not 
been designed to assess how these immunometabolic fea-
tures vary across racial or ethnic groups.

Studies in the field of cardiometabolic disease provide 
evidence to support that disparities persist regarding clinical 
features of diabetes in diverse populations. For example, dis-
parate levels of lipids (cholesterol, high-density lipoprotein 
(HDL), low-density lipoprotein (LDL), and triglycerides) 
have been reported in African Americans compared to White 
individuals in the context of cardiometabolic disease [26, 
27]. Yet there is a dearth of studies that have systematically 
explored how these differences intersect with immune acti-
vation in diabetes.

Our study fills this gap by characterizing race-specific 
lipid and inflammatory phenotypes in well-matched groups 
of African American and White adults with and without 
diabetes. Given the complex relationships between inflam-
mation and lipid metabolism in diabetes, we employed a 

novel exploratory approach examining cytokine-to-lipid 
ratios to capture potential immune regulation of systemic 
lipid metabolism and its association with glycemic control. 
By leveraging detailed clinical, lipidomic, and cytokine pro-
filing data in a diverse HANDLS cohort and validating the 
main findings in a large AllOfUs cohort, we aim to uncover 
population-specific disease signatures that may inform more 
equitable diagnostic and therapeutic strategies.

Research Design and Methods

HANDLS Population

For the in-depth independent and integrated biological anal-
ysis of clinical parameters, lipidomics, cytokine profiling, 
and immunological phenotyping, we used a subcohort from 
the Healthy Aging in Neighborhoods of Diversity across the 
Life Span (HANDLS) study (Suppl. Fig S1) [28]. Study par-
ticipants were sampled from Wave 1 of this study. Based on 
published studies identifying N = 10 as sufficiently powered 
to detect cytokine differences in humans with type 2 diabe-
tes [23–25], N = 40 participants were randomly selected and 
divided into four matched comparison groups (N = 10 per 
group): White individuals without diabetes (NoDx-White), 
White individuals with diabetes (Dx-White), African Ameri-
can individuals without diabetes (NoDx-AA), and African 
American individuals with diabetes (Dx-AA). These groups 
were equally distributed by race, diabetes status, and sex, 
with each group matched by age, body mass index (BMI), 
and poverty status (Table 1). To minimize the impact of 
comorbidities, the exclusion criteria for the HANDLS sub-
cohort included patients ever diagnosed with Alzheimer’s 
disease, rheumatoid arthritis, ankylosing spondylitis, cancer, 
asthma, or psoriasis.

Based on the absence of insulin use (36/40), 90% of the 
cohort had confirmed T2D. Dietary intake of lipids was 
determined using the USDA Automated Multiple Pass 
Method of dietary recall, which is an interviewer-admin-
istered computerized method for collecting 24-h dietary 
recalls [29].

Clinical Parameters Evaluated in HANDLS Subcohort

To define the clinical features characteristic of diabetes in 
White and African American participants, we performed a 
univariate comparison of clinical parameters. We evaluated 
waist hip ratio (WHR), cholesterol (Chol) levels, high-den-
sity lipoprotein (HDL), cholesterol to HDL ratio (CholH-
DLRat), low-density lipoprotein (LDL), very low-density 
lipoprotein (VLDL), triglycerides, HbA1C, insulin, fasting 
glucose, and high-sensitivity C-reactive protein (hs-CRP).
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Targeted Lipidomics Using Liquid Chromatography 
Mass Spectrometry (LC‑MS) in HANDLS Subcohort

Metabolite Extraction

To extract metabolites from plasma samples, 300μL −20 
°C 1000:1 isopropanol:lipidomics standard (extraction sol-
vent) was added to 10μL of aliquoted plasma sample and 
incubated on ice for 10 min, followed by vortexing and cen-
trifugation at 15,800 × g for 15 min at 4 °C. 100 μL of the 
clear supernatant (extract) was transferred to a glass mass 
spectrometry vial.

LC‑MS

Plasma extracts were analyzed by LC-MS. Metabolites 
were analyzed using a quadruple-orbitrap mass spectrome-
ter (Q-Exactive Plus Quadrupole-Orbitrap, Thermo Fisher) 
coupled to reverse-phase ion-pairing chromatography. The 
mass spectrometer was operated in positive ion mode with 
resolving power of 140,000 at m/z 200 and scan range of 
m/z 290–1200. The LC method utilized an Atlantis T3 
column (150 mm × 2.1 mm, 3 μm particle size, 100 Å pore 
size, Waters) with a gradient of solvent A  (90:10 water: 
methanol with 1 mM ammonium acetate and 35 mM acetic 
acid) and solvent B (98:2 isopropanol: methanol with 1 
mM ammonium acetate and 35 mM acetic acid). The LC 

gradient was 0 min, 25% B, 0.150 mL/min; 2 min, 25% B, 
0.15 mL/min; 5.5 min, 65% B, 0.150 mL/min; 12.5 min, 
100% B, 0.150 mL/min; 16.5 min, 100% B, 0.150 mL/min; 
17 min, 25% B, 0.150 mL/min; and 30 min, 25% B, 0.150 
mL/min. Other LC parameters were column temperature  
45 °C, autosampler temperature was set to 4 °C, and the 
injection volume of the sample was 3 μL. Lipidomics data 
analysis was performed with Compound Discover and 
MAVEN software.

Cytokine Profiling Using Luminex Platform 
in HANDLS Subcohort

Plasma Samples

Ten microliters of plasma (undiluted) was evaluated in a 
384-well plate for cytokine profiling. We used the MIL-
LIPLEX® MAP human kits Cytokine/Chemokine/Growth 
Factor Panel (Millipore Cat# HCYTA-60 K-PXBK48) and 
the Th17 5-plex (IL21, IL23, IL31, IL33, and MIP-3a) 
(Millipore Cat# HTH17MAG-14 K) to assay 53 cytokines 
per sample. All reagents were used at 10 µL to adjust 
to 384 well format. Samples were read using a xMAP 
INTELLIFLEX® System (Luminex). Belysa® Immunoas-
say Curve Fitting Software (Millipore) was used for curve 
fitting.

Table 1   HANDLS subcohort demographics. A subcohort of 40 
individuals from the HANDLS study was divided into 4 compari-
son groups based on disease status and race: White without diabetes 
(NoDx-White), White with diabetes (Dx-White), African Americans 
without diabetes (NoDx-AA), and African Americans with diabetes 

(Dx-AA). Groups were also equally distributed based on sex. Main 
variables used for control of group distribution were body mass index 
(BMI), age, and poverty status. Variable used as a potential surrogate 
for diabetes type determination was insulin use.

NoDx-White
(N = 10)

Dx-White
(N = 10)

NoDx-AA
(N = 10)

Dx-AA
(N = 10)

Overall
(N = 40)

Sex
- Women
- Men

5 (50%)
5 (50%)

5 (50%)
5 (50%)

5 (50%)
5 (50%)

5 (50%)
5 (50%)

20 (50%)
20 (50%)

Body mass index (BMI)
Mean (SD)
Median
[Min, Max]

29.46 (3.75)
30.47
[22.66, 34.29]

32.54 (5.99)
33.86
[24.78, 41.28]

30.03 (5.67)
27.64
[23.18, 40.71]

29.03 (3.58)
29.35
[20.57, 34.01]

30.27 (4.88)
29.76
[20.57, 41.28]

BMI category
[20, 30]
[30, 42]

4 (40%)
6 (60%)

4 (40%)
6 (60%)

6 (60%)
4 (40%)

6 (60%)
4 (40%)

20 (50%)
20 (50%)

Age
Mean (SD)
Median
[Min, Max]

51.35 (11.31)
55.6
[32.5,64.7]

49.53 (8.53)
52.1
[34.4,58.1]

52.3 (11.13)
57.45
[30, 61.9]

54.56 (10.47)
58.25 [37.4,64.8]

51.93 (10.18)
55.45
[30.0, 64.8]

Poverty status
Above
Below

9 (90%)
1 (10%)

7 (70%)
3 (30%)

9 (90%)
1 (10%)

7 (70%)
3 (30%)

32 (80%)
8 (20%)

Insulin use
Yes
No

0 (0%)
10 (100%)

3 (30%)
7 (70%)

0 (0%)
10 (100%)

1 (10%)
9 (90%)

4 (10%)
36 (90%)
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Immune Phenotyping of Cellular Populations Using 
Flow Cytometry in HANDLS Subcohort

Flow Cytometry

Leukocyte populations were phenotyped in PBMCs with 
23 markers (Suppl. Table 11). All staining steps were per-
formed at 4 °C protected from light. PBMCs were stained 
with live/dead stain Zombie NIR for 20 min. PBMCs 
were washed with FACS buffer (PBS + 0.1% BSA + 2 µM 
EDTA) and centrifuged at 500 g for 5 min. Supernatant was 
removed, and 25 µL of Human TruStain FcX was added for 
10 min. Next, 25 µL of surface antibody master mix diluted 
in BD Biosciences Brilliant Stain Buffer (CAT# 566,349) 
was added to PBMCs for 20 min. PBMCs were then washed 
with FACS buffer, centrifuged, and supernatant removed. 
PBMCs were fixed with Biolegend’s Fixation Buffer (CAT# 
420,801) for 20 min. PBMCs were washed with Biolegend’s 
Intracellular Staining Permeabilization Wash Buffer (CAT# 
421,002) twice followed by addition of 25 µL of antibody 
master mix diluted in Biolegend’s Intracellular Staining Per-
meabilization Wash Buffer for 20 min. PBMCs were washed 
with Biolegend’s Intracellular Staining Permeabilization 
Wash Buffer and resuspended in 200 µL of 1% paraform-
aldehyde diluted in PBS pH 7.4 for acquisition using the 
spectral flow cytometer Cytek’s 3-laser Northern Lights. 
Data was analyzed with FlowJo v.10.

Statistical Analysis Using the ANOVA Model 
in HANDLS Subcohort

Univariate analysis was performed using two-way ANOVA 
and post-ANOVA comparisons using Fisher’s least signifi-
cant differences (LSD) test. Two-way ANOVA and post-
ANOVA multiple comparisons were performed using R 
Studio and GraphPad Prism. To control for multiple test-
ing, all p-values were adjusted using the False Discovery 
Rate (FDR) correction method, with statistical significance 
defined as FDR-adjusted p < 0.05.

Briefly, all datasets (clinical parameters, dietary intake 
data, targeted lipidomics, plasma cytokines, and immune 
phenotyping) were assessed for normal distribution. Then, 
for targeted lipidomics and plasma cytokines, we performed 
a box-cox transformation on the datasets as needed to cor-
rect for heteroscedasticity and to better satisfy the normality 
assumption of the two-way ANOVA model. The two-way 
ANOVA is a statistical procedure to estimate differences 
in the means of a dataset by two variables. In this work, 
we used two-way ANOVA to fit a model considering race 
(White/African American), disease status (diabetes or no 
diabetes), and the interaction between the two as our fac-
tors. The interaction term in the ANOVA model investi-
gates whether the effects of disease on the means evaluated 

(clinical parameters, lipids, and inflammatory markers) dif-
fer by race. These hypotheses are tested by the protected 
LSD procedure where we first look at the significance of 
the overall F-test, whether there is a difference in mean 
across any of the four groups of participants (divided in 4 
by disease and race). We then look at the four pre-specified 
group pairwise differences in the mean clinical parameters 
of interest and judge their significance by a t-test with a 
pooled standard error. The four pre-specified group pairwise 
differences we evaluated were: NoDx-White vs Dx-White, 
NoDx-AA vs Dx-AA, NoDx-White vs NoDx-AA, and Dx-
White vs Dx-AA. All graphics were generated using Graph-
Pad Prism v.10.

Variability and Clustering Analysis Using Principal 
Component Analysis (PCA), K‑Means, and Gap 
Statistics in the HANDLS Subcohort

Principal Component Analysis (PCA) is a bioinformatics 
and statistical tool used to reduce data dimensionality into 
principal components (PC1, PC2, etc.) while maximizing 
the variance captured in the first components. PCA identi-
fies which factors correlate with each other and determines 
their relative contributions to dataset variability [30]. In 
this study, PCA was applied to identify the main variables 
responsible for variability in the clinical parameters of the 
HANDLS subcohort [30].

K-means is an unsupervised machine learning algorithm 
that partitions datasets into a specified number (K) of clus-
ters, while gap statistics is a complementary tool used to 
determine the optimal number of clusters for a given data-
set [31]. In this work, K-means clustering combined with 
gap statistics was used to partition the lipid and inflamma-
tory biomarker datasets into meaningful clusters, thereby 
reducing the number of analytes into manageable groups 
for analysis.

Feature Selection Analysis Using Orthogonalized 
Partial Least Squares Discriminant Analysis 
(OPLS‑DA) in HANDLS Subcohort

OPLS-DA is an iteration of the supervised clustering 
approach partial least squares discriminant analysis (PLS-
DA) [32–34]. OPLS-DA generates latent variables (LVs) 
that are analogous to the principal components obtained by 
PCA but constrained by categorical information. OPLS-DA 
applies orthogonal rotations to the analysis to obtain maxi-
mum separation of classes along the LV1 axis; hence, a sin-
gle LV serves as a predictor for the class, while other compo-
nents describe the variation orthogonal to the first predictive 
component (LV1). OPLS-DA was performed using the Solo 
eigenvector research software. We limited the application of 
this tool to build a feature selection model using our dataset 
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as a calibration set only, an approach conducted in previ-
ously published work [35, 36]. Each dataset was z-scored 
before upload to the Solo software. Cross-validation was 
performed using the leave-one-out strategy. Performance 
of the feature selection model generated was evaluated by 
statistics R2 Cal or R2 calibration. A higher R2 Cal value 
indicates a better fit of the model.

Correlative Analysis of Lipid to Cytokine Ratios 
to Clinical Markers of Diabetes in HANDLS 
Subcohort

The concept of using ratios of circulating biomarkers has 
been established as an emerging approach in biomarker dis-
covery, particularly in chronic diseases such as Alzheimer’s 
disease and in genomics applications [37, 38]. However, in 
the field of metabolic diseases such as diabetes, cytokine-to-
lipid ratios remain exploratory. For this study, we employed 
this novel approach to test lipid to cytokine ratios as an alter-
native method for studying the intersection of immunologi-
cal (cytokines) and metabolic (lipids) pathways in diabetes, 
hypothesizing that these ratios might provide more repro-
ducible biomarkers than individual measurements alone.

The ratio of every possible lipid to cytokine combination 
was computed for all subjects of the HANDLS subcohort 
(N = 40). The ratios and their significance were generated 
using the corAndPvalue() function from the WGCNA pack-
age (version 1.72-5) in R Studio (version 4.2.1). Further, 
we evaluated which lipid to cytokine ratios uniquely cor-
related to HbA1c and HOMA-IR in each group. We filtered 
for lipid to cytokine ratios that correlated significantly 
(p-value < 0.05) with HbA1C and HOMA-IR in at least one 
racial group. We plotted correlation statistics for these ratios 
for White and African American individuals using ggplot2 
(version 3.5.1).

AllofUs Population Study and Experimental Design

For validation of the main clinical parameters findings in 
the HANDLS subcohort, we used the large, diverse, and 
multi-site AllofUs study (Suppl. Fig S1) [39]. We accessed 
the AllofUs researcher workbench and generated a dataset of 
17,339 participants, African American and White individu-
als with T2D without complications (Registered Tier Data 
v.7). We selected the cohort based on disease status (T2D) 
and self-reported race. All participants that were diagnosed 
with T2D within the AllofUs study were selected if they fell 
within an age range of 30 to 65 years old and BMI range of 
20 to 42, given these are the same ranges for the HANDLS 
cohort. Custom SQL queries were used to extract and export 
data to Rstudio. We computed descriptive statistics for each 
clinical biomarker evaluated (cholesterol, cholesterol/HDL 
ratio, triglycerides, insulin, glucose, and CRP) and presented 

them using the kable package. We adjusted for BMI and 
age while accounting for race by fitting linear models to 
each biomarker. Results were visualized using ggplot2 and 
ggpubr. Data was not adjusted by sex or poverty status.

The institutional review board of the National Institute 
of Environmental Health Sciences and the National Insti-
tutes of Health approved these protocols. The University of 
California Irvine Institutional Review Board exempted this 
study from review.

Results

Clinical Lipids Are Major Drivers of Variability 
in the HANDLS Subcohort

To define the clinical features characteristic of diabetes in 
White and African American participants, we performed 
a univariate comparison of the clinical parameters related 
to diabetes available in the HANDLS subcohort. First, we 
performed a two-way ANOVA to determine whether diabe-
tes status, race, and/or the interaction of both variables can 
modify the clinical parameters in our cohort (Fig. 1A). We 
found that CholHDLRat, VLDL, HbA1C, hs-CRP, insulin, 
and glucose levels were significantly modulated by diabe-
tes status. Insulin was the only parameter that was signifi-
cantly modulated by race in our statistical model (Fig. 1A). 
Though insulin was not significantly different in any indi-
vidual comparisons (Suppl. Fig. S2A), insulin levels were 
significantly different between NoDx-White and Dx-White 
when adjusted for insulin use (Suppl. Fig. S2B). hs-CRP 
was the only parameter that was significantly modulated by 
the interaction of disease and race. Confirming our statisti-
cal model, HbA1C and fasting glucose were significantly 
different between individuals with and without diabetes in 
each racial group (Suppl. Fig. S3).

To determine the sources of variation in the clinical 
parameters evaluated in the HANDLS subcohort, we per-
formed PCA (Fig. 1B, C). By projecting the variables on 
principal component 1 (PC1), we determined that clinical 
lipid measurements like CholHDLRat, HDL, and triglyc-
erides were the top contributors to variability (Fig. 1C). 
HbA1C, fasting glucose, and insulin contributed the least 
to the variability evaluated in our data. Alternatively, CholH-
DLRat, the main driver of variability, was only significantly 
different when compared between individuals with and with-
out diabetes in the White group, even after adjusting for 
statin use (Fig. 1D and Suppl. Fig. S4A). From these data, 
we conclude that variability in diabetes-associated clini-
cal parameters appears primarily driven by select clinical 
lipid measurements, particularly cholesterol-to-HDL ratio 
(CholHDLRat), HDL cholesterol, and triglycerides. Addi-
tionally, the significant CholHDLRat differences observed 
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exclusively in the White group suggest that this variability 
is influenced by both disease status and racial background.

Plasma Lipidomes Characterize Diabetes in White 
but Not in African American Groups in the HANDLS 
Subcohort

Given that lipids are main drivers of variability in the data-
set, we first evaluated the dietary intake of lipids. Only some 
differences in short-chain fatty acids between NoDx-White 
and NoDx-AA were observed when comparing lipid intake 
(Suppl. Table S2). Next, we performed targeted plasma 
lipidomics to identify specific endogenous lipids that could 
be differentially abundant across our comparison groups. 
We performed two-way ANOVA to assess whether disease, 
race, and/or both variables significantly modulated the dif-
ferences in lipid abundance seen in our HANDLS subcohort. 
We found that 38 lipids were significantly modulated in a 
model where disease, race, or both variables were evaluated 

(Suppl. Table S3 and Fig. 1E). The majority of these lipids 
were triglycerides (Fig. 1F). We next performed multivariate 
analysis using K-means and gap statistics on the significantly 
modulated lipids. By comparing cluster centers, a measure-
ment that represents the average expression of all correlated 
lipids in one cluster, we found that all 3 clusters generated 
were significantly different in at least one comparison per-
formed (Fig. 1F). Cluster 1, comprising mainly polyunsatu-
rated long-chain triglycerides (TG) phosphatidylcholine 
(PC), phosphatidylethanolamine (PE), and sphingosine, was 
increased in White individuals over the African American 
group regardless of diabetes status (Fig. 1G). Cluster 2 was 
increased in Dx-AA and Dx-White compared to NoDx-AA 
and NoDx-White, respectively (Fig. 1H). Cluster 3, com-
posed mainly of long-chain diacylglycerides (DG) and very 
long-chain TG, was increased in Dx-White compared to 
Dx-AA (Fig. 1I). We conclude that long and very long-chain 
DGs and TGs are most abundant in and most impacted by 
diabetes status in the White participants.

Classical Measures of Inflammation Characterize 
Diabetes in White but Not in African American 
Groups in HANDLS Subcohort

hs-CRP, the most common clinical inflammatory marker 
[40–42], was not a significant contributor to variability in 
our dataset (Fig. 1Band 1, C). Further, despite hs-CRP being 
significantly modulated in a model in which diabetes sta-
tus and race were interactive variables (Fig. 1A), multiple 
comparison analysis showed that hs-CRP was only elevated 
in diabetes in the White group, even after adjusting for sta-
tin use (Fig. 2A, Supp. Fig. S4B). Therefore, we measured 
other systemic inflammatory biomarkers that could better 
characterize inflammation in this African American cohort.

We performed multiplex cytokine and growth factor 
profiling using the Luminex platform. We probed for 53 
analytes in the plasma. After quality control, we obtained 
concentration values for 47 molecules. Our initial statisti-
cal model assessment and univariate multiple comparisons 
among the 4 groups indicated that two cytokines were signif-
icantly modulated by disease status, IL-12p70 and MCP-1, 
and two other cytokines by race, eotaxin and IL-27 (Fig. 2B, 
C). Notably, all 4 cytokines (eotaxin, IL-27, IL12-p70, and 
MCP-1) were increased in Dx-White when compared to 
Dx-AA (Fig. 2D-–G). Additionally, IL-27 and IL-12p70 
were decreased in Dx-AA when compared to NoDx-AA 
and MCP-1 was increased in Dx-White compared to NoDx-
White (Fig. 2E-–G). Because cytokine production has a 
high probability of covariance, we performed K-means and 
gap statistics that generated 6 clusters. By comparing clus-
ter centers, we determined that cluster 4, which included 
eotaxin, IL-27, and MCP-1, was significantly increased in 
Dx-White compared to all other groups (Fig. 2C, H). We 

Fig. 1   Lipids characterize diabetes in White groups but not in AA 
groups in a diverse HANDLS subcohort. A Table showing clini-
cal parameters that differed statistically based on disease (no diabe-
tes vs diabetes), race (White vs AA), and on the interaction of both 
variables (ns = not significant, * = p-value < 0.05, ** = p-value < 0.01, 
*** = p-value < 0.001, and **** = p-value < 0.0001). B Principal 
Component Analysis (PCA) showing correlations among clinical 
parameters evaluated and Cos2 color gradient indicating the quality 
of representation of clinical parameters of PCA from lowest to high-
est (black to lightest green). C Contribution bar chart displaying the 
order of parameters contributing to variability from highest to lowest 
(highest light green bar to lowest black bar) based on Cos2. D Bar/dot 
graph showing results from multiple statistical comparisons of Cho-
lesterol/HDL ratio (CholHDLRat) among White and AA with and 
without diabetes. E Venn diagram showing 38 lipids that were sig-
nificantly modulated based on disease (no diabetes vs diabetes), race 
(White vs AA), and on both disease and race. F Heatmap showing 
mean z-score value per comparison group from lowest (dark grey) to 
highest (light green) lipid species evaluated univariately and through 
cluster analysis (clusters 1, 2, and 3) generated using K-means and 
gap statistics. “ns” next to TG.50 and TG.48.2 represent non-signif-
icance in post-anova comparisons and red asterisks next to clusters 
represent statistically significant clusters. G Bar/dot graph show-
ing results from post-anova multiple comparisons of lipid cluster 1 
among White and AA with and without diabetes. H Bar/dot graph 
showing results from post-anova multiple comparisons of lipid cluster 
2 among White and AA with and without diabetes. I Bar/dot graph 
showing results from post-hoc multiple comparisons of lipid cluster 3 
among White and AA groups with and without diabetes. X axis rep-
resents cluster center measurements. Blue = People without diabetes. 
Red = people with diabetes. Statistical analysis performed using Two-
way ANOVA with Box Cox transformed values followed by Fisher’s 
LSD post-comparison test (unadjusted p-values). Statistical post-hoc 
comparisons were performed only between matched groups based on 
diabetes status and race, and comparisons between persons with and 
without diabetes were not included in the analysis. p-values obtained 
from multiple post-hoc comparison analysis are represented using a 
statistical letter system, where significantly different p-values are rep-
resented by different letters and non-significant p-values are repre-
sented by the same letters
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conclude that systemic levels of specific cytokines eotaxin, 
IL-27, and MCP-1 could account for differences in diabetes 
inflammatory status among diverse populations.

Due to the lack of a classical diabetes-associated inflam-
matory profile (i.e. IL-6, TNF-α, IL-1b, and hs-CRP) in the 
plasma of the African American cohort (Fig. 2Aand Suppl. 
Fig. S5), we analyzed immune cell populations to determine 
if specific immune cell types could be contributing to this 
difference in cytokine profiles. Using flow cytometry, we 
found that central memory CD4+ T cells, a population of 
immune cells reported to play a modulatory role in diabetes 
[43, 44], were significantly increased only in Dx-White and 
not in Dx-AA (Fig. 2I, Supp. Fig. S6). No other cell popula-
tions in human blood were significantly different. We con-
clude that in our HANDLS subcohort, immune cell popula-
tions reported in the literature to have changes in frequencies 
in diabetes only characterize disease in White and not in the 
African American cohorts.

Elevated Lipids and Classical Inflammatory Markers 
Are Features of Diabetes in the White Group While 
Th17 Inflammatory Features Characterize Diabetes 
in the African American Group in the HANDLS 
Subcohort

Unable to detect markers of inflammation specific to Dx-AA, 
we next used OPLS-DA to identify lipids and inflammatory 

features that characterize diabetes in both White and Afri-
can American cohorts. By performing feature selection with 
OPLS-DA using the set of 38 significantly modulated lipids 
from our lipidomics dataset, we noticed a clear separation on 
latent variable 1 (LV1) driven by lipids that correlated with 
disease status in African American or White groups (though 
the classification error for the cross-validation model was 0.5) 
(Fig. 3A). This separation between classes was even less clear 
when classifying racial groups independently by diabetes sta-
tus (Suppl. Fig S7A and S7B). By comparing Dx-White from 
Dx-AA, we observed that the top 10 lipids that correlated posi-
tively with the presentation of diabetes in White individuals 
were long and very long chain TG in addition to monounsatu-
rated species of phospholipids (Fig. 3B). Despite the classifica-
tion model having high error, the lipid species identified using 
this model were significantly increased in Dx-White in com-
parison to NoDx-White and to Dx-AA (Fig. 3B). Additionally, 
some of the lipids reported to be markers of dyslipidemia, like 
ceramides and sphingosine, correlated positively with diabetes 
in White (both lipids) and African American (ceramides only) 
individuals (Suppl. Fig S7C and S7D). Our findings suggest 
that lipid profiles characterize the presentation of diabetes in 
White individuals, but not in African American individuals in 
this HANDLS subcohort.

Next, we analyzed inflammatory profiles using the same 
methodology. We observed a significant separation between 
Dx-AA and Dx-White (Fig. 3C), different from what was 
observed when selecting inflammatory features within each 
racial group (Suppl. Fig S8A and S8B). MCP-1, eotaxin, and 
IL-27 were important for the classification of diabetes in White 
individuals. Importantly, we saw that TNF-α, IL-6, and IL-1β 
(cytokines known to induce CRP) were also important for 
classifying diabetes in White individuals. In contrast, IL-17A, 
IL-1E, IL-17F, G-CSF, and IFN-γ (Th17-associated cytokines) 
were important contributors to the classification of diabetes in 
African Americans (Fig. 3D).

We also found that features characteristic of diabetes in 
White or African American groups were positively correlated 
to disease when compared with non-disease controls within 
each race (Suppl. Fig S8C and S8D). Taken together, our 
results identified markers of Th17-type inflammation associ-
ated with the presentation of diabetes in African Americans. 
We conclude that plasma cytokines generally reported to char-
acterize diabetes (TNF-α, IL-6 and IL-1β) mainly do so in 
the White subcohort from the HANDLS study, but not in the 
African American subcohort.

Fig. 2   Plasma inflammatory profiles characterize diabetes in White 
but not in AA groups in a diverse HANDLS subcohort. A Bar/dot 
graph showing results from multiple statistical comparisons of high 
sensitivity C-reactive protein (hsCRP) among White and AA with 
and without diabetes. B Table showing cytokines and their respec-
tive clusters that differed statistically based on disease (no diabetes vs 
diabetes), race (White vs AA) or interaction of the variables (ns = not 
significant, * = p-value < 0.05, and **** = p-value < 0.0001). C Heat-
map displaying mean z-score value per comparison group of plasma 
cytokines evaluated and per cytokine cluster (generated by K-means 
and Gap statistics analysis). Asterisks next to cytokines and clusters 
of cytokines represent significantly modulated clusters. D-G Bar/
dot graph showing cytokines D eotaxin, E IL-27, F IL12p-70, and G 
MCP-1 which were statistically different among comparison groups. 
H Bar/dot graph showing results from statistical comparison of 
cytokine cluster 4 among White and AA with and without diabetes. I 
Bar/dot graph showing results from statistical comparison of cellular 
population central memory CD4 + T cells among White and AA with 
and without diabetes. The X axis represents cluster center measure-
ments. Blue = people without diabetes, Red = people with diabetes. 
Statistical analysis performed using two-way ANOVA with Box-Cox 
transformed values followed by Fisher’s LSD post-comparison test 
(unadjusted p-values). Statistical post-ANOVA comparisons were 
performed only between matched groups based on diabetes status and 
race. Comparisons between persons with and without diabetes were 
not included in the analysis. p-values obtained from multiple post-
ANOVA comparison analyses were represented using a statistical let-
ter system, where significantly different p-values are represented by 
different letters and non-significant p-values are represented by the 
same letters
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Relationships Between Lipids and Inflammatory 
Markers Exhibit Inverse Correlations with Clinical 
Measures of Diabetes in White and African American 
Participants Within the HANDLS Subcohort

We next investigated the relationship between lipids and 
inflammatory cytokines with respect to diabetes status. First, 
we calculated all possible permutations of ratios between all 
128 lipids and 47 cytokines measured per subject to generate 
lipid:cytokine ratios. Then, we correlated each ratio with 
HbA1C or HOMA-IR, both significantly different between 
NoDx and Dx in both racial groups (Supp. Figure  2A and 
Suppl. Fig S9). We observed a striking inverse pattern in the 
relationships that correlated to diabetes in the White group 
compared to those in the African American cohort. The 
majority of lipid:cytokine ratios that significantly correlated 
with HbA1C (Fig. 3E) and HOMA-IR (Suppl. Figure 10) in 
White individuals were not significantly correlated in the 
African American group, and vice versa. Only a handful of 
ratios correlated significantly to clinical markers of diabetes 
in both groups; however, such correlations were weak. In the 
White cohort, most of the ratios that correlated positively 
to HbA1C (Fig. 3E) included at least one cytokine (MCP-1 
or eotaxin) that was significantly increased in the White 
cohort in our previous analysis (Fig. 2 and 3). Conversely, 
in the African American group, relationships that included 
either MCP-1 and eotaxin correlated negatively to HOMA-
IR (Suppl. Figure 10). In African Americans, we found that 
the inflammatory markers soluble CD40 ligand (sCD40L) 
and RANTES were present in most of the relationships 

positively correlated to HOMA-IR (Suppl. Figure 10). We 
conclude that lipid:cytokine relationships are inversely cor-
related to clinical markers of diabetes and insulin resistance 
in the White vs African American HANDLS cohort.

Lipid and Inflammatory Features of Diabetes Seen 
in the HANDLS Subcohort Are Validated in a T2D 
Subcohort from the Multi‑site AllofUs Diverse Study

The HANDLS subcohort is limited in size. Therefore, we 
used a second study to validate whether our main findings 
describing dramatic differences in lipids and inflammatory 
markers in the HANDLS subcohort would translate to a 
large well-powered cohort with high variability. Specifically, 
we investigated differences in clinical parameters associated 
with diabetes, dyslipidemia, and inflammation in a T2D 
cohort from the multi-ethnic study AllofUs (N = 17,339).

By evaluating the same clinical measurements that were 
significantly modulated in the HANDLS diabetes subcohort 
in the AllofUs T2D subcohort, we noted similarities and 
differences (Fig. 4). We observed that only HbA1C, but not 
glucose and insulin, were significantly increased in African 
Americans with T2D compared to the White group when 
adjusted for BMI and age (Suppl. Fig. S11). Similar to the 
HANDLS subcohort, CholHDLRat (Fig.  4A) and total 
triglycerides (Fig. 4B) were significantly increased in the 
White population with T2D compared to African Americans 
with T2D. Opposite to the hs-CRP findings in the HANDLS 
subcohort, standard CRP levels were significantly increased 
in AA with T2D compared to White individuals with T2D 
(Fig. 4C). These findings remained even after adjusting for 
BMI and age (Fig. 4D–F). Due to limited available variables 
in the AllofUs dataset, we were unable to adjust for sex and 
poverty status in our analyses. Overall, the AllofUs T2D 
subcohort validated the findings from the HANDLS subco-
hort, confirming that dyslipidemia distinctively characterizes 
diabetes in White vs African American cohorts.

Discussion

Our study demonstrates a disparity in the relationship of 
lipids and inflammatory mediators to indicators of glycemic 
control, potentially providing an explanation for how dia-
betes persists as a health disparity. In the HANDLS cohort, 
we demonstrated that triglycerides and a classic systemic 
inflammatory signature distinctively characterize diabetes in 
the White group but fail to characterize diabetes in African 
Americans. Conversely, diabetes in the African American 
cohort is characterized by a Th17-type inflammation. We 
validated elevated dyslipidemia in diabetes in White vs Afri-
can American HANDLS participants in a large cohort of 

Fig. 3   Lipid and inflammatory features characteristic of diabetes in a 
diverse HANDLS subcohort. A Orthogonal partial least squares dis-
criminant analysis (OPLS-DA) plot of lipid features correlated with 
the presentation of diabetes in White (pink circle) and AA (burgundy 
circle) cohorts. B Bar graph plot displaying scores on LV1 showing 
lipids that distinguish diabetes in the White cohort. The top 10 cor-
related features to diabetes in the White cohort are highlighted in 
pink. C OPLS-DA plot of inflammatory features correlated with the 
presentation of diabetes in White (pink circle) and AA (burgundy cir-
cle) groups. D Bar graph plot displaying scores on LV1 which show 
inflammatory characteristic features of diabetes in White (pink bars) 
and AA (burgundy bars) groups. The top 10 correlated features to 
diabetes in White and AA groups are highlighted in pink and bur-
gundy, respectively. X-axis represents scores on latent variable (LV) 
1. Y-axis represents scores on LV2 not used for analysis. E Volcano 
plots showing all permuted lipid:cytokine correlations with HbA1C 
in White and AA. Briefly, all possible ratios were calculated for each 
lipid:cytokine, correlated to HbA1C, and subset for all correlations 
that were significant in each racial group only or in both. Correlations 
uniquely significant in White are colored in blue and correlations 
uniquely significant in AA are colored in yellow. Significant corre-
lations in both groups are represented by red triangles. X-axis indi-
cates the Pearson correlation coefficient. Y-axis indicates the −log10 
of p-values for the lipid/cytokine ratio correlated to HbA1C. The 
dotted red line represents the threshold of significance values, above 
p-value < 0.05 and below p-value > 0.05
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Fig. 4   Clinical lipid and inflammatory parameters in AllofUs T2D 
subcohort confirm differential features seen in HANDLS diabetes 
subcohort. Clinical parameters that were differentially associated in 
White and AA groups from HANDLS subcohort were assessed using 
the multi-study AllofUs. Differences between the means of White and 
AA are plotted for CholHDLRat (A), triglycerides (C), and CRP (rep-
resented by logarithmic values due to exponential distribution) (E). 
A linear regression model was performed in the AllofUs T2D sub-
cohort adjusting for variables body mass index (BMI) and age, bio-

logical variables used to match comparison groups in HANDLS dia-
betes subcohort. Adjusted differences between the means of Whites 
and AA are shown for CholHDLRat (B), triglycerides (D), and CRP 
(represented by logarithmic values due to exponential distribution) 
(F). The X axis represents race and the Y axis represents the clinical 
parameters evaluated. The White population is color represented in 
teal and the AA population is color represented in mustard. Statistical 
test used for comparison was Student T-test
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White and African American people with T2D through the 
AllofUs study.

Our results are consistent with the report indicating that 
minority groups, except for African Americans, are gener-
ally more likely to have high TGs and low HDL levels com-
pared to White groups [45]. Results from our lipidomics 
analysis revealed that a variety of TGs were significantly 
increased in diabetes in our White cohort compared to the 
African American cohort which recapitulates previous con-
clusions from cohorts of European ancestry [46]. In con-
cordance with our findings, studies in African Americans 
continuously report healthier lipid profiles [26, 45, 47, 48]. 
These findings support that plasma and clinical lipids are not 
uniformly related to diabetes risk and disease presentation, 
thereby contributing to the health disparity in disease burden 
in African Americans. Further, our data may explain why 
a racial disparity in the efficacy of lipid-lowering drugs to 
improve HbA1c persists [49], despite lipid-lowering drugs 
being equally, if not more, effective for cardiovascular risk 
in AA populations compared to White populations [50]. 
This suggests that the underlying metabolic pathways link-
ing lipids to glycemic control differ between racial groups 
in this study through unknown mechanisms.

Our findings suggest that the classical marker of inflam-
mation CRP mainly discriminates diabetes from non-dia-
betes cases in the White HANDLS cohort, but not in the 
African American group. Our findings in the White cohort 
are consistent with increased levels of CRP, IL-6, and 
TNF-α observed in T2D in several studies. In this study, 
Th17 cytokines were associated with diabetes in African 
Americans, consistent with studies demonstrating the impor-
tance of Th17 inflammation in T2D [24, 25, 50]. Our con-
clusions suggest that specific immune features reported in 
literature as relevant for diabetes could be impacted by the 
lack of diversity of the cohorts studied, hence contributing 
to the lack of efficacy in discovering and targeting immune 
pathways in T2D. The biological basis for these distinct 
inflammatory patterns may reflect fundamental differences 
in immune system activation between populations. Several 
studies support the Th17 mechanism we observed in Afri-
can Americans, including the reported relationship of T2D-
associated inflammation with Th17 cell cytokines [24, 25, 
47] and the discovery that reduced IL-17 is associated with 
improved glucose management [50]. The Th17-type signa-
ture in AA was accompanied by higher levels of IL-33, and 
a role for IL-33 in modulating the balance between Th1/
Th17 cells in autoimmune disorders has been postulated 
[51]. This suggests that diabetes-associated inflammation in 
African Americans may involve non-classical autoimmune-
like mechanisms distinct from the metabolic inflammation 
typically described in predominantly White cohorts.

In this study, we observed race-dependent correlations of 
lipid-inflammatory marker ratios to HbA1c and HOMA-IR 

using an exploratory approach which strengthens discovery 
of novel biomarker relationships. Specifically, we uncovered 
broad correlations of lipids to RANTES and CD40L ratios 
in the AA cohort. Though its role and mechanisms remain 
under debate, the chemokine RANTES, also called CCL5, 
is associated with T2D, glucose intolerance, and obesity 
[52–54]. In a loss-of-function murine study, it was found 
that genetic deficiency of CD40L attenuated the develop-
ment of diet-induced obesity, hepatic steatosis, and increased 
systemic insulin sensitivity [55]. Our findings correlating 
CD40L and RANTES to several types of lipids like PC, PE, 
cholesterol ester (CE), sphingomyelins (SM), and ceramides 
in Dx-AA could suggest the existence of an unexplored 
interplay among endogenous lipids, inflammation, diabe-
tes, and insulin sensitivity. These data implicate differing 
mechanisms underlying insulin resistance, and these novel 
relationships require future validation studies.

When comparing clinical inflammatory markers, we 
found that hs-CRP findings from the HANDLS diabetes 
subcohort were not replicated when evaluating CRP values 
in the AllofUs T2D subcohort. This discrepancy may be 
attributed to technical differences between the two dispa-
rate assay methods in these studies. Although both hs-CRP 
and CRP measure the same molecule (C-reactive protein), 
the assays differ significantly in their detection ranges and 
lower limits of detection [56]. The lack of reproducibility 
between hs-CRP from the HANDLS subcohort and CRP 
values from the AllofUs subcohort could be due to techni-
cal variability when comparing measurements with differ-
ent dynamic ranges: CRP values typically range from 10 to 
1000 mg/L, while hs-CRP values range from 0.1 to 10 mg/L. 
However, a direct comparison using identical assay methods 
was not possible due to the unavailability of hs-CRP data 
in the AllofUs cohort, which limited our analysis to CRP 
measurements only.

Other factors could also account for the difference seen 
in CRP. Like mentioned above, in the AllofUs subcohort, 
data was not adjusted for sex and poverty status. It is known 
that the biological variable sex could have a potential impact 
on differences seen in diabetes presentation [57]. Likewise, 
literature directly implicates lower socioeconomic status in 
increased systemic inflammation and in increased risk of 
diabetes in AA [58–64], providing a mechanistic pathway 
through which social determinants of health could influence 
biological markers of disease [61, 64, 65]. Our data reaffirms 
the importance of including more sociobiological measure-
ments in studies evaluating health and disease in diverse 
populations.

Comparing the clinical markers glucose, insulin, and CRP 
among our HANDLS subcohort, the AllofUs cohort (filtered 
by the range of HANDLS age and BMI, and self-reported 
race and diabetes status), and published literature gives con-
text to our data. Among participants with diabetes, glucose 
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levels were comparable between cohorts, with AAs showing 
mean values of 158.6 mg/dL (HANDLS) versus ~165 mg/
dL (AllofUs), and White participants showing 159.7 mg/
dL (HANDLS) compared to ~155 mg/dL (AllofUs). How-
ever, insulin levels differed substantially, with AllofUs par-
ticipants demonstrating higher mean insulin concentrations 
(AA with diabetes, 20.6 μU/mL in HANDLS compared to 
~35 μU/mL in AllofUs and White with diabetes, 14.4 μU/
mL compared to ~25 μU/mL in AllofUs). For CRP, AAs 
with diabetes had comparable levels (3.06 mg/L in HAN-
DLS compared to ~3.16 mg/L in AllofUs). As noted, CRP 
levels also varied between cohorts in the White population. 
White participants with diabetes demonstrated notably 
higher CRP in HANDLS (14.24 mg/L) compared to AllofUs 
(~1.58 mg/L). Among non-diabetic participants, both glu-
cose and insulin levels were similar between cohorts. These 
findings align with established literature from large-scale 
diabetes studies. The Diabetes Prevention Program (DPP) 
reported baseline glucose levels of approximately 106 mg/
dL and insulin levels of  ~15 μU/mL among participants 
with impaired glucose tolerance [66], which are intermedi-
ate between our diabetic and non-diabetic groups. Similarly, 
the Multi-Ethnic Study of Atherosclerosis (MESA) found 
mean CRP levels of 3.1 mg/L among African Americans and 
2.1 mg/L among White participants [67], consistent with our 
observed trend in increased CRP at baseline in AA popula-
tions and consistent with other literature [68]. The Jackson 
Heart Study, focusing on African Americans, reported mean 
glucose levels of 108 mg/dL and CRP levels of 4.2 mg/L 
[69], which approximates the average of the HANDLS dia-
betic and non-diabetic AA CRP values. The observed racial 
differences in insulin sensitivity and inflammatory markers 
are consistent with previous multi-ethnic studies, including 
the Insulin Resistance Atherosclerosis Study (IRAS), which 
demonstrated higher insulin levels and greater insulin resist-
ance among African Americans compared to Whites across 
diabetes status categories [70]. These comparisons suggest 
that both our HANDLS and AllofUs cohorts exhibit clinical 
marker patterns consistent with established population-based 
studies, providing confidence in the generalizability of our 
core findings.

Our study includes several limitations. In the HANDLS 
subcohort, the limited sample size (N = 40), the absence 
of clinical information to accurately characterize T2D sta-
tus (i.e.duration of condition and other blood parameters, 
etc.), the absence of information regarding anti-diabetic 
medications (i.e.treatment, time of treatment, etc.), and the 
absence of control for other relevant nutritional variables 
that can affect lipid and inflammatory profiles (i.e.food 
security, nutrition absorption, etc.). In the AllOfUs study, 
we were limited by the inability to use the same variables 
as HANDLS to match comparison groups, especially 

hs-CRP and poverty status. For the measurement of gly-
cemic markers, we were limited to HbA1C and HOMA-
IR. Though useful clinically, they are inherently limited 
because they are proxy measurements as opposed to oral 
glucose tolerance tests and an insulin sensitivity index,  
which are direct indicators.

In summary, we show that presentation of diabetes is 
metabolically and immunologically heterogeneous across 
populations and raise fundamental questions regard-
ing how diabetes is managed in the clinic based on TG 
levels and CRP status. These mechanistic insights sug-
gest that future research addressing the efficacy of Th17 
anti-inflammatory therapy, especially in patients who do 
not achieve glycemic control targets through traditional 
approaches, is warranted. Finally, our study highlights the 
need for large-scale diabetes trials to be diverse to cap-
ture the full spectrum of disease presentation and inter-
vention outcomes, thus paving the way for mechanistic 
understanding and individualized approaches to diabetes 
management.
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Supplemental Figure S1. Study experimental design using the diverse HANDLS and AllOfUs studies.  A) 
HANDLS subcohort schematic showing equal distribution of participants by race and sex. Participants were also 
equally divided by diabetes status. Techniques employed for the generation of datasets are shown in B, C, and D. 
Assessment of dietary intake data and immune phenotyping was also performed but measurements were not 
statistically significant. B) Clinical parameters measured in serum consisted of glucose measurements (HbA1C 
and glucose), lipids measurements (cholesterol, triglycerides, HDL, LDL, and VLDL), and inflammation 
measurements (C-reactive protein). C) Plasma lipidomes profiles were generated using targeted lipidomics. D) 
Plasma cytokines profiles were generated using multiplex Luminex platform. All independent analysis consisted of 
statistical and bioinformatic assessment and visualization tools. E) Integrative analysis of HANDLS subcohort 
datasets generated was performed. Lastly, F) a group of individuals from the AllOfUs study were subset to create a 
Type 2 Diabetes cohort including African American and White groups. Due to availability of comparable clinical 
data, variables triglycerides, HbA1C, CRP, insulin and glucose were evaluated. 
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Supplemental Figure S2. Statistical post-ANOVA comparison of insulin. Bar/dot graph showing results from 
multiple statistical comparisons of insulin levels among Whites and AA without and with diabetes. Insulin levels for 
all participants (A) and adjusted for participants who were not prescribed insulin (B) are shown . Blue = People 
without diabetes, red = people with diabetes. Statistical analysis performed using Two-way ANOVA with followed by 
Fisher’s LSD post-comparison test (unadjusted p-values). Statistical post-ANOVA comparisons were performed 
only between matching groups based on diabetes status and race and comparisons between groups with and 
without diabetes were excluded from the analysis. P-values obtained from analysis were represented using a 
statistical letter system, where significantly different p-values are represented by different letters and non-
significant p-values are represented by same letters. 
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Supplemental Figure S3. Statistical post-ANOVA comparison of HbA1C and Glucose.  Bar/dot graph showing results 
from multiple post-anova comparison of (A) HbA1C and (B) fasting glucose among white and AA with and without 
diabetes. Statistical analysis performed using Two-way ANOVA with followed by Fisher’s LSD post-comparison test 
(unadjusted p-values). Statistical post-ANOVA comparisons were performed only between matching groups based 
on diabetes status and race and comparisons between groups with and without diabetes were excluded from the 
analysis. P-values obtained from analysis were represented using a statistical letter system, where significantly 
different p-values are represented by different letters and non-significant p-values are represented by same letters. 
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Supplemental Figure S4. Statistical post-ANOVA comparison of Cholesterol/HDL ratio (CholHDLRat) and 
high sensitivity C-reactive protein (hsCRP) adjusting for statins (lipid lowering drug) use. Bar/dot graph 
showing results from multiple statistical comparison of CholHDLRat (A) and hsCRP (B) among Whites and AA 
without and with diabetes. Blue = People without diabetes, red = people with diabetes. Statistical analysis 
performed using Two-way ANOVA with followed by Fisher’s LSD post-comparison test (unadjusted p-values). 
Statistical post-ANOVA comparisons were performed only between matching groups based on diabetes status and 
race and comparisons between groups with and without diabetes were excluded from the analysis. P-values 
obtained from analysis were represented using a statistical letter system, where significantly different p-values are 
represented by different letters and non-significant p-values are represented by same letters. 
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Supplemental Figure S5. Statistical post-ANOVA comparison of classical inflammatory markers IL-6, TNF-a, 
and IL-1b in HANDLS subcohort. Bar/dot graph showing results from post-ANOVA multiple statistical 
comparisons among Whites and AA without and with diabetes for IL-6 (left), TNF-a (middle), and IL-1b (right). Blue = 
People without diabetes, red = people with diabetes. Statistical analysis was performed using Two-way ANOVA 
with followed by Fisher’s LSD post-comparison test (unadjusted p-values). Statistical post-ANOVA comparisons 
were performed only between matching groups based on diabetes status and race and comparisons between 
groups with and without diabetes were excluded from the analysis. P-values obtained from analysis were 
represented using a statistical letter system, where significantly different p-values are represented by different 
letters, and non-significant p-values are represented by the same letters. 
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Supplemental Figure S6. Gating strategy for CD4+ Central Memory T cells. 
A) First, cells were gated by time of sample acquisition followed by doublet discrimination using FCS-H and FSC-A. 
Next live cells were gated based on viability dye. Then for size and granularity for lymphocytes and myeloid cells 
based on SSC-A and FSC-A. After that CD3+ T cells were gated based on CD3 and CD19 antibodies. From CD3+ T 
cells, CD4+ T cells were gated based on antibodies CD4 and CD8. Next, CD4+CD45RO+ T cells were gated based 
on CD45RO and CD45RA antibodies. B) Lastly, CD4+ Central memory T cells were gated based on markers CCR7 
and CD62L. C) Stain controls were included in the experiment to verify positive populations. Percentages on plot 
represent frequencies based on parent population. 
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Supplemental Figure S7.  Lipid features characteristics of White and AA with diabetes in a diverse HANDLS subcohort. 
Orthogonal partial least squares discriminant analysis (OPLS-DA) plot of lipids features correlated with presentation of diabetes in 
White (A) and AA (C). Blue dots refer to group without diabetes and red dots refer to group with diabetes. X-axis represents scores 
on latent variable (LV) 1 and Y-axis represent scores on LV2 not used for analysis. Bar graph plot displaying scores on LV1 showing 
lipids that distinguish diabetes in White (B) and AA (D). Top 10 features that correlated positively (red) and negatively (blue) to 
diabetes in White and AA are colored in the charts. 
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Supplemental Figure S8. Inflammatory features characteristics of White and AA with diabetes in a diverse HANDLS subcohort. 
Orthogonal partial least squares discriminant analysis (OPLS-DA) plot of lipids features correlated with presentation of diabetes in White (A) and 
AA (C). Blue dots refer to participants without diabetes and red dots refer to participants with diabetes. X-axis represents scores on latent variable 
(LV) 1 and Y-axis represents scores on LV2 not used for analysis. Bar graph plot displaying scores on LV1 showing lipids that distinguish diabetes in 
white (B) and AA (D). Top 10 features that correlated positively (red) and negatively (blue) to diabetes in white and AA are colored in the charts. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplemental Figure S9. Statistical post-ANOVA comparison of homeostasis model assessment for insulin 
resistance (HOMA-IR). Bar/dot graph showing results from multiple statistical comparisons of HOMA-IR values 
among Whites and AA without and with diabetes. Blue = People without diabetes, red = people with diabetes. 
Statistical analysis performed using Two-way A NOVA with followed by Fisher’s LSD post-comparison test 
(unadjusted p-values). Statistical post-ANOVA comparisons were performed only between matching groups based 
on diabetes status and race and comparisons between groups with and without diabetes were excluded from the 
analysis. P-values obtained from analysis were represented using a statistical letter system, where significantly 
different p-values are represented by different letters and non-significant p-values are represented by same letters. 
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Pearson correlation coefficient of Lipids:Cytokines relations ratios with HOMA-IR 

Lipids:Cytokines Ratio Correlations with HOMA-IR 

Whites African Americans 

Supplemental Figure S10. Modulatory relationships of lipids and inflammatory markers in White and AA groups 
correlate inversely to HOMA-IR. Volcano plots showing all permutated lipid:cytokine correlations with HOMA-
IR in White and AA. Briefly, all possible ratios were calculated for each lipid:cytokine, correlated to HOMA-IR, 
and subset for all correlations that were significant in each racial group only or in both. Correlations uniquely 
significant in white are colored in blue and correlations uniquely significant in AA are colored in yellow . 
Significant correlations in both groups are represented by red triangles. X axis indicates the pearson 
correlation coefficient. Y axis indicates the –log10 of p-values for the lipid/cytokine ratio correlated to HOMA-
IR. The dotted red line represents threshold of significance values, above p-value<0.05 and below p-
value>0.05. 
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Supplemental Figure S11. Clinical lipid and inflammatory parameters in AllofUs T2D subcohort confirm differential features 
seen in HANDLS diabetes subcohort. Clinical parameters that were differentially associated to diabetes in socially diverse 
populations from HANDLS subcohort were assessed using the multi-study AllofUs. Differences between the means of white and 
AA are plotted for HbA1C (A), glucose (C), and insulin (E). A linear regression model was performed in the AllofUs T2D subcohort 
adjusting for variables body mass index (BMI) and age, biological variables used to match comparison groups in HANDLS diabetes 
subcohort. Adjusted differences between the means of whites and AA are shown for HbA1C (B), glucose (D), and insulin (F). X axis 
represent race of group and Y axis represents clinical parameters evaluated. White population are colored represented in teal and 
AA population are colored represented in mustard. Statistical test used for comparison was student T-test. 



SUPPLEMENTARY TABLES: 
 
Supplementary Table S1. Flow cytometry panel used to phenotype cellular populations in 
PBMCs. 

Marker Fluorophore Clone Purpose Supplier Cat. # Dilution 
CCR7/ 
CD197 PE/Fire 810  

G043H7 Memory T cells Biolegend  
353269 200 

CD11c Pacific Blue 3.9 Dendritic cells Biolegend 301626 100 

CD14 PE/Cyanine7 63D3 Monocytes Biolegend  
367112 100 

CD16 BUV 805 3G8 NKC & monocyte BD 
Biosciences 748850 400 

CD19 AF647  
HIB19 B cells Biolegend 302220 400 

CD25 APC-R700 2A3 Regulatory T 
cells 

BD 
Biosciences 565106 200 

CD3 PerCP  
OKT3 T cells Biolegend 317338 200 

CD4 Spark YG 593  
SK3 helper T cells Biolegend 344672 100 

CD45 BV 510 2D1 Pan leukocytes Biolegend 368526 400 

CD45RA BV 785  
HI100 Naive T cells Biolegend 304140 400 

CD56 BUV496 NCAM16.2 NK cells BD 
Biosciences 750479 50 

CD69 BUV 563 FN50 T cell activation BD 
Biosciences 748764 100 

CD8 Spark Blue 550  
SK1 Cytotoxic T cells Biolegend 344760 200 

FOXP3 PE-Cy5.5 PCH101 Treg ThermoFish
er Scientific 

35-4776-
42 50 

HLA-DR BV711  
L243 

Antigen 
presenting cells Biolegend 307644 100 

PD1 Super Bright 
645 MIH4 T cell activation ThermoFish

er Scientific 
64-9969-

42 100 

TIGIT BUV615 741182 T cell exhaustion BD 
Biosciences 752314 100 

IgM BUV395 G20-127 B cell BD 
Biosciences 563903 400 

IgD BUV661 IA6-2 Mature B cells BD 
Biosciences 741637 400 

CD45RO BUV737 UCHL1 Memory T cells BD 
Biosciences 748368 100 

CD62L APC-Fire 810 DREG-56 T cell subsets Biolegend 304866 400 

CD44 Nova Fluor Blue 
610/70S IM7 T cells ThermoFish

er Scientific 
M010T02

B06 100 

Live/Dead Zombie NIR --- Cell viability Biolegend 423106 3200 

Fc Receptor  Human TruStain 
FcX ---  

Block human FC 
receptors to 
prevent false 

positives or false 
negatives 

Biolegend 422302 50 

Supplementary Table S2. List of dietary intake lipids and statistical differences (p-values) 
Using Two-way ANOVA and post-ANOVA tests comparing all four groups in the HANDLS 
subcohort (N=40) 
Table legend: A subcohort of 40 individuals from the HANDLS study were divided into 4 
comparison groups based on disease status and race: White without diabetes (NoDx-White), 



White with diabetes (Dx-White), African Americans without diabetes (NoDx-AA), and African 
Americans with diabetes (Dx-AA). Values were transformed using Box-Cox transformation and 
comparisons were made using the two-way Anova test with post-anova comparisons using the 
Fisher LSD’s test. P-values are displayed as decimal numbers. 
 
Dietary Intake 
type of Food 

ANOVA 
Overall 
 

Race 
 

Diabetes 
 

 

 

Interaction 
of race x 
diabetes 

 

 

NoDx-
White  

vs  
Dx-

White 

NoDx-AA  
vs  

Dx-AA 

Dx-
White  

vs  
Dx-AA 

NoDx-
White  

vs 
 NoDx-AA 

Ifa4 0.4839 0.3267 0.2271 0.9484 0.4160 0.3663 0.5154 0.4586 

Ifa6 0.3427 0.2655 0.1794 0.5927 0.5611 0.1855 0.6783 0.2452 

Ifa8 0.5159 0.3589 0.2359 0.9343 0.3683 0.4326 0.4787 0.5532 

Ifa10 0.6516 0.5139 0.2897 0.8088 0.3574 0.5605 0.5272 0.7706 

Ifa12 0.6113 0.3092 0.5564 0.5206 0.3854 0.9692 0.2425 0.7882 

Ifa14 * 0.0256 0.0072 0.2884 0.2887 0.9996 0.1364 0.2175 0.0086 

Ifa16 0.4393 0.6300 0.1855 0.4045 0.7224 0.1296 0.8018 0.3534 

Ifa16_1 0.4580 0.9928 0.5767 0.1350 0.4991 0.1477 0.2896 0.2840 

Ifa18 0.3228 0.4286 0.1309 0.4526 0.5816 0.1118 0.9769 0.2773 

Ifa18_1 0.6823 0.8135 0.3078 0.5396 0.7707 0.2499 0.5483 0.7888 

Ifa18_2 0.7162 0.7022 0.5078 0.3874 0.8850 0.2823 0.3787 0.7313 

Ifa18_3 0.7610 0.7125 0.4071 0.5705 0.8517 0.3249 0.8877 0.5087 

Ifa18_4 0.6983 0.8370 0.2598 0.7708 0.3159 0.5510 0.7253 0.9516 

Ifa20_1 0.4208 0.4525 0.2745 0.3055 0.9607 0.1373 0.2115 0.8442 

Ifa20_4 0.0946 0.7932 0.2647 0.0244 0.3951 0.0187 0.0728 0.1489 

Ifa20_5n3 0.6478 0.3145 0.6068 0.55444 0.4352 0.9565 0.2604 0.7664 

Ifa22_1 0.2885 0.6881 0.4275 0.0868 0.5024 0.0783 0.3441 0.1345 

Ifa22_5n3 0.1117 0.0188 0.5527 0.8809 0.5990 0.7530 0.0731 0.1112 

Ifa22_6n3 0.5814 0.2157 0.5645 0.8135 0.5660 0.8093 0.2965 0.4743 

MonoFat 0.6792 0.8269 0.3225 0.4974 0.8236 0.2403 0.5259 0.7441 

PolyFat 0.6928 0.7249 0.4988 0.3569 0.8606 0.2606 0.3685 0.6849 

Saturated Fat 0.3251 0.2889 0.2182 0.3604 0.8186 0.1320 0.9161 0.1653 

Fat 0.5599 0.4762 0.6840 0.1554 0.9196 0.1605 0.5873 0.4383 

Carbohydrates 0.4358 0.4762 0.6840 0.1554 0.4666 0.1964 0.6084 0.1335 

Total sugar 0.4229 0.3679 0.5996 0.1926 0.1973 0.5760 0.7703 0.1220 

Protein 0.1265 0.5151 0.8180 0.0233 0.1394 0.0741 0.2340 0.0392 

Energy 0.4654 0.5553 0.5393 0.1797 0.5998 0.1683 0.5880 0.1735 

Dash 
Saturated Fat 

0.5206 0.5399 0.2238 0.5399 0.1976 0.6643 0.3873 >0.9999 

Dash Total Fat 0.8178 0.3922 0.7271 0.8130 0.6790 0.9365 0.6598 0.4399 



 
 
Supplementary Table S3. List of 128 lipids evaluated using targeted lipidomics in 
HANDLS subcohort. 
Table legend: A subcohort of 40 individuals from the HANDLS study were divided into 4 
comparison groups based on disease status and race: White without diabetes (NoDx-White), 
White with diabetes (Dx-White), African Americans without diabetes (NoDx-AA), and African 
Americans with diabetes (Dx-AA). 

Class of lipid Lipid Species 
 

Cholesterol Ester 

 
1. CE.16.1 
2. CE.16.2 
3. CE.18.0 
4. CE.18.1 
5. CE.20.0 

 

 
6. CE.20.1 
7. CE.20.5 
8. CE.22.0 
9. CE.22.5 
10. CE.24.0 

 

Cearamides 

 
1. Cearamide.d18:1/14:0 
2. Cearamide.d18:1/16:1 
3. Cearamide.d18:1/18:0 
4. Cearamide.d18:1/18:1 
5. Cearamide.d18:1/18:3 
6. Cearamide.d18:1/20:0 

 

 
7. Cearamide.d18:1/22:0 
8. Cearamide.d18:1/22:1 
9. Cearamide.d18:1/24:0 
10. Cearamide.d18:1/24:1 
11. Cearamide.d18:1/26:1 
12. Cearamide.d18:1/28:3 

 

Diacylglycerides 

 
1. DG.28:0 
2. DG.30:0 
3. DG.30:1 
4. DG.32:0 
5. DG.32:1 
6. DG.32:2 
7. DG.34:0 
8. DG.34:1 

 

 
9. DG.34:2 
10. DG.34:3 
11. DG.38:0 
12. DG.40:0 
13. DG.46:4 
14. DG.48:10 
15. DG.48:11 
16. DG.48:12 

 

Glucosyl / Galactosyl Cearamide 

 
1. Glucosyl/Galactosyl 

Cearamide.d18:1/22:1 

 
2. Glucosyl/Galactosyl 

Cearamide.d18:1/22:5 
 

 

Lyso - phosphatidilethanolamine 

 
1. LPE.16:0 

 

 

 

Monoglycerides 

 
1. MG.18:1 

 

 
2. MG.20:5 

 

Phosphatidylcholine 

 
1. PC.32:0 
2. PC.34:0 

 

 
3. PC.34:1 
4. PC.38:4 

  
1. PE.34:1 
2. PE.36:1 

 
5. PE.O-36:2 
6. PE.O-36:3 



 

Phosphatidylethanolamine 3. PE.38:4 
4. PE.44:11 

 

7. PE.O-36:5 
8. PE.O-38:5 
9. PE.O-38:6 

 

 

Phosphatidylserine 

 
1. PS.34:0 
2. PS.36:1 

 

 
3. PS.42:6 

 

Sphingomyelin 

 
1. SM .d18:1/24:0 
2. SM .d18:1/26:0 
3. SM .d18:1/28:0 
4. SM.d18:1/22:0 
5. SM.d18:1/22:1 
6. SM.d18:1/24:1 

 

 
7. SM.d18:1/24:2 
8. SM.d18:1/26:1 
9. SM.d18:1/26:2 
10. SM.d18:1/28:1 
11. SM.d18:1/28:2 

 

Sphingosine 

 
1. Sphingosine.24:0. / 

sphinganine.24:1 
 

 
2. Sphingosine.24:1 

 

Triglycerides 

 

 
1. TG.42:0 
2. TG.42:1 
3. TG.42:2 
4. TG.42:3 
5. TG.44:0 
6. TG.44:1 
7. TG.44:2 
8. TG.44:3 
9. TG.46:0 
10. TG.46:1 
11. TG.46:2 
12. TG.46:3 
13. TG.48:0 
14. TG.48:1 
15. TG.48:2 
16. TG.48:3 
17. TG.48:4 
18. TG.48:6 
19. TG.50:0 
20. TG.50:1 
21. TG.50:2 
22. TG.50:3 
23. TG.50:4 
24. TG.50:5 
25. TG.50:6 
26. TG.50:7 
27. TG.52:1 
28. TG.52:2 

 

 
29. TG.52:3 
30. TG.52:4 
31. TG.52:5 
32. TG.54:1 
33. TG.54:2 
34. TG.54:3 
35. TG.54:4 
36. TG.54:5 
37. TG.54:6 
38. TG.54:7 
39. TG.54:8 
40. TG.56:1 
41. TG.56:2 
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