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ABSTRACT
Telomere length and DNA methylation (DNAm) clocks serve as markers of biological aging and have been linked to mortality 
risk. This study applies additive Bayesian networks (ABNs) to examine associations between DNAm clocks, telomere length, and 
mortality, with a focus on racial and sex differences in aging. Data from three US cohorts—NHANES (n = 2522), HRS (n = 1029), 
and HANDLS (n = 92–470)—were analyzed using correlation matrices, Cox models, ABNs, and generalized structural equation 
models (GSEM) with mortality from the National Death Index. Epigenetic clocks, particularly GrimAgeEAA, HannumAgeEAA, 
and DunedinPoAM (or DunedinPACE), were stronger mortality predictors than telomere length. ABNs highlighted key relation-
ships, consistently linking age and GrimAgeEAA to mortality in NHANES and HRS. GSEM models derived from ABNs indicated 
an inverse association between female sex and GrimAgeEAA in NHANES (β = −0.500) and HRS (β = −0.563), suggesting slower 
biological aging in women, although GrimAge clock incorporates sex in its definition. GrimAgeEAA strongly predicted mortality 
(LnHR, β ± SE of +0.476 ± 0.0393 in NHANES and +0.511 ± 0.0775 in HRS). Non- Hispanic Black adults exhibited accelerated 
aging via DunedinPoAM, partially mediating their higher mortality risk. Hispanic adults in NHANES had unique associations 
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with PhenoAgeEAA (β = +0.197), a mortality predictor. DNAm clocks, particularly GrimAgeEAA, outperform telomere length in 
predicting mortality. Second- generation epigenetic aging markers offer insights into demographic disparities in aging and mortal-
ity, with ABNs revealing complex interrelations among aging biomarkers, sex, race, and mortality risk.

1   |   Introduction

The average life expectancy in the United States crossed 75 years 
within the past decade where women continue to outlive men 
by an average of 5 years (Medina et  al.  2020) and widening 
gaps uncovered in recent years (Yan et al. 2024), coupled with 
narrowing expectations based on future projections (Medina 
et  al.  2020). Although longer life expectancies are expected 
(Medina et al. 2020), racial/ethnic differences remain substan-
tial (Beydoun et al. 2016; Luo et al. 2022), differences often me-
diated by social determinants of health which yield phenotypes 
of accelerated biological aging (Silva et al. 2023).

The investigation of biological aging and its effects on mortality 
has resulted in the usage of biomarkers, such as epigenetic clocks 
and telomere length. Epigenetic clocks, based on DNA methylation 
(DNAm) data, offer assessments of biological age that frequently 
correspond more effectively with health outcomes than chrono-
logical age (Horvath 2013). These clocks rely on the finding that 
site- specific DNAm changes systematically with age. Along with 
deviations from the predicted age (i.e., epigenetic age acceleration 
(EAA)), many of them were associated with age- related disorders, 
morbidity, and mortality (Levine et al. 2018). Telomere length, a 
recognized indicator of aging, reflects the gradual reduction of 
protective chromosomal caps that result from each cell division 
(Blackburn et al. 2015). Telomere attrition is linked to cellular se-
nescence and oxidative stress, both indicative of increased mortal-
ity risk (Blackburn et al. 2015).

Although both epigenetic clocks and telomere length are essen-
tial markers of biological aging, their associations with each other 
and with mortality risk are understudied. Differential factors 
such as ancestry, socioeconomic level, and exposure to stressors, 
including environmental pollution or psychosocial distress, can 
affect these biomarkers and their predictive value for mortality 
(Fiorito et al. 2017; Needham et al. 2013). Understanding these 
associations is crucial for recognizing population- specific aging 
patterns and risk factors for early mortality.

To address this complexity, we apply additive Bayesian networks 
(ABNs)—a class of probabilistic graphical models that encode 
conditional dependencies among variables using directed acyclic 
graphs (DAGs). ABNs are well suited for exploring multifactorial 
relationships involving aging, as they integrate prior knowledge 
with empirical data to uncover network structures reflective of 
underlying biological and social processes (Delucchi et al. 2022; 
Kratzer et al. 2023; Scutari and Denis 2021). Their key assumptions 
include causal sufficiency, acyclicity, and local independence, per-
mitting a semi- data- driven approach to identify potential causal 
pathways and mediators (Delucchi et al. 2022; Kratzer et al. 2023; 
Scutari and Denis 2021). This approach is especially relevant when 
modeling high- dimensional and interrelated data, where conven-
tional regression techniques may falter due to multicollinear-
ity, overfitting, or limited interpretability (Delucchi et  al.  2022; 

Kratzer et al. 2023; Scutari and Denis 2021). In fact, ABNs are es-
pecially effective for examining relationships between aging bio-
markers and mortality, as it accommodates the hierarchical and 
interdependent characteristics of biological processes while con-
sidering confounding factors and mediating variables, allowing 
for flexibility in modeling through the leveraging of subject matter 
knowledge (Delucchi et al. 2022; Kratzer et al. 2023; Scutari and 
Denis 2021). In contrast to generalized structural equation models 
(GSEMs), however, subject matter knowledge in ABNs does not 
have to be absolute. ABNs allow the data to speak for themselves 
to a large extent, aside from user- specified constraints such as the 
hierarchical ordering of variables and the maximum number of 
parent nodes (i.e., predictors) per variable (Delucchi et  al.  2022; 
Kratzer et al. 2023; Scutari and Denis 2021).

This study examines the correlations among epigenetic clocks, 
telomere length, and mortality across population subgroups in 
the US utilizing ABNs. Utilizing this sophisticated statistical 
framework, we sought to clarify the connections between bio-
logical aging indicators and mortality, as well as to determine 
pathways in sex and racial differences in mortality risk through 
these biological aging markers.

2   |   Materials and Methods

2.1   |   Databases

2.1.1   |   National Health and Nutrition Surveys

The National Health and Nutrition Examination Survey 
(NHANES) comprises a series of cross- sectional, nationally repre-
sentative surveys administered by the National Center for Health 
Statistics (NCHS) from the early 1970s (Beydoun et al. 2016). In 
1999, the NHANES transitioned to a continuous series of biennial 
surveys. Key body measurements were obtained via direct physi-
cal examination at a mobile examination facility (See Appendix S1 
in Supporting Information for details). Our research included data 
from the years 1999 to 2002, linked to the death register through 
2019. The National Health and Nutrition Examination Survey 
(NHANES) 1999–2002 data collection followed strict ethical 
guidelines, including informed consent, confidentiality, risk mini-
mization, and equity, and were approved by the NCHS.

2.1.2   |   Health and Retirement Study

The Health and Retirement Study (HRS) is a longitudinal panel 
study that investigates the health, economic, and social fac-
tors affecting older Americans (Beydoun et al. 2022). Funded 
by the National Institute on Aging and the Social Security 
Administration, the HRS collects data from a representa-
tive sample of persons aged 50 and older in the United States 
(https:// hrs. isr. umich. edu/ about ). The study uses a multistage 
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area probability sample design to ensure it represents the US 
population over 50 years old. The core data include variables 
collected from all HRS participants every 2 years, covering 
various health-  and retirement- related domains. Our analy-
sis used the Research and Development (RAND) longitudinal 
dataset and the Enhanced Face- to- Face Interview (EFTF) to 
gather data on physical, biological, and psychosocial mea-
sures and also includes data collected off- cycle to cover spe-
cific factors of interest including biological markers of aging, 
which are used in the present study, with more details pro-
vided in Appendices I, II and III. The study adheres to ethical 
standards, including informed consent, confidentiality, risk 
minimization, inclusivity, data use, participant support and 
longitudinal integrity.

2.1.3   |   Healthy Aging in Neighborhoods of Diversity 
Across the Life Span

HANDLS is a longitudinal, interdisciplinary, prospective co-
hort study including White and African American adults in 
Baltimore, MD, initiated in 2004. From 2004 to 2009, baseline 
data (wave 1, w1) were collected by home visits and physical ex-
aminations, which included a cognitive test battery conducted on 
the medical research vehicles (MRV) (Evans et al. 2010). From 
2009 to 2013, participants revisited the MRV for a follow- up in- 
person wave (wave 3, w3) and subsequent waves followed a simi-
lar protocol (Beydoun, Hossain, et al. 2019; Beydoun et al. 2020). 
All participants executed written informed consent forms. The 
HANDLS study protocol was approved by the Institutional 
Review Board at the National Institutes of Health. In the pres-
ent study, only data on selected epigenetic clocks and telomere 
length were used, along with demographic variables, and link-
age with all- cause mortality. The HANDLS sample was mainly 
used as a validation sample for part of the analysis.

2.2   |   Mortality Linkage

The NHANES links mortality information to participants using 
the National Death Index (NDI) and a mortality file is provided 
to be merged with demographics and other variables of interest 
for each wave of data. The HRS uses NDI linkage, interviews, 
and public records to track older adults, using a tracker file 
that can be merged with Core data and the RAND file, among 
others. The HANDLS study uses NDI and public records to ex-
plore mortality differences across various groups. Similarly, this 
mortality file in HANDLS can be merged with other types of 
data using individual IDs. These robust linkage strategies allow 
for comprehensive investigations into survival predictors and 
mechanisms, especially in the context of socioeconomic and ra-
cial/ethnic diversity (See Appendix S1 for more details).

2.3   |   Epigenetic Clocks

Epigenetic clocks are biomarkers of biological aging derived 
from DNAm patterns at specific CpG sites. These clocks, espe-
cially third- generation clocks, provide insights into the rate of 
aging and its relationship with health outcomes by estimating 
epigenetic age and comparing it to chronological age. Major 

studies in the United States—the HRS, the NHANES, and 
HANDLS—have utilized these clocks to explore aging- related 
gaps in health outcomes. All three studies utilized Illumina 
MethylEPIC v1.0 BeadChip arrays for DNAm analysis. HRS 
computed Horvath 1, Hannum, Levine (PhenoAge), GrimAge, 
and Dunedin Pace of Aging (DunedinPoAm) (Beydoun 
et al. 2022; Beydoun, Hossain, et al. 2019; Beydoun et al. 2020; 
Mendy and Mersha 2024). Four clocks were converted into EAA 
metrics by regressing epigenetic age on chronological age and 
using the residuals. The Dunedin clock, which already has a 
measure of the biological aging pace, required no transforma-
tion. The NHANES used similar methods to compute EAA for 
the first four clocks. HANDLS, on the other hand, computed a 
subset of the clocks (Horvath, Hannum and DunedinPACE) with 
some modification of those that were provided in NHANES and 
HRS. DunedinPoAm and DunedinPACE are DNA methylation- 
based measures of biological aging rate. DunedinPoAm (2020) 
estimates aging pace over 12 years (ages, 26–38) (Belsky 
et  al.  2020), while DunedinPACE (2022) extends follow- up to 
20 years (ages, 26–45), improving reliability and predictive va-
lidity (Belsky et al. 2022). Both scale 1.0 as 1 year of biological 
aging per chronological year, but DunedinPACE is preferred for 
its stronger links to morbidity, mortality, and functional decline 
(Belsky et al. 2020; Belsky et al. 2022). The calculation of EAA 
metrics using residuals was consistent across studies for most 
clocks (See Appendix S2 for details).

2.4   |   Telomere Length

Telomere length is a key biomarker of aging, used in major US 
population studies like NHANES, HRS, and HANDLS (Wang 
et al. 2018). These studies use the quantitative polymerase chain 
reaction (qPCR) method to evaluate the telomere- to- single- copy 
gene ratio (T/S ratio) as a proxy for relative telomere length. 
The NHANES and HRS studies used standardized telomere 
length data to study aging and health outcomes in a population- 
representative cohort. The HANDLS study used a different 
method, assessing relative telomere length from blood sam-
ples, to explore differences in aging- related biomarkers across 
various groups. Despite differences in sample sources, popula-
tion characteristics, and analytical processes, all three studies 
provide valuable insights into the role of telomere length as a 
biomarker of aging (See Appendix  S3 for details). To ensure 
comparability across datasets, we included only those epigene-
tic clocks that were available in both NHANES and HRS, and, 
where possible, also in HANDLS. Clocks that were less com-
monly used in the literature or based on a limited number of 
CpG sites were excluded. Notably, although the telomere length- 
related clock was available in NHANES, it was not present in 
HRS or HANDLS and was therefore omitted from our analysis. 
This selection strategy prioritized clocks with broad validation 
and cross- cohort availability.

2.5   |   Covariates

Our analysis included only select demographics as exogenous 
variables, namely self- reported age at baseline, sex (0 = Male, 
1 = Female), and race/ethnicity. Harmonization of race/eth-
nicity was done where possible, including between NHANES 

 14749726, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/acel.70159 by N

ational Institute O
f H

ealth, W
iley O

nline L
ibrary on [07/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 of 17 Aging Cell, 2025

and HRS, whereby categories of Non- Hispanic White (NHW), 
Non- Hispanic Black (NHB), and Hispanic, as well as “Other 
ethnicities” were created, resulting in three dummy vari-
ables. In HANDLS, only two races/ethnicities were available, 
namely White and African American. In advanced analyses for 
NHANES and HRS, White was considered the referent category 
for analysis of racial differences in mortality risk, biological 
aging, or both.

2.6   |   Study Samples

Participant flowcharts for NHANES 1999–2002, HRS 2016, and 
HANDLS 2004–2009 samples are shown in Figure  S1. While 
both NHANES and HRS had epigenetic clock data on individ-
uals aged 50+ years, HANDLS had data at baseline for individ-
uals aged 30–64 years on 363 and 470 participants with data on 
telomere length and epigenetic clocks, respectively. HANDLS 
had 92 participants with data on both telomere length and epi-
genetic clocks, whereas for NHANES, the overlap was consistent 
between the two types of data. In HRS, of the 4018 participants 
who had data on epigenetic clock data in 2016, 1029 also had 
telomere data in 2008, while being aged 58+ in 2016. Figure S1 
shows the flow from the initial RAND longitudinal file that in-
cluded HRS and other earlier data since 1992, to those who were 
50+ in the 2008 wave, those who additionally had telomere data 
during this earlier wave, and finally, those who had epigenetic 
clocks at the 2016 wave. Follow- up time also differed across co-
horts, with the longest follow- up times being for NHANES (up 
to 20 years), followed by HANDLS (up to 18 years), and finally 
HRS (up to 7 years). Due to the limited sample size in HANDLS, 
analyses in this sample were mainly used to validate part of the 
analyses conducted in NHANES and HRS (correlation matrix, 
Kaplan–Meier curves/log- rank tests, LASSO linear, Cox models 
for each predictor on the largest available HANDLS sample, ad-
justing for exogenous variables age, sex, and race).

2.7   |   Statistical Methods

All analyses were carried out using Stata release 18.0 
(StataCorp  2023), while visualizations were partly produced 
using R version 4.4.1 (R Core Team  2024). As a first step, de-
scriptive analyses summarized the distributions of key variables 
of interest, including means, medians, standard deviations, in-
terquartile ranges as well as frequency distributions for categor-
ical data. Visualizations for each variable included histograms 
which were used to identify outliers and standard processes 
were used to remove outliers across all continuous variables of 
interest. Given that three cohorts of data were used, descriptive 
statistics also included comparisons of baseline characteristics 
and key variables across these cohorts, using linear models for 
continuous variables and multinomial logit models for categor-
ical variables, while accounting for sampling design complex-
ity to obtain population estimates (sampling weights, primary 
sampling units (PSUs) and strata for HRS and NHANES, and 
sampling weights for HANDLS). For HANDLS, comparisons 
were made with the other cohorts using the largest available 
sample with data on either epigenetic clocks or telomere length 
(N = 741 for demographics and mortality rate, N = 470 for epigen-
etic clocks, N = 363 for telomere length).

As a second step, Kaplan–Meier survival curves were conducted 
for all three cohorts, accounting for sampling weights, to esti-
mate the probability of survival over time, accounting for cen-
sored observations, and more importantly by comparing those 
survival experiences across tertiles of biological aging metrics 
(epigenetic DNAm age acceleration and mean telomere length), 
and assessing whether differences in survival times were statis-
tically significant using log- rank tests. This part of the analysis 
was adjusted for sampling design complexity by including sam-
pling weights, and the largest available sample with epigenetic 
clocks or telomere length was used for the HANDLS cohort.

Third, the interrelationships of various biological aging metrics 
were quantified using Pearson's correlations across the three 
cohorts of data and visualized using correlation heat maps. No 
sampling weight adjustment was made in this part of the analy-
sis and the smaller sample with both epigenetic clocks and telo-
mere length data was used for HANDLS (n = 92).

Fourth, multivariable- adjusted Cox proportional hazards mod-
els were conducted after testing the proportionality of the haz-
ards through Schoenfeld residuals. These models were adjusted 
for age, sex, and race/ethnicity, and the main exposures were 
each of the six biological aging metrics (i.e., epigenetic DNAm 
age acceleration and telomere length), with the outcome being 
time to all- cause mortality, an analysis also adjusted for sam-
pling weights. Two related sensitivity analyses were conducted 
to assess the robustness of the associations between biological 
aging markers and mortality. As a first step, the DunedinPoAm 
measure was regressed on chronological age, and the resulting 
residuals were analyzed in Cox proportional hazards models to 
evaluate age- independent effects. As a second step, Harrell's C- 
statistics were estimated from Cox models including each aging 
biomarker along with covariates (age, sex, race/ethnicity) to 
assess model discrimination. The concordance statistic (C) re-
flects the model's ability to correctly rank survival times and is 
interpreted similarly to the area under the ROC curve (AUC). 
These sensitivity analyses were mainly implemented in HRS 
and NHANES cohorts.

Fifth, Least Absolute Shrinkage and Selection Operator 
(LASSO) linear regression was employed to identify the most 
predictive clock measures for telomere length as the outcome of 
interest (Appendix S4). By penalizing the inclusion of less rele-
vant variables, LASSO decreases model complexity and avoids 
overfitting. This analysis forces the inclusion of exogenous 
variables, namely age, sex, and race/ethnicity to ensure robust 
selection while accounting for known potential confounders. 
The process is applied to a random half sample using cross- 
validation (cvLASSO), minimum Bayesian information crite-
rion (minBICLASSO), and adaptive LASSO (adaptiveLASSO) 
algorithms. The simplest (i.e., with the least number of addi-
tional parameters) of the three models is then applied to the full 
sample, and model fit is compared across the two half samples. 
This part of the analysis is applied to all three cohorts, without 
sampling weight adjustment.

Sixth, ABNs were employed to model the complex interplay be-
tween predictors, mediators, and outcomes (Delucchi et al. 2022; 
Kratzer et al. 2023; Scutari and Denis 2021) and https://r- bayesian- 
networks.org/. In the context of discrete time hazards, ABNs allow 
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for the estimation of probabilistic relationships among variables 
while accounting for time- dependent survival risks after modify-
ing data into a person- period format and the inclusion of a 2- year 
period of follow- up binary dummy covariates as is often done in 
discrete time hazards models (Appendices V and VI). All variables 
included in ABN were therefore either Gaussian or binomial and 
continuous variables were discretized using percentiles which 
were represented by their median values. Model fit was assessed 
for 1 through 3 parents/child and 2 parents/child was selected if 
there was a leveling off of model fit between 2 and 3 parents/child. 
This part of the analysis was carried out only on NHANES and 
HRS cohorts. This part of the analysis was not adjusted for sam-
pling weights or sampling design complexity.

Finally, using a Weibull regression modeling framework for 
the mortality outcome, generalized structural equations were 
carried out to replicate the final selected ABNs and estimate 

standard errors for each of the relationships that were uncov-
ered in the final DAGs (Appendix S7). This model was carried 
out specifically to estimate the relationships among biological 
aging metrics, between biological aging metrics and mortality, 
and the pathways between age, sex, and racial contrasts and all- 
cause mortality through biological aging metrics. This part of 
the analysis was adjusted for sampling design complexity (sam-
pling weights, PSUs, and strata) and compared with a model that 
assumed simple random samples. A type I error of less than 0.05 
was considered statistically significant.

3   |   Results

Across the three cohorts—NHANES, HRS, and HANDLS—
we observed important differences in sociodemographic 
factors, mortality, and biological aging markers (Table  1). 

TABLE 1    |    Study characteristics and mortality risk across three cohorts (NHANES, HRS, and HANDLS).

NHANES 1999–2002 HRS 2008 and 2016 HANDLS 2004–2009

Mean ± SE Mean ± SE or % Mean ± SE or %

Demographics (n = 2522) (n = 1029) (n = 741)

Age 64.0 ± 0.3 73.1 ± 0.47*** 45.9 ± 0.7***

Sex, % female 54.4 59.0* 51.1

Race/ethnicity

Non- Hispanic White 78.5 82.5 37.7

Non- Hispanic Black 8.7 7.7 62.3***

Hispanic 9.4 7.3* 0.0***

Other 3.3 2.5*** 0.0***

Epigenetic age acceleration metrics (N = 2522) (N = 1029) (N = 470)

HorvathAgeEAA 0.22 ± 0.19 0.12 ± 0.25 0.10 ± 0.36

HannumAgeEAA −0.18 ± 0.16 0.16 ± 0.20 −0.26 ± 0.36

PhenoAgeEAA −0.20 ± 0.20 −0.14 ± 0.27 __

GrimAgeEAA −0.32 ± 0.17 −0.44 ± 0.19 __

DunedinPoAm (or DunedinPACE) 1.10 ± 0.004 1.07 ± 0.004 1.05 ± 0.01

Telomere length metrics (N = 2522) (N = 1029) (N = 363)

Telomere length 0.940 ± 0.017 1.34 ± 0.01 5.66 ± 0.07

Telomere length, z- score −0.336 ± 0.064 +0.015 ± 0.037*** +0.025 ± 0.091***

(N = 2522) (N = 1029) (N = 741)

Mortality rate, per 1000 Person- years, with 95% CI 32.2 (30.0–34.8) 37.7 (32.7–42.5) 9.3 (7.2–12.0)

Hazard Ratio, with 95% CI 1.00 1.69 (1.39; 2.04)*** 0.29 (0.22;0.38)***

Note: Differences in means and proportions across cohorts were tested by taking NHANES as the referent category through bivariate linear and multinomial logistic 
regression models with “COHORT” as the only predictor entered as two dummy variables: COHORT2 (HRS vs. NHANES) and COHORT3(HANDLS vs. NHANES). 
Telomeres were measured in 2008 in HRS while epigenetic clocks and baseline age, as well as all other covariates, were measured in 2016. Hazard ratios were 
estimated using Cox proportional hazards models with COHORT as the only predictor (also as two dummy variables). HANDLS computed DunedinPACE instead of 
DunedinPoAm.
Abbreviations: CI, confidence Interval; DunedinPACE, Dunedin Pace of Aging, used in HANDLS; DunedinPoAm, Dunedin Pace of Aging DNA methylation clock; 
GrimAgeEAA, Grim DNA methylation Epigenetic Age Acceleration; HANDLS, Healthy Aging in Neighborhoods of Diversity across the Life Span; HannumAgeEAA, 
Hannum DNA methylation Age; HorvathAgeEAA, Horvath DNA methyalation Age Epigenetic Age Acceleration; HRS, Health and Retirement Study; n, unweighted 
sample; NHANES, National Health and Nutrition Examination Surveys; PhenoAgeEAA, Pheno DNA methylation Age Epigenetic Age Acceleration; SE, Standard 
Error.
*p < 0.05; **p < 0.010; ***p < 0.001 for null hypothesis of no difference in means or proportions between HRS or HANDLS and the referent cohort NHANES.
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6 of 17 Aging Cell, 2025

Participants in the HRS cohort were generally older than 
those in NHANES and HANDLS and included a higher pro-
portion of women (significantly more than NHANES). HRS 
also exhibited the highest mortality rate among the three co-
horts. In contrast, HANDLS had the largest proportion of non- 
Hispanic Black (NHB) adults, while NHANES included the 
highest proportion of Hispanic participants. Telomere length 
z- scores revealed that NHANES participants had the shortest 
telomeres on average, though direct comparisons across co-
horts were complicated by differences in measurement meth-
odology—particularly in HANDLS, which required z- score 
standardization for comparability. Notably, the four epigene-
tic age acceleration (EAA) metrics and the DunedinPoAm (or 
DunedinPACE in HANDLS) measure did not differ signifi-
cantly across cohorts in terms of their mean values.

Importantly, Kaplan–Meier survival curves (Figure  1) demon-
strated that several biological aging markers were associated 
with mortality risk, though the strength and direction of these 
associations varied by cohort. In NHANES, shorter telomeres 
were strongly predictive of increased mortality, whereas in 
HRS, this association was weaker. For epigenetic clocks, 
HorvathAgeEAA showed a marginal relationship with mortal-
ity in HRS but was not significant in HANDLS. Interestingly, 
in HANDLS, only the DunedinPACE metric was significantly 
associated with mortality; no such associations were observed 
for telomere length or other EAA measures.

Furthermore, Figure 2 presents the correlations among the bi-
ological aging markers. Strong correlations were seen between 
HorvathAgeEAA and HannumAgeEAA (r > 0.80) and between 

FIGURE 1    |    Kaplan–Meier survival curves across tertiles of markers of biological aging and three cohorts: NHANES 1999–2019, HRS 2016–2022, 
and HANDLS 2004–2022. Kaplan–Meier survival curves were conducted in all three cohorts with time on study considered as the time variable to 
event (all- cause death) or censoring by end of follow- up. Maximum follow- up time ranged from ~8 years for HRS (starting from baseline age in 2016) 
to 20 years for NHANES. Median values for tertiles (T1/T2/T3) were 0.93 to 1.02/1.06 to 1.10/1.16 to 1.21 for DunedinPoAm across cohorts; −4.38 
to −4.37/−0.96 to −0.83/4.48 to 4.74 to for GrimAgeEAA; –5.4 to −4.52/−0.25 to +0.63/4.46 to 5.16 for HannumAgeEAA; −5.27 to −4.31 /−0.12 to 
0.15/4.40 to 5.53 for HorvathAgeEAA; −6.11 to −6.07/–0.32 to +0.04/5.85 to 6.12 for PhenoAgeEAA. TELO_MEAN tertile medians were + 0.72 to 
1.06/0.89 to 1.29/1.13 to 1.61 for NHANES and HRS and 5.0/5.66/6.3 for HANDLS. Sampling weights were accounted for in this analysis. Unweighted 
sample sizes were n = 2522 for NHANES, n = 1029 for HRS and n = 363 (telomere length) 470 (epigenetic clocks) for HANDLS. HANDLS computed 
DunedinPACE instead of DunedinPoAm. Chi2, Chi- square; DunedinPACE, Dunedin Pace of Aging; DunedinPoAm, Dunedin Pace of Aging DNA 
methylation clock; GrimAgeEAA, Grim DNA methylation Epigenetic Age Acceleration; HANDLS, Healthy Aging in Neighborhoods of Diversity 
across the Life Span; HannumAgeEAA, Hannum DNA methylation Age, Epigenetic Age Acceleration; HorvathAgeEAA, Horvath DNA meth-
ylation Age, Epigenetic Age Acceleration; HRS, Health and Retirement Study; NHANES, National Health and Nutrition Examination Surveys; 
PhenoAgeEAA, Pheno DNA methylation Age Epigenetic Age Acceleration; T1, First tertile; T2, Second tertile; T3, Third tertile; TELO_MEAN, 
Mean telomere length. Panels A, B and C are for NHANES, HRS and HANDLS cohorts, respectively.
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7 of 17

GrimAgeEAA and DunedinPoAm, especially in NHANES 
and HRS. Correlations between telomere length and the clocks 
were notably weaker. The only exception was a weak inverse 
correlation between telomere length and the Hannum clock in 
NHANES (r ≈ −0.20), suggesting potential divergence in the 

biological processes captured by telomere and epigenetic aging 
metrics.

These patterns were echoed in our LASSO regression analyses 
(Figure  S2). In NHANES, HannumAgeEAA emerged as the 

FIGURE 1    |     (Continued)

FIGURE 1    |     (Continued)
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strongest independent predictor of telomere length (after ad-
justing for age, sex, race/ethnicity, and other clocks), while age 
was the only variable consistently and inversely associated with 
telomere length across all three cohorts. In the HANDLS subsa-
mple (n = 92), telomere length was not associated with any of the 
available clocks after adjusting for demographics.

Cox proportional hazards models (Figure 3) further emphasized 
the predictive utility of epigenetic clocks over telomere length for 
mortality risk. GrimAgeEAA and PhenoAgeEAA were consis-
tently and significantly associated with increased mortality in 
both NHANES and HRS. For example, GrimAgeEAA had haz-
ard ratios translating to β ± SE of +0.476 ± 0.0393 in NHANES and 
+0.511 ± 0.0775 in HRS. HannumAgeEAA and DunedinPoAm 
were also significantly associated with mortality risk across all 
three cohorts. In contrast, telomere length showed an inverse as-
sociation with mortality in NHANES (shorter telomeres → higher 
risk), but a counterintuitive positive association in HANDLS.

In sensitivity analysis #2, Harrell's C- statistics were computed to 
evaluate the discriminatory performance of epigenetic aging bio-
markers for mortality. Among HRS participants, GrimAgeEAA 
exhibited the highest concordance (C = 0.7641), followed by 
DunedinPoAm (C = 0.7476), PhenoAgeEAA (C = 0.7451), 
and HannumAgeEAA (C = 0.7378). HorvathAgeEAA and 
telomere length showed lower C- statistics (C = 0.7278 and 
C = 0.7281, respectively). In NHANES, GrimAgeEAA also 
had the highest concordance (C = 0.7628), slightly outper-
forming DunedinPoAm (C = 0.7544), with PhenoAgeEAA 
(C = 0.7501) and HannumAgeEAA (C = 0.7463) following 
closely. Adjustment of DunedinPoAm for age (residualized 
version, sensitivity analysis #1) did not affect its C- statistic in 
either cohort. These findings confirm that GrimAgeEAA and 
DunedinPoAm consistently provided the strongest mortality 
discrimination, supporting their utility in aging research across 

diverse US populations. These findings are provided as raw 
Output in: https:// github. com/ baydo unm/ HRS_ NHANES_ 
HANDLS_ TLEPI GENMO RT/ tree/ main.

Using additive Bayesian network (ABN) modeling (Figure  4; 
Figures  S3 and S4), we subsequently explored how biological 
aging metrics, demographics, and mortality interconnected. 
In both NHANES and HRS, allowing up to three parent nodes 
per outcome improved model fit, suggesting nuanced interde-
pendencies. Age and GrimAgeEAA consistently emerged as 
dominant predictors of mortality risk (d_var). Female sex was 
linked to lower GrimAgeEAA and thus lower mortality, while 
NHB participants tended to have slower aging as measured 
by DunedinPoAm. Interestingly, in HRS, NHB participants 
had shorter telomeres, and Hispanic participants had lower 
HannumEAA values. However, these findings did not uni-
formly translate into mortality risk differences across clocks or 
cohorts. It is worth noting that biological sex is incorporated in 
the definition of GrimAge.

Based on Table 2, Weibull models within the GSEM framework, 
provided complementary insight and replicated the ABN find-
ings. Telomere length remained inversely associated with age 
(β = −0.220 in NHANES; β = −0.140 in HRS), although its link 
to mortality was less pronounced than for the epigenetic clocks. 
GrimAgeEAA stood out as the most robust mortality predictor, 
followed by PhenoAgeEAA, whose effects were mediated through 
HannumAgeEAA and DunedinPoAm. The latter two metrics 
also played key intermediary roles in linking demographic char-
acteristics to aging and mortality. We also identified consistent sex 
and racial/ethnic patterns. Female participants showed signifi-
cantly lower GrimAgeEAA (β = −0.500 in NHANES; β = −0.563 
in HRS) and DunedinPoAm (β = −0.270 in NHANES; β = −0.258 
in HRS), pointing to slower biological aging. Non- Hispanic Black 
individuals had faster aging by DunedinPoAm (β = +0.192 in 

FIGURE 2    |    Pearson's correlation matrix between epigenetic clock metrics and telomere length: NHANES 1999–2002, HRS 2008 and 2016, 
and HANDLS 2004–2009. Sampling weights were not accounted for in this analysis. Unweighted sample sizes were n = 2522 for NHANES, 
n = 1029 for HRS and n = 92 for HANDLS. HANDLS computed DunedinPACE instead of DunedinPoAm. DunedinPACE, Dunedin Pace of Aging; 
DunedinPoAm, Dunedin Pace of Aging DNA methylation clock; GrimAgeEAA, Grim DNA methylation Epigenetic Age Acceleration; HANDLS, 
Healthy Aging in Neighborhoods of Diversity across the Life Span; HannumAgeEAA, Hannum DNA methylation Age, Epigenetic Age Acceleration; 
HorvathAgeEAA, Horvath DNA methylation Age, Epigenetic Age Acceleration; HRS, Health and Retirement Study; NHANES, National Health and 
Nutrition Examination Surveys; PhenoAgeEAA, Pheno DNA methylation Age Epigenetic Age Acceleration; TELO_MEAN, Mean telomere length; 
z, standardized z- score. Panels A, B and C are for NHANES, HRS and HANDLS cohorts, respectively.
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NHANES; β = +0.347 in HRS), but lower HannumAgeEAA 
(β = −0.358 in NHANES; β = −0.498 in HRS), suggesting mul-
tidimensional and sometimes offsetting effects. In NHANES, 
Hispanic adults exhibited elevated PhenoAgeEAA (β = +0.197), 
a known mortality predictor, underscoring the potential for race/
ethnicity- specific aging pathways.

4   |   Discussion

4.1   |   Summary of Findings

The present study uses ABNs to examine the link between 
DNAm clocks, telomere length, and mortality risk in three 
US populations (NHANES, HRS and HANDLS). Validation 
was accomplished by additional analyses with HANDLS 

data. Among key findings, epigenetic clocks, particularly 
GrimAgeEAA, HannumAgeEAA, and DunedinPoAM (or 
DunedinPACE in HANDLS), demonstrated stronger and 
consistent associations with mortality risk compared to telo-
mere length. ABNs revealed nuanced relationships, with 
age and GrimAgeEAA consistently predicting mortality risk 
across NHANES and HRS. Based on GSEM models selected 
from ABNs, sex had a significant inverse association with 
GrimAgeEAA in both NHANES and HRS samples, suggesting 
that females generally exhibit lower biological aging as mea-
sured by GrimAgeEAA compared to males. GrimAgeEAA, 
in turn, strongly predicted mortality (Ln(Hazard Ratio) 
or LnHR, β ± SE of +0.476 ± 0.0393 in NHANES and 
+0.511 ± 0.0775 in HRS). A similar but weaker pattern was ob-
served for DunedinPoAm in both cohorts. NHB participants 
showed faster biological aging as measured by DunedinPoAm 

FIGURE 3    |    Association of each biological aging metric with mortality risk adjusting for key exogenous variables: Cox proportional hazards mod-
els. Models are adjusted for age, sex, and race/ethnicity within each cohort. Values are Ln(hazard ratios) with 95% CI for each biological aging met-
ric. Note that GrimAgeEAA and PhenoAgeEAA were only measured in NHANES and HRS. Sampling weights were accounted for in this analysis. 
Unweighted sample sizes were n = 2522 for NHANES, n = 1029 for HRS, and n = 363 (telomere length) 470 (epigenetic clocks) for HANDLS. HANDLS 
computed DunedinPACE instead of DunedinPoAm. Dunedin PACE, Dunedin Pace of Aging; DunedinPoAm, Dunedin Pace of Aging DNA meth-
ylation clock; GrimAgeEAA, Grim DNA methylation Epigenetic Age Acceleration; HANDLS, Healthy Aging in Neighborhoods of Diversity across 
the Life Span; HannumAgeEAA, Hannum DNA methylation Age, Epigenetic Age Acceleration; HorvathAgeEAA, Horvath DNA methylation Age, 
Epigenetic Age Acceleration; HRS, Health and Retirement Study; NHANES, National Health and Nutrition Examination Surveys; PhenoAgeEAA, 
Pheno DNA methylation Age Epigenetic Age Acceleration; TELO_MEAN, Mean telomere length; z, standardized z- score. Panels A, B and C are for 
NHANES, HRS and HANDLS cohorts, respectively.
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FIGURE 4    |     Legend on next page.
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compared to NHW participants, with less consistencies across 
cohorts with respect to other racial/ethnic contrasts.

4.2   |   Previous Studies

4.2.1   |   Telomere Length, Morbidity, and Mortality

Multiple studies, with varying findings, have investigated the 
association between TL and mortality outcomes, including all- 
cause and disease- specific mortality (Adegunsoye et  al.  2023; 
Arbeev et  al.  2020; Chen et  al.  2023; Cheng et  al.  2021; Gao 
et  al.  2023; Gao et  al.  2020; Herrmann and Herrmann  2020; 
Huang et  al.  2019; Jian et  al.  2024; Jiang et  al.  2023; Lan 
et  al.  2022; Mons et  al.  2017; Premuzic et  al.  2024; Schneider 
et al. 2022; Shen et al. 2020; Wang et al. 2024; Wang et al. 2018; 
Xiong et  al.  2023; Yeap et  al.  2021; Zhan et  al.  2018). Various 
cohorts such as the UK Biobank, NHANES, and other multi- 
cohort studies with sample sizes ranging from a few hundred 
to hundreds of thousands of participants have been used for 
these studies. These studies have adjusted models for the effects 
of different covariates, including age, sex, ethnicity, socioeco-
nomic status, and health- related factors. Overall, shorter TL 
was generally associated with increased mortality risk. For ex-
ample, in a study involving data from three cohorts of European 
ancestry, a 1- kilobase decrease in LTL was associated with a 
HR of 1.34 (95% CI, 1.21–1.47) for all- cause mortality and 1.53 
(95% CI, 1.32–1.77) for cancer- specific mortality. However, some 
studies also reported non- significant findings or unexpected 
associations between TL and mortality (Chen et al. 2023; Gao 
et  al.  2023). Furthermore, other studies indicated that frailty 
mediated part of the TL- mortality relationship (Jian et al. 2024), 
and TL had varying impacts on mortality risk depending on 
comorbidities like type 2 diabetes and cardiovascular disease 
(Cheng et  al.  2021; Xiong et  al.  2023). A systematic review 
and meta- analysis further confirmed the link between TL and 
mortality, demonstrating a higher hazard ratio for individuals 
with shorter telomeres, with sex-  and ethnicity- based variations 
(Wang et  al.  2018). Our findings suggest that telomere length 
may have cohort- specific associations with mortality, showing 
expected inverse associations in NHANES but inconsistent or 
unexpected patterns in HRS and HANDLS. In contrast, epigen-
etic clocks—especially GrimAgeEAA and PhenoAgeEAA—
were more robust and consistent predictors of mortality across 
cohorts. Sex and race/ethnicity influenced aging trajectories: 
Women had slower biological aging and lower mortality risk, 
while racial patterns varied by metric. These results support the 

superiority of epigenetic clocks over telomere length in predict-
ing mortality and highlight the importance of considering de-
mographic and cohort context in aging research.

4.2.2   |   Epigenetic Clocks, Morbidity, and Mortality

Recently, molecular targets as clinical biomarkers and as ways 
to predict age- related diseases and mortality have garnered in-
terest. The use of epigenetic biomarkers of aging known as epi-
genetic clocks using DNAm metrics has historically provided 
accurate estimations of aging at various life stages (Fransquet 
et  al.  2019; Horvath and Raj  2018). A meta- analysis of 23 ar-
ticles reported a 5- year increase in DNAm age- related to an 
8%–15% increased mortality risk (Fransquet et al. 2019). In an-
other study, intrinsic EAA Hannum and age acceleration Grim 
predicted oropharyngeal cancer mortality (Beynon et al. 2022). 
Additionally, Horvath, Hannum, or Grim EAA predicted can-
cer mortality and Grim EAA also predicted cardiovascular 
mortality (Beynon et al. 2022; Mendy and Mersha 2024; Perna 
et al. 2016). These results reveal the significance of epigenetic 
markers' relationships with morbidity and mortality outcomes. 
Despite lacking an evaluation of cause- specific mortality, our 
study generally replicated those prior findings from various 
distinctive cohorts and varied types of analytic approaches. 
Specifically, our findings support prior research showing that 
EAA measures, particularly GrimAge and Hannum, are asso-
ciated with increased risk of death from cancer and cardiovas-
cular disease. The robust performance of these clocks across 
diverse cohorts reinforces their potential as clinical biomarkers 
of aging and mortality.

4.2.3   |   Association of Telomere Length With 
Epigenetic Clocks

Research on the links among epigenetic clocks, telomere length, 
and other facets of aging has been conducted. According to 
Vetter et  al.  (2022), although their association with telomere 
length and functional capability is complicated and varies de-
pending on the particular clock utilized, epigenetic clocks are 
linked with chronological age (Vetter et  al.  2022). Limited 
cross- sectional correlations between telomere length and epi-
genetic clocks were reported by Pearce et  al.  (2022), implying 
that these indicators could represent several facets of biological 
aging (Pearce et al. 2022). Suggesting that these two biomarkers 
may contribute separately to the knowledge of biological aging, 

FIGURE 4    |    Additive Bayesian network solutions for three parents/child for associations among biological aging metrics, demographics and 
mortality risk (discrete time hazards). Details for R code used for this analysis described in Appendix S6 and provided on github. This code provides 
a comprehensive pipeline for conducting ABN analysis, including installation, data preprocessing, constraint specification, model fitting, and iter-
ative optimization. It involves installing R versions 4.4 or higher, data preparation, data wrangling, defining variable groups, setting constraints, 
optimizing across parent limits, building the additive Bayesian network, and generating visual representations. The optimal number of parents of a 
child is determined based on leveling off the log marginal likelihood and desired complexity between key variables. Unweighted sample sizes were 
n = 2522 for NHANES and n = 1029 for HRS. DunedinPoAm, Dunedin Pace of Aging DNA methylation clock; GrimAgeEAA, Grim DNA methyla-
tion Epigenetic Age Acceleration; HannumAgeEAA, Hannum DNA methylation Age, Epigenetic Age Acceleration; HorvathAgeEAA, Horvath DNA 
methylation Age, Epigenetic Age Acceleration; HRS, Health and Retirement Study; NHANES, National Health and Nutrition Examination Surveys; 
PhenoAgeEAA, Pheno DNA methylation Age Epigenetic Age Acceleration; TELO_MEAN, Mean telomere length; z, standardized z- score. Panels A 
and B are for NHANES and HRS cohorts, respectively.
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12 of 17 Aging Cell, 2025

TABLE 2    |    Generalized structural equations models in NHANES and HRS sample based on the three- parents/child limit Additive Bayesian 
Network Model solution for each cohorta.

Model 1b Model 2c

β ± SE pd β ± SE pd

NHANES 1999–2019 (n = 2522)

AGE ➔ TELO_MEAN −0.220 ± 0.016 < 0.001 −0.207 ± 0.022 < 0.001

AGE ➔ DIED +0.978 ± 0.031 < 0.001 +1.079 ± 0.043 < 0.001

SEX ➔ HorvathAgeEAA −0.201 ± 0.040 < 0.001 −0.203 ± 0.051 < 0.001

SEX ➔ DunedinPoAm −0.270 ± 0.039 < 0.001 −0.189 ± 0.058 0.001

SEX ➔ GrimAgeEAA −0.500 ± 0.026 < 0.001 −0.430 ± 0.036 < 0.001

NHB ➔ DunedinPoAm +0.192 ± 0.048 < 0.001 +0.231 ± 0.060 < 0.001

NHB ➔ HorvathAgeEAA −0.126 ± 0.052 0.016 −0.130 ± 0.055 0.020

NHB ➔ HannumAgeEAA −0.358 ± 0.033 < 0.001 −0.267 ± 0.038 < 0.001

HISP ➔ HorvathAgeEAA −0.110 ± 0.045 0.014 −0.130 ± 0.070 0.063

HISP ➔ PhenoAgeEAA +0.197 ± 0.030 < 0.001 +0.120 ± 0.047 0.011

HorvathAgeEAA ➔ DunedinPoAm +0.136 ± 0.020 < 0.001 +0.119 ± 0.029 < 0.001

HorvathAgeEAA ➔ HannumAgeEAA +0.433 ± 0.018 < 0.001 +0.436 ± 0.032 < 0.001

HorvathAgeEAA ➔ PhenoAgeEAA +0.603 ± 0.015 < 0.001 +0.588 ± 0.025 < 0.001

HannumAgeEAA ➔ TELO_MEAN −0.132 ± 0.016 < 0.001 −0.093 ± 0.023 < 0.001

PhenoAgeEAA ➔ HannumAgeEAA +0.357 ± 0.018 < 0.001 +0.357 ± 0.028 < 0.001

PhenoAgeEAA ➔ GrimAgeEAA +0.163 ± 0.014 < 0.001 +0.169 ± 0.020 < 0.001

GrimAgeEAA ➔ DIED +0.421 ± 0.027 < 0.001 0.493 ± 0.037 < 0.001

DunedinPoAm ➔ GrimAgeEAA +0.607 ± 0.014 < 0.001 +0.648 ± 0.020 < 0.001

DunedinPoAm ➔ PhenoAgeEAA +0.269 ± 0.014 < 0.001 +0.269 ± 0.019 < 0.001

HRS 2016–2022 (n = 1029)

AGE ➔ TELO_MEAN −0.140 ± 0.031 < 0.001 −0.084 ± 0.041 0.041

GrimAgeEAA ➔ TELO_MEAN −0.052 ± 0.031 0.089 −0.037 ± 0.037 0.32

AGE ➔ DIED +0.944 ± 0.067 < 0.001 1.014 ± 0.078 < 0.001

SEX ➔ HorvathAgeEAA −0.187 ± 0.063 0.003 −0.149 ± 0.074 0.046

SEX ➔ DunedinPoAm −0.258 ± 0.062 < 0.001 −0.267 ± 0.077 0.001

SEX ➔ GrimAgeEAA −0.563 ± 0.044 < 0.001 −0.525 ± 0.054 < 0.001

NHB ➔ DunedinPoAm +0.347 ± 0.100 < 0.001 +0.315 ± 0.117 0.007

NHB ➔ HannumAgeEAA −0.498 ± 0.083 < 0.001 −0.458 ± 0117 < 0.001

HISP ➔ PhenoAgeEAA +0.138 ± 0.098 0.16 +0.110 ± 0.137 0.42

HorvathAgeEAA ➔ DunedinPoAm +0.120 ± 0.032 < 0.001 +0.116 ± 0.037 0.002

HorvathAgeEAA ➔ HannumAgeEAA +0.366 ± 0.026 < 0.001 +0.391 ± 0.047 < 0.001

PhenoAgeEAA ➔ HannumAgeEAA +0.344 ± 0.027 < 0.001 +0.349 ± 0.043 < 0.001

PhenoAgeEAA ➔ GrimAgeEAA +0.212 ± 0.023 < 0.001 +0.223 ± 0.054 < 0.001

GrimAgeEAA ➔ DIED +0.462 ± 0.058 < 0.001 +0.442 ± 0.072 < 0.001

(Continues)
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Banszerus et al.  (2019) did not uncover a clear correlation be-
tween relative telomere length and epigenetic age acceleration 
(Banszerus et al. 2019). While both metrics are independently 
linked with chronological age, Marioni et al. (2018) found that 
only the epigenetic clock significantly predicted death (Marioni 
et al. 2018). Chen et al. (2017) investigated the relationship be-
tween leukocyte telomere length (LTL) and extrinsic epigenetic 
age acceleration (EEAA), a DNA methylation- based biomarker 
predictive of mortality (Chen et al. 2017). Analyzing data from 
over 2500 participants across three cohorts, they found that 
shorter LTL correlated with higher EEAA (Chen et  al.  2017). 
This association was linked to immune cell composition: 
Individuals with more memory CD8+ T cells and fewer naive 
CD8+ T cells exhibited both shorter telomeres and older epigen-
etic age (B. H. Chen et al. 2017). The findings suggest that LTL 
reflects immune system aging and contributes to EEAA's pre-
dictive power for mortality (Chen et al. 2017).

These findings highlight the complexity of biological aging and 
suggest that no single biomarker can fully capture its multifac-
eted nature. Both telomere length and epigenetic clocks provide 
valuable but distinct information about aging, with limited over-
lap between them. In our study, only HannumAgeEAA showed 
a weak inverse correlation with telomere length in NHANES, 
reinforcing evidence from previous research that these mea-
sures reflect different biological processes. Therefore, a compre-
hensive understanding of aging and its links to mortality may 
require a combination—or battery—of biomarkers. Continued 
research is essential to clarify how these markers can best be 
used to predict health outcomes.

4.2.4   |   Role of Biological Aging in Explaining 
Differences in Mortality

Studies have shown that the epigenetic clock and telomere 
length are correlated with chronological age and mortality, 
but the epigenetic clock is a more robust predictor of mortality 
(Hillary et al. 2020; Horvath et al. 2016; Marioni et al. 2018). 
Epigenetic aging rates are significantly associated with sex 
and race/ethnicity. In general, men have shown higher aging 
rates than women across various tissues, with varying differ-
ences shown across racial and ethnic groups depending on the 

clock in question (Horvath et al. 2016). Epigenetic measures 
of aging, such as DNAm GrimAge, are associated with the in-
cidence of diseases like COPD, type 2 diabetes, and ischemic 
heart disease (Hillary et al. 2020). These studies highlight the 
importance of epigenetic clocks as biomarkers for aging and 
health outcomes.

4.2.5   |   Biological Mechanisms Behind Relationships 
Among Telomere Length, Epigenetic Clocks, 
and Mortality

Many mechanisms may affect telomere length, epigenetic 
clocks, and mortality. They can be influenced by genetic fac-
tors but also by lifestyle and environmental factors. For ex-
ample, telomere length and epigenetic age acceleration are 
both influenced by lifestyle factors such as physical activity, 
diet, smoking, and other environmental exposures (Oblak 
et al. 2021; Vaiserman and Krasnienkov 2020). Yet, it appears 
that some biological mechanisms that affect telomere length 
and epigenetic aging do so differently (Oblak et  al.  2021; 
Vaiserman and Krasnienkov  2020). These differences may lie 
in that telomere length is affected by cell division and may re-
flect more of a “mitotic clock” (Oblak et  al.  2021; Vaiserman 
and Krasnienkov  2020). Epigenetic clock predictability relies 
heavily on the measures that they were trained upon (Oblak 
et al. 2021; Vaiserman and Krasnienkov 2020). These vary from 
chronological age (Hannum, Horvath) to mortality (GrimAge) 
to phenotypic age (PhenoAge, DunedinPoAm, DunedinPACE) 
(Belsky et  al.  2020; Belsky et  al.  2022; Oblak et  al.  2021; 
Vaiserman and Krasnienkov 2020). Therefore, different aspects 
of biological aging may be indicative of these different mea-
sures (Oblak et  al.  2021; Vaiserman and Krasnienkov  2020). 
However, GWAS studies have indicated that variants associated 
with telomerase reverse transcriptase (TERT), the enzyme that 
elongates telomeres, and longer TL are associated with higher 
intrinsic age acceleration (Lu et al. 2018). This is unexpected but 
experiments in cells grown in vitro suggested that cell prolifer-
ation over time is associated with an increase in DNAm age (Lu 
et al. 2018). Therefore, these data indicate a linear relationship 
between telomere length and DNAm age in cells grown in vitro, 
but this may not be reflective of biological aging in humans, 
which is more complex and dynamic.

Model 1b Model 2c

β ± SE pd β ± SE pd

DunedinPoAm ➔ GrimAgeEAA +0.541 ± 0.022 < 0.001 +0.529 ± 0.028 < 0.001

DunedinPoAm ➔ PhenoAgeEAA +0.254 ± 0.031 < 0.001 +0.237 ± 0.040 < 0.001

Abbreviations: AGE, Baseline age; DIED, Death event (yes vs. no); DunedinPoAm, Dunedin Pace of Aging DNA methylation clock; GrimAgeEAA, Grim DNA 
methylation Epigenetic Age Acceleration; HannumAgeEAA, Hannum DNA methylation Age, Epigenetic Age Acceleration; HISP, Hispanic; HISP, Hispanic; 
HorvathAgeEAA, Horvath DNA methyalation Age, Epigenetic Age Acceleration; HRS, Health and Retirement Study; n, unweighted sample; NHANES, National 
Health and Nutrition Examination Surveys; NHB, Non- Hispanic Black; OTHER, Other race/ethnicities; PhenoAgeEAA, Pheno DNA methylation Age Epigenetic Age 
Acceleration; SEX, Female (1) versus Male (0); TELO_MEAN, Mean telomere length.
aGeneralized structural equations models were conducted as a series of linear (most equations) and Weibull models (for the DIED outcome equation). The structure 
of each model was determined based on the three- parent limit solution from ABNs for NHANES and HRS cohorts. Continuous variables are entered as standardized 
z- scores, while binary variables are entered as 1 versus 0.
bModel 1 was conducted without adjustment for sampling design complexity and thus assuming a simple random sample.
cModel 2 adjusted for sampling design complexity by including sampling weights, PSU and strata that were most appropriate for each cohort.
dp- value for null hypothesis that path coefficient β = 0.

TABLE 2    |    (Continued)
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Consequently, our findings echo sex and racial/ethnic pat-
terns reported in previous research where women exhibited 
slower biological aging, and non- Hispanic Black adults had 
mixed aging profiles depending on the metric used. More 
specifically, non- Hispanic Black (NHB) participants showed 
distinct patterns across biological aging measures. In both 
NHANES and HRS, NHB individuals had significantly higher 
DunedinPoAm scores (β = +0.192 in NHANES; β = +0.347 
in HRS) and significantly lower HannumAgeEAA values 
(β = −0.358 in NHANES; β = −0.498 in HRS) compared to 
non- Hispanic Whites. In the HRS cohort, NHB participants 
also had shorter telomere length, a pattern not observed in 
NHANES or HANDLS. No significant associations between 
race and HorvathAgeEAA or GrimAgeEAA were observed in 
either cohort. These findings indicate that NHB status was as-
sociated with faster aging by DunedinPoAm and slower aging 
by HannumAgeEAA across cohorts, with telomere length dif-
ferences evident only in HRS.

4.2.6   |   Comparisons of Various Epigenetic Clocks

As the various epigenetic clocks were trained on different 
measures, they capture different aspects of biological epigene-
tic aging. In our data, we find that, in NHANES and HRS co-
horts, there was a correlation between Horvath and Hannum 
EAA and between GrimAge EAA and DunedinPoAM. In the 
HANDLS cohort, HorvathAgeEAA and HannumAgeEAA 
were correlated and strongly only weakly correlated with the 
DunedinPACE. These data are consistent with the fact that the 
Horvath and Hannum clocks are considered “first generation” 
and trained on chronological age, whereas the second-  and third- 
generation clocks, PhenoAge and GrimAge, DunedinPoAM, and 
DunedinPACE were trained on phenotypes or mortality (Belsky 
et al. 2020; Belsky et al. 2022; Oblak et al. 2021; Vaiserman and 
Krasnienkov  2020). Therefore, calculating all four epigenetic 
clocks in three different cohorts as we have done here yields 
important and novel information related to these measures and 
their relationships to mortality and telomere length in different 
cohorts (Belsky et al. 2020; Belsky et al. 2022; Oblak et al. 2021; 
Vaiserman and Krasnienkov 2020).

4.2.7   |   GWAS and MR of Epigenetic Clocks 
and Telomere Length

Recent advances in Genome- Wide Association Studies (GWAS) 
and Mendelian Randomization (MR) have illuminated genetic 
and epigenetic mechanisms underlying aging. A GWAS of over 
40,000 individuals identified 137 loci associated with DNA 
methylation- based aging biomarkers, implicating genes tied to 
lipid metabolism, immune function, and longevity (McCartney 
et al. 2021). MR analyses suggest causal links between smoking 
and insomnia with telomere shortening, while physical activ-
ity may preserve telomere length (Chen et al. 2024). MR studies 
have also identified a potential causal role of GrimAge accelera-
tion in colorectal cancer risk (Morales Berstein et al. 2022) and 
showed that variations in white blood cell counts significantly 
affect age acceleration metrics like PhenoAge and GrimAge 
(Sun et al. 2024). However, other studies found no causal rela-
tionship between epigenetic age acceleration and pulmonary 

vascular diseases (Tong et al. 2024). These findings underscore 
both the promise and limitations of genetic and epigenetic re-
search in aging, highlighting the need for cautious interpreta-
tion across diverse health outcomes.

4.3   |   Strengths and Limitations

Several strengths can be noted for this study. First, it focuses on 
the relationship between biological aging and mortality risk in 
US adults, using three distinct datasets: NHANES, HRS, and 
HANDLS. It incorporates telomere length and multiple mea-
sures of EAA for a comprehensive evaluation of biological aging 
and its association with mortality risk. The use of ABNs offers 
a robust methodological framework for uncovering complex, 
probabilistic relationships among biological aging markers, 
social determinants, and mortality while accommodating con-
founding and mediation effects. The study also uses longitudi-
nal mortality data linked to biomarkers to investigate long- term 
health outcomes. Advanced statistical methods, such as LASSO 
regression for variable selection, Cox models for mortality risk, 
and GSEM for pathway validation, enhance the rigor and depth 
of the analyses.

However, the study has limitations such as measurement vari-
ability across datasets, residual confounding, cross- sectional 
biomarker data, potential selection bias, complexity of Bayesian 
networks, limited statistical power to study cause- specific mor-
tality risk in relation to biological aging metrics or to stratify 
results by sex and race, various sample- specific biases, and 
computational demands of ABN. These limitations may limit 
the generalizability of findings. In fact, a key limitation of our 
study is that widely used epigenetic clocks such as Horvath and 
DunedinPoAm (or DunedinPACE) were primarily developed 
using data from individuals of European ancestry. As a result, 
their accuracy and validity in estimating epigenetic age acceler-
ation (EAA) among individuals of non- European ancestry, in-
cluding Black and Hispanic populations, may be reduced. This 
raises concerns about potential biases in age- related biomarker 
estimates and the generalizability of findings across diverse 
populations. Several studies have highlighted ancestry- related 
differences in DNA methylation patterns that may influence 
clock performance (Horvath et  al.  2016). In a recent study by 
Shen et al. that uses HANDLS data, DunedinPACE was associ-
ated with accelerated aging in below poverty White participants 
but scores were similar with above and below poverty African 
Americans (B. Shen et al. 2023). Efforts to develop and validate 
ancestry- inclusive or ancestry- specific clocks are ongoing, and 
future studies should prioritize diverse cohorts to improve the 
equity and utility of these biomarkers. Despite these limitations, 
the use of multiple cohorts and sophisticated analysis methods 
for this study offers unique insights into aging biology and could 
trigger additional research in this area.

5   |   Conclusions

In summary, epigenetic clocks, particularly GrimAgeEAA, are 
stronger and consistent predictors of mortality risk compared 
to telomere length across different US cohorts. These findings 
highlight the potential of advanced biomarkers of biological 
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aging to enhance our understanding of differences in mortality 
risk across populations. Additive Bayesian networks further re-
vealed complex relationships between biological aging markers, 
demographics, and mortality risk, underscoring the role of these 
biomarkers in capturing nuanced pathways underlying dispari-
ties in aging and survival.
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FIGURE S1. Participant flowcharts for NHANES, HRS and HANDLS samples

(A) NHANES 1999-2002

NHANES (1999-2000 and 2001-2002): N=21,004

Baseline Age ≥ 50 years

NHANES 1999-2002 :N=4,983

Age<50y exclusion: 

N=16,021

Missing telomere data: N=1,312

Baseline age ≥50y, complete data on key variables of interest, including telomeres and epigenetic 

clocks: 

NHANES 1999-2002: N=2,522

Missing epigenetic clock data

N=1,149

Baseline age≥50y and complete data on key variables of interest: Telomeres

NHANES 1999-2002: N=3,671 (removing outliers)



(B) HRS 2008 (telomeres) and 2016 (epigenetic clocks)

RAND HRS 1992-2020: N=46,851

Baseline Age ≥ 50 years in 2008 HRS wave

HRS 2008:N=16,861

Age<50y exclusion: 

N=29,990

Missing telomere data: N=11,128

Baseline age ≥50y in 2008 HRS, alive in 2016 wave, complete data on key variables of interest: 

epigenetic clocks 

HRS 2008 and 2016: N=1,029

Missing epigenetic clock data

N=4,704

Baseline age≥50y in 2008 HRS wave and complete data on key variables of interest: Telomeres

HRS 2008: N=5,733 (excluding outliers)



(C) HANDLS 2004-2009

HANDLS 2004-2009: N=3,720

Telomere length data available

HANDLS 2004-2009:N=363

Telomere length exclusion 

N=3,357

Epigenetic clock exclusion

N=271

Telomere length and epigenetic clocks available

HANDLS 2004-2009: N=92



Notes:  For all 3 cohorts, the largest available sample with all key variables of interest was selected, without any further exclusions. In the HANDLS study, part of the analysis was carried out on the largest 

sample with epigenetic clocks (n=470) and telomere length(n=363), while other parts of the analysis were completed on the final sample with both data available (n=92). 

Abbreviations:  HANDLS=Healthy Aging in Neighborhoods of Diversity across the Life Span; HRS=Health and Retirement Study; NHANES=National Health and Nutrition Examination Surveys. 



FIGURE S2. LASSO findings for NHANES, HRS and HANDLS samples: TELO_MEAN vs. epigenetic clock 
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       Total    88.4827161        91   .97233754   Root MSE        =    .98967
                                                   Adj R-squared   =   -0.0073
    Residual    86.1910677        88  .979443951   R-squared       =    0.0259
       Model    2.29164844         3  .763882814   Prob > F        =    0.5083
                                                   F(3, 88)        =      0.78
      Source         SS           df       MS      Number of obs   =        92



Notes: LASSO is a regression regularization method that improves prediction accuracy and interpretability by shrinking coefficients to zero. It comes in three variants: cross-validated LASSO, 

adaptive LASSO, and minimum Bayesian Information Criterion LASSO. In this study, it is implemented using Stata. Details are provided in Appendix IV. Unweighted sample sizes were n=2,522 for 

NHANES, n=1,029 for HRS and n=92 for HANDLS.

Abbreviations: DunedinPoAm=Dunedin Pace of Aging DNA methylation clock; GrimAgeEAA=Grim DNA methylation Epigenetic Age Acceleration; HANDLS=Healthy Aging in Neighborhoods of 

Diversity across the Life Span; HannumAgeEAA=Hannum DNA methylation Age, Epigenetic Age Acceleration; HorvathAgeEAA=Horvath DNA methyalation Age,  Epigenetic Age Acceleration; 

HRS=Health and Retirement Study; LASSO=Least Absolute Shrinkage Selection Operator; NHANES=National Health and Nutrition Examination Surveys;  PhenoAgeEAA=Pheno DNA methylation 

Age Epigenetic Age Acceleration; TELO_MEAN=Mean telomere length; z=standardized z-score.

 



FIGURE S3. ABN findings using discrete time hazards models, for 1 and 2 parents/child limits

(A) NHANES 1999-2002, follow-up till 2019

1 parent/child 2 parents/child



(B) HRS 2008 (telomeres) and 2016 (epigenetic clocks) follow-up till 2022

1 parent/child 2 parents/child



Notes: Details for R code used for this analysis described in Appendix VI and provided on github. This code provides a comprehensive pipeline for conducting ABN analysis, including installation, 

data preprocessing, constraint specification, model fitting, and iterative optimization. It involves installing R versions 4.4 or higher, data preparation, data wrangling, defining variable groups, setting 

constraints, optimizing across parent limits, building the additive Bayesian network, and generating visual representations. The optimal number of parents of a child is determined based on 

levelling off the log marginal likelihood and desired complexity between key variables. Unweighted sample sizes were n=2,522 for NHANES and n=1,029 for HRS.

Abbreviations: DunedinPoAm=Dunedin Pace of Aging DNA methylation clock; GrimAgeEAA=Grim DNA methylation Epigenetic Age Acceleration; HannumAgeEAA=Hannum DNA methylation 

Age, Epigenetic Age Acceleration; HorvathAgeEAA=Horvath DNA methyalation Age,  Epigenetic Age Acceleration; HRS=Health and Retirement Study; NHANES=National Health and Nutrition 

Examination Surveys;  PhenoAgeEAA=Pheno DNA methylation Age Epigenetic Age Acceleration; TELO_MEAN=Mean telomere length; z=standardized z-score.

 

 



(A) NHANES 1999-2019

Model fit for 1-3 parents/child

(B) HRS 2016-2022

Model fit for 1-3 parents/child

FIGURE S4. Additive Bayesian Network (ABN) Model Fit Across Number of Parents per Child 

in Two U.S. Cohorts



Figure legend:

Panel (A) shows model fit metrics for 1–3 parents per child in the National Health and Nutrition Examination Survey (NHANES; 1999–2019), while 
Panel (B) presents corresponding results for the Health and Retirement Study (HRS; 2016–2022). Model fit was evaluated using log marginal 
likelihood (logML) values to compare network complexity across configurations. The ABN framework was used to learn potential causal structures 
among biological aging markers and covariates under varying complexity constraints.

• Abbreviations:
ABN – Additive Bayesian Network
NHANES – National Health and Nutrition Examination Survey
HRS – Health and Retirement Study
logML – Log Marginal Likelihood



SUPPLEMENTARY MATERIALS 

 

APPENDIX I. DATABASES AND DETAILED STUDY DESIGN DOCUMENTATION 

 

1) NHANES: 

   The CDC website on National Health and Nutrition Examination Survey (NHANES) provides 

comprehensive recommendations for researchers to interpret its data. This document encompasses survey 

methodology, sample design, estimating techniques, and analytical tactics. They are consistently revised 

to accommodate modifications in survey design and include novel statistical methodologies. The principal 

elements of the NHANES analytic standards encompass Plan and Operations Reports, Sample Design 

Documentation, Estimation and Weighting Procedures, and Analytic standards. The "National Health and 

Nutrition Examination Survey: Analytic Guidelines, 1999-2010" offers revised guidance for data analysis 

from those survey periods. The "NHANES Analytic Guidance and Brief Overview for the 2017-March 

2020 Pre-pandemic Data Files" elucidates data collection difficulties encountered during the COVID-19 

pandemic and offers directives for merging data from various cycles to achieve nationally representative 

estimates. 

  The present study used only demographics files from the 1999-2000 and 2001-2002 cycles, which were 

merged together and with other surplus sera data on epigenetic clocks and telomere length. While the 

demographics data covers all age ranges from 0 to 85y, the present study selected only those who were 

≥50y of age to conform with the age range of DNAm data and epigenetic clocks. A two-cycle weighting 

procedure was carried out in most analyses using 4yr sampling weights adjusted to the epigenetic data 

availability.  

 

Source: https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx 

  

2) HRS:  

   The Health and Retirement Study (HRS) offers detailed documentation on its survey design and 

methodology. The data collection path table provides a history of HRS data collection efforts, including 

links to detailed information about each data product. The longitudinal cohort sample design illustrates 

the accumulation of HRS samples over time, highlighting various birth cohorts. The study now follows a 

steady-state design, replenishing the sample every six years with younger cohorts. Tables provide detailed 

information on sample sizes and interview response rates for each survey year of the core biennial survey, 

categorized by overall panel, race/ethnicity, and cohort. Weight information is provided for unbiased 

national estimates, and resources such as "An Elementary Cookbook of Data Management using HRS 

Data with SPSS, SAS, and Stata Examples" provide practical guidance on managing and analyzing HRS 

data across different statistical software platforms. Technical reports offer in-depth descriptions of the 

HRS sample design, including methodologies like unfolding brackets to reduce item nonresponse in 

economic surveys. Imputations are discussed, detailing techniques applied to various survey waves. 

Administrative information provides insights into Institutional Review Board (IRB) considerations and 

other administrative aspects pertinent to the HRS. These resources collectively offer a thorough 

understanding of the HRS's survey design and methodology, supporting researchers in effectively 

utilizing the data for their analyses. 

  In addition to the Core data which can be linked to the tracker files, the RAND HRS data product can be 

downloaded at: https://hrsdata.isr.umich.edu/data-

products/rand?_gl=1*65fx5r*_ga*MTA3MTg2OTA4NS4xNzMxNjIwNDk3*_ga_FF28MW3MW2*MT

czNDE4OTM1MS41LjEuMTczNDE4OTM1Ni4wLjAuMA., with the latest version released in May of 

2024 being used for this project (2020 HRS RAND FAT FILE, V1.A). The tracker file used for the 

current analysis is also the latest one that was recently released, released in November of 2024 and goes 

up to early 2022 in follow-up, with the URL: https://hrsdata.isr.umich.edu/data-products/cross-wave-

tracker-

file?_gl=1*1njsolk*_ga*MTA3MTg2OTA4NS4xNzMxNjIwNDk3*_ga_FF28MW3MW2*MTczNDE4O

https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx
https://hrsdata.isr.umich.edu/data-products/rand?_gl=1*65fx5r*_ga*MTA3MTg2OTA4NS4xNzMxNjIwNDk3*_ga_FF28MW3MW2*MTczNDE4OTM1MS41LjEuMTczNDE4OTM1Ni4wLjAuMA
https://hrsdata.isr.umich.edu/data-products/rand?_gl=1*65fx5r*_ga*MTA3MTg2OTA4NS4xNzMxNjIwNDk3*_ga_FF28MW3MW2*MTczNDE4OTM1MS41LjEuMTczNDE4OTM1Ni4wLjAuMA
https://hrsdata.isr.umich.edu/data-products/rand?_gl=1*65fx5r*_ga*MTA3MTg2OTA4NS4xNzMxNjIwNDk3*_ga_FF28MW3MW2*MTczNDE4OTM1MS41LjEuMTczNDE4OTM1Ni4wLjAuMA
https://hrsdata.isr.umich.edu/data-products/cross-wave-tracker-file?_gl=1*1njsolk*_ga*MTA3MTg2OTA4NS4xNzMxNjIwNDk3*_ga_FF28MW3MW2*MTczNDE4OTM1MS41LjEuMTczNDE5MDE0OS4wLjAuMA
https://hrsdata.isr.umich.edu/data-products/cross-wave-tracker-file?_gl=1*1njsolk*_ga*MTA3MTg2OTA4NS4xNzMxNjIwNDk3*_ga_FF28MW3MW2*MTczNDE4OTM1MS41LjEuMTczNDE5MDE0OS4wLjAuMA
https://hrsdata.isr.umich.edu/data-products/cross-wave-tracker-file?_gl=1*1njsolk*_ga*MTA3MTg2OTA4NS4xNzMxNjIwNDk3*_ga_FF28MW3MW2*MTczNDE4OTM1MS41LjEuMTczNDE5MDE0OS4wLjAuMA


TM1MS41LjEuMTczNDE5MDE0OS4wLjAuMA. The Health and Retirement Study (HRS) Tracker File 

is a comprehensive resource for researchers, providing a single record for each interviewee. It is updated 

with new information following each survey wave. The 2022 Tracker File includes data from all cohorts 

enrolled for the 2022 data collection. For our present study, it is mainly used to link HRS participants 

with date of death and thus estimating follow-up time in order to run various type of survival-type 

analyses.  

Source: https://hrs.isr.umich.edu/documentation/survey-design 

 

 

3) HANDLS 

 

    The Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) study  aims to 

investigate the influences of race and socioeconomic status on age-related health disparities among 

African Americans and Whites in Baltimore, Maryland. The study employed several innovative 

recruitment strategies, including Mobile Research Vehicles (MRVs) for medical examinations and 

interviews, community engagement with local leaders and organizations, flexible scheduling for evenings 

and weekends, and regular follow-ups to maintain participant involvement. The HANDLS study faced 

several challenges, including mistrust of research due to historical abuses in medical research, logistical 

hurdles due to transportation barriers and safety concerns, and socioeconomic constraints for participants 

from lower SES backgrounds. To overcome these obstacles, the study engaged community leaders and 

ensured transparency in study objectives and procedures. Through these tailored strategies, HANDLS 

successfully recruited a cohort reflective of Baltimore's urban population, serving as a model for 

overcoming barriers in epidemiologic research involving urban populations.  

  The HANDLS  study is a longitudinal epidemiological research initiative by the National Institute on 

Aging. It aims to investigate the influences of race and socioeconomic status (SES) on age-related health 

disparities, particularly concerning overall longevity, cardiovascular disease, and cerebrovascular disease. 

The study seeks to disentangle the relationship between race, SES, and health outcomes by addressing 

key questions: 

• Independent Influences: What are the separate effects of race and SES on normal age-related 

functional changes and the incidence of age-related diseases? 

• Disease Progression: How do these factors affect the natural history of common age-related 

diseases? 

• Contribution to Health Disparities: In what ways do race and SES contribute to observed health 

disparities? 

• Early Biomarkers: Are there early biomarkers of age-related health disparities that may enhance 

prevention or mitigation of disease severity? 

 

   To effectively address these questions, HANDLS employs mobile medical research vehicles (MRVs). 

These vehicles serve as community-based platforms for clinical research, facilitating the recruitment and 

retention of non-traditional research participants into age-related clinical studies. This innovative 

approach allows the study to reach populations directly within their neighborhoods, thereby enhancing 

participation rates and ensuring a more representative sample. 

   By integrating multidisciplinary assessments—including physical health evaluations, genetic analyses, 

and socio-demographic surveys—HANDLS aims to provide comprehensive insights into the complex 

interplay between race, SES, and health outcomes as individuals age. The ultimate goal is to inform 

strategies that can effectively reduce health disparities and promote healthy aging across various 

populations. 

 

Sources: (Evans et al., 2010)  and https://handls.nih.gov/ 

 

 

https://hrsdata.isr.umich.edu/data-products/cross-wave-tracker-file?_gl=1*1njsolk*_ga*MTA3MTg2OTA4NS4xNzMxNjIwNDk3*_ga_FF28MW3MW2*MTczNDE4OTM1MS41LjEuMTczNDE5MDE0OS4wLjAuMA
https://hrs.isr.umich.edu/documentation/survey-design
https://handls.nih.gov/


APPENDIX II. EPIGENETIC CLOCK DOCUMENATION 

 

1) HEALTH AND RETIREMENT STUDY 

A sample of 4,018 individuals from a subsample of HRS participants was used for data collection. High-

quality DNA methylation data were achieved with over 97% sample success. DNA methylation was 

measured using the Illumina Infinium MethylationEPIC BeadChip. 

 

 Given commonality with NHANES and other studies, we opted to select five clocks, namely Horvath, 

Hannum, Levine PhenoAge, Grimm Age, and Dunedin Pace of Aging clocks. The first four were 

converted to an epigenetic age acceleration metric using the residual method using a linear model where 

chronological age was entered as the sole predictor. The residual can be interpreted as the number of 

years in biological age not accounted for by chronological age. These can be a fraction of a year or 

several years. Given that the Dunedin clock is already a pace of aging clock, no such modification was 

made. The five measures were then standardized z-scored after removing outliers within the final selected 

sample.  

Source: https://hrsdata.isr.umich.edu/data-products/epigenetic-clocks and (Beydoun et al., 2022) 

 

2) NHANES 

Full documentation on DNA methylation data and epigenetic clocks is provided elsewhere: 

https://wwwn.cdc.gov/nchs/nhanes/dnam/. The documentation gives an overview of DNA methylation 

(DNAm) and epigenetic biomarker data from NHANES participants from 1999-2000 and 2001-2002,. 

Similar to HRS, the methodology used is the Illumina EPIC BeadChip arrays, with extensive 

bioinformatics preprocessing and normalization. The sample population is adults aged 50+ from various 

backgrounds. Quality control measures are in place to identify and remove outliers and mismatched 

samples. The data includes biomarker data, normalized DNAm matrices, and cell type proportions. Of the 

available clocks, many of which are used in HRS, we selected the most commonly analyzed clocks, 

namely Horvath, Hannum, PhenoAge, GrimAge, and Dunedin Pace of Aging clocks and analyzed them in 

a similar was as for HRS.  

 

 

3) HANDLS 

   The HANDLS study used DNA methylation data from blood samples. Similar to HRS and NHANES, 

DNA methylation was measured using the Illumina Infinium MethylationEPIC BeadChip Illumina 

HumanMethylation EPIC array. Epigenetic age was computed using recognized clock methods like the 

Horvath clock amd Hannum clock. The anticipated epigenetic age was then compared to chronological 

age to determine epigenetic age acceleration (EAA), an indicator of the rate of biological aging relative to 

chronological age. DunedinPACE was used in HANDLS instead of DunedinPoAm.  

 

Source: (Belsky et al., 2022; Beydoun et al., 2019; Beydoun et al., 2020; Evans et al., 2010) 

 

APPENDIX III. TELOMERE LENGTH DOCUMENTATION 

 

1) NHANES 

  The TELO_A and TELO_B data files from the NHANES 1999-2000 and 2001-2002 contain telomere 

length measurements for persons aged 20 and above. The telomere length assay utilized quantitative 

polymerase chain reaction (qPCR) to ascertain the telomere-to-single-copy gene ratio (T/S ratio), 

indicating telomere length in relation to a standard reference DNA. Each sample was analyzed thrice on 

three distinct days, yielding six data points per sample. Quality control measures used control DNA 

samples to standardize inter-run variability, with defined criteria for rejecting test runs and outliers to 

guarantee data precision. The intraassay coefficient of variation was 6.5%, signifying robust repeatability 

of the measurements. Researchers seeking to convert the T/S ratio to base pairs could utilize the following 

https://hrsdata.isr.umich.edu/data-products/epigenetic-clocks


formula: base pairs = 3,274 + 2,413 × (T/S).  In the present study, NHANES data on telomeres was used 

focusing on mean telomere length (T/S).  After excluding outliers, mean telomere length (TELO_MEAN) 

was converted to standardized z-scores within the final selected sample, and tertiles were also computed.  

Sources: https://wwwn.cdc.gov/Nchs/Data/Nhanes/Public/2001/DataFiles/TELO_A.htm  and 

https://wwwn.cdc.gov/Nchs/Data/Nhanes/Public/2001/DataFiles/TELO_B.htm  

 

 

2) HEALTH AND RETIREMENT STUDY 

    In 2008, the Health and Retirement Study (HRS) assessed telomere length in 5,808 participants aged 50 

and above. Telome Health (now Telomere Diagnostics) performed the assay using qPCR, evaluating the 

telomere sequence copy number (T) in relation to a single-copy gene copy number (S), yielding a T/S 

ratio that correlates with average telomere length. Saliva samples were obtained via Oragene Collection 

Kits and DNA was extracted for examination. The interassay coefficient of variation was 6.5%, indicating 

robust repeatability of measurements.  

 

Source: https://hrsdata.isr.umich.edu/data-products/2008-telomere-data 

 

 

3) HANDLS 

   In the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) study, telomere 

length was measured using qPCR. This method compares the amplification of telomeric DNA to a single-

copy gene in a given sample. The ratio of telomeric DNA to single-copy gene DNA (T/S ratio) serves as a 

proxy for relative telomere length. DNA was extracted from blood samples, and the qPCR assays were 

conducted under controlled laboratory conditions to ensure accuracy and reproducibility. The T/S ratio 

was then used in analyses. 

Source: (Cawthon, 2002; Evans et al., 2010) 

 

 

APPENDIX IV. LASSO MODELS: 

 

    LASSO (Least Absolute Shrinkage and Selection Operator) is a regularization method used in 

regression to improve prediction accuracy and interpretability. It shrinks some coefficients to zero, 

effectively performing variable selection. There are three variants of LASSO: cross-validated LASSO 

(cvLASSO), adaptive LASSO, and minimum Bayesian Information Criterion (BIC) LASSO. 

 

cvLASSO involves using cross-validation to determine the optimal penalty parameter (𝜆), which 

minimizes prediction error by splitting the dataset into training and validation subsets. The steps include 

standardizing predictor variables, performing k-fold cross-validation, and using the optimal 𝜆 for model 

estimation. 

 

Adaptive LASSO assigns adaptive weights to the penalty term, enhancing variable selection consistency. 

The procedure involves fitting an initial regression model (e.g., OLS, logistic or Cox) and computing 

weights. The LASSO model with the weighted penalty term is estimated. 

 

Minimum BIC LASSO selects the penalty parameter λ that minimizes the Bayesian Information Criterion 

(BIC). The procedure involves fitting LASSO models over a range of λ values and computing BIC for 

each model. This approach balances model complexity and goodness of fit. 

 

Stata provides several key commands for implementing LASSO in regression models depending on the 

type of outcome (linear, logistic or cox). Only lasso linear was used in the present study to test predictors 

of telomere length across surveys of interest.  



 

Source: https://www.stata.com/manuals/lasso.pdf 

 

 

APPENDIX V. DISCRETE TIME HAZARD MODEL: 

 

    Discrete time hazard models are statistical methods used to analyze time-to-event data when the time 

variable is measured in discrete intervals, such as years, months, or days. These models are particularly 

useful in social sciences, public health, and educational research, where time is often measured in discrete 

units. Key features of discrete time hazard models include time disclosure, probability modeling, flexible 

covariates, and the binary logistic regression framework. The latter strength is a property that is useful for 

the implementation of additive Bayesian networks which can only accommodate gaussian, binomial and 

Poisson distributions for variables included in the model (See Appendix VI). 

    Steps in implementing discrete time hazard modeling include time period creation, baseline hazard 

specification, incorporating covariates, model estimation, and interpretation. Advantages of discrete time 

hazard models include effective handling of tied event times, incorporation of time-varying covariates, 

and simple implementation using logistic regression software. 

   Limitations of discrete time hazard models include discretization of continuous time data, loss of 

information when time intervals are large, and assumption of equal risk within each time interval. 

Applications include education, public health, and sociology. Common tools for implementing discrete 

time hazard models include R, Stata, and SAS. 

 

 

Discrete time hazards models are logistic regression models applied to data in person-period format with 

several dummy variables included that would emulate a hazard function:  

 

 

log (
ℎ𝑡

1 − ℎ𝑡
) ⁡ = 𝛽0 +∑𝛽𝑖 ⁡𝑋𝑖⁡

𝑝

𝑖=1

 

 

 

Sources: (Kvamme & Borgan, 2021) 

 

 

APPENDIX VI. ADDITIVE BAYESIAN NETWORKS:  

A) Theoretical framework 

Additive Bayesian networks (ABNs) are probabilistic graphical models that use a directed acyclic graph 

(DAG) to represent conditional interactions among variables. They offer benefits such as multivariate 

modeling, causal interpretation, and adaptability in managing various data types and distributions. ABNs 

are formulated by estimating local distributions for each node, employing linear regression for continuous 

data and logistic regression for binary variables. Bayes' Theorem is essential to ABN, as it aims to infer 

the posterior distribution of model parameters from the data. The software calculates the posterior 

distribution by integrating the probability obtained from the data with the designated priors. A scoring 

function is used to determine the ideal configuration for the ABN, and the Bayesian Information Criterion 

(BIC) is applied to balance goodness-of-fit and model complexity. ABN is widely used in disciplines like 

epidemiology, genetics, and social sciences to examine multivariate correlations and deduce causal 

pathways. 

Sources: (Lewis & Ward, 2013; Scutari, 2022) 

The following set of equations are used in this method: 

https://www.stata.com/manuals/lasso.pdf


(Eq. 1.1) Linear regression: 𝑌 = 𝛽0 + ∑ 𝛽𝑖 ⁡𝑋𝑖 + ⁡𝜀⁡𝑘
𝑖=1   

(Eq. 1.2) Logistic regression: 𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌 = 1|𝑋1, … , 𝑋𝑘⁡)) = 𝛽0⁡⁡ +∑ 𝛽𝑖𝑋𝑖
𝑘
𝑖=1  

(Eq. 1.3) Likelihood Function: 𝑳(𝜽|𝑫) = ∏ 𝑷(𝑿𝒊⁡|⁡𝑷𝒂𝒓𝒆𝒏𝒕𝒔(𝑿𝒊
𝒏
𝒊=𝟏 ), 𝜽𝒊) 

(Eq. 1.4) Bayesian Posterior: 𝑷(𝜽|𝑫) =
𝑷(𝑫|𝜽)𝑷(𝜽)

𝑷(𝑫)
 

(Eq. 3.5) BIC for Model Selection: 𝑩𝑰𝑪 = −𝟐𝒍𝒐𝒈(𝑳(𝜽|𝑫)) + 𝒑 × 𝒍𝒐𝒈(𝒏) 
 

 

B) Additive Bayesian Network workflow 

This appendix outlines the steps and R code used to perform additive Bayesian network (ABN) analysis, 

including data preparation, model specification, and iterative optimization. 

 

Step 0: Install Necessary Packages 

• Install R version 4.4 or higher. 

• Install required R packages, including abn, INLA, BiocManager, graph, Rgraphviz, memisc, and 

others such as nnet, lme4, dplyr, and entropy. 

 

 

 

Step 1: Data Preparation 

1. Load Data: 

o Use the haven package to import a Stata .dta dataset. 

o Increase memory limits to handle large datasets if necessary. 

2. Data Wrangling: 

o Convert selected variables (e.g., categorical ones) into factors. 

o Inspect the data structure using summary and structure functions. 

3. Define Variable Groups: 

o Specify antecedent variables (e.g., AGE, SEX, NHB, etc.) and outcomes (d_var). 

 

Step 2: Model Specification and Constraints 

1. Define Variable Distributions: 

o Assign appropriate distributions to each variable, such as gaussian for continuous 

variables and binomial for categorical ones. 

2. Set Constraints: 

o Create matrices to enforce banned and retained edges in the network: 

▪ Banned edges: Prevent arrows into antecedent variables and from final outcomes 

into other variables. 

▪ Retained edges: Ensure direct links between certain predictor variables and 

outcomes (e.g., dummy variables to d_var). 

3. Conflict Resolution: 

o Resolve overlaps between banned and retained edges by prioritizing banned constraints. 

 

 

Step 3: Optimization Across Parent Limits 

1. Iterative Analysis: 

o Loop over different values of max.parents (e.g., 1 to 4) to optimize the network structure. 



o Save intermediate results for each parent limit and calculate the log marginal likelihood 

(mlik). 

2. Identify Optimal Parent Limit: 

o Plot the relationship between parent limits and log marginal likelihood to determine the 

optimal value. 

o Save the network corresponding to the optimal parent limit. 

 

 

 

Step 4: Build the Additive Bayesian Network 

1. Build Score Cache: 

o Use the buildScoreCache function to precompute scores for potential directed acyclic 

graph (DAG) structures, adhering to defined constraints. 

o Limit the maximum number of parents (max.parents) for any node in the network to the 

optimal number chosen in Step 3 and based on coefficient strength. 

2. Search for Optimal DAG: 

o Apply the searchHillClimber function to identify the optimal network structure using hill-

climbing optimization. 

3. Fit the ABN Model: 

o Use the fitAbn function to estimate network parameters and assess model performance. 

o Visualize the resulting DAG using the plotAbn function. 

 

Output and Visualization 

• Generate visual representations of the fitted DAG. 

• Save the optimal network and associated data for future reference. 

• Report log marginal likelihood scores and highlight the optimal network structure. 

 

This code provides a comprehensive pipeline for conducting ABN analysis, including installation, data 

preprocessing, constraint specification, model fitting, and iterative optimization. 

 

The optimal number of parents of child were determined in this study based on levelling off of the Log 

marginal likelihood and the desired level of complexity between key variables. Due to the heavy 

computational nature of this method and the relatively large sample (e.g. >18,000 person-period sample 

for NHANES 1999-2019), only up to 3 parents/child were considered. Thus, 2 parents/child were only 

considered if there was considerable levelling off of the marginal likelihood between 2 and 3 

parents/child.  

 

Source: https://r-bayesian-networks.org/ 

 

 

APPENDIX VII. GENERALIZED STRUCTURAL EQUATIONS MODELS 

   Generalized Structural Equation Modeling (gsem) in Stata is a flexible framework that estimates linear 

and non-linear relationships among variables, accommodating different dependent variable types and 

random effects. It expands the sem command and incorporates model-specific parameters for variable 

types and link functions. Unlike SEM, gsem relaxes assumptions, allowing for various distributions and 

their corresponding link functions. Models are estimated using Maximum Likelihood (ML) or Quasi-ML 

methods, including adaptive Gaussian quadrature when incorporating categorical latent variables or 

multiple levels. Goodness-of-Fit statistics and tests are available to evaluate model alignment with data. 

GSEM users can perform linear predictions, estimate residuals, and calculate linear and non-linear 

combinations of factors, particularly for assessing indirect effects. In this part of the analysis, the ABN-

https://r-bayesian-networks.org/


selected DAG was recreated and evaluated, using both discrete time hazards specification of the final 

mortality outcome and parametric Weibull model with continuous time to event. 

 

 

Probability density function for Weibull distribution 

𝑓(𝑡; 𝛿, 𝑘) =
𝑘

𝛿
(
𝑡

𝛿
)𝑘−1𝑒

−(
𝑡
𝛿
)𝑘
, 𝑡 ≥ 0 

Where: 

• t is the time or random variable of interst.  

• δ>0 is the scale parameter 

• k>0 is the shape parameter 

 

 

 

Cumulative distribution function (CDF) and survival function (complement of CDF) for Weibull 

distribution 

 

𝐹(𝑡; 𝛿, 𝑘) = 1 −⁡𝑒
−(

𝑡
𝛿
)𝑘
, 𝑡 ≥ 0 

 

𝑆(𝑡; 𝛿, 𝑘) = 𝑒
−(

𝑡
𝛿
)𝑘
, 𝑡 ≥ 0 

 

 

 

 

 

Hazard function for Weibull distribution 

 

ℎ(𝑡; 𝛿, 𝑘) =
𝑓(𝑡; 𝛿, 𝑘)

𝑆(𝑡; 𝛿, 𝑘)
=
𝑘

𝛿
⁡(
𝑡

𝛿
)
𝑘−1

, 𝑡 ≥ 0 

 

 

 

Source: https://www.stata.com/manuals/semgsem.pdf 
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