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Genetic drivers of heterogeneity in type 2 
diabetes pathophysiology

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse 
pathophysiological processes1,2 and molecular mechanisms that are often specific  
to cell type3,4. Here, to characterize the genetic contribution to these processes  
across ancestry groups, we aggregate genome-wide association study data from 
2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of 
T2D. We identify 1,289 independent association signals at genome-wide significance 
(P < 5 × 10−8) that map to 611 loci, of which 145 loci are, to our knowledge, previously 
unreported. We define eight non-overlapping clusters of T2D signals that are 
characterized by distinct profiles of cardiometabolic trait associations. These clusters 
are differentially enriched for cell-type-specific regions of open chromatin, including 
pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build 
cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse 
ancestry, including 30,288 cases of T2D, and test their association with T2D-related 
vascular outcomes. Cluster-specific partitioned polygenic scores are associated  
with coronary artery disease, peripheral artery disease and end-stage diabetic 
nephropathy across ancestry groups, highlighting the importance of obesity-related 
processes in the development of vascular outcomes. Our findings show the value of 
integrating multi-ancestry genome-wide association study data with single-cell 
epigenomics to disentangle the aetiological heterogeneity that drives the 
development and progression of T2D. This might offer a route to optimize global 
access to genetically informed diabetes care.

Diabetes mellitus is a huge public-health burden, with an estimated 
prevalence of 537 million adults worldwide in 2021, of whom more 
than 90% are affected by T2D6. The biological processes through which 
T2D develops are diverse and include impaired insulin secretion and 
insulin resistance. This aetiological heterogeneity leads to substan-
tial variability in patient phenotypes, including age of disease onset, 
manifestation of disease complications and response to management 
strategies1,2. Although environment and lifestyle are well-established 
risk factors for T2D, heritability has been estimated to be 69% amongst 
individuals of 35–60 years of age7. Previous genome-wide association 
studies (GWASs) of T2D have identified more than 500 risk loci8,9, which 
showed variable patterns of association with clinical features mediated 
by effector genes acting through distinct molecular mechanisms that 
are often cell-type specific3,4. Through the newly established Type 2 
Diabetes Global Genomics Initiative, we present findings from a very 
large meta-analysis of T2D GWAS data, comprising more than 2.5 mil-
lion individuals of diverse ancestry—an increase of nearly threefold in 
the effective sample size compared with previous efforts8,9. We take 
advantage of the power afforded by this increased sample size and 
combine the GWAS data with emerging single-cell functional genomics 
data derived from disease-relevant tissues to uncover the aetiological 
heterogeneity of T2D. Furthermore, we construct partitioned polygenic 
scores (PSs)5 across multiple ancestry groups, and assess their asso-
ciation with T2D-related macrovascular outcomes and progression to 
microvascular complications.

 
Study overview
We assembled GWAS data, including 428,452 cases of T2D and 2,107,149 
controls (Supplementary Fig. 1 and Supplementary Tables 1 and 2). We 
organized these GWASs into six subsets of genetically similar studies, 
which we refer to as ‘ancestry groups’ (Extended Data Fig. 1). Specifi-
cally, we considered: a European ancestry group (EUR, 60.3% of the 
effective sample size); an East Asian ancestry group (EAS, 19.8%); an 
admixed African American group with ancestry predominantly from 
West Africa and Europe (AFA, 10.5%); an admixed Hispanic group with 
ancestry predominantly from the Americas, West Africa and Europe 
(HIS, 5.9%); a South Asian ancestry group (SAS, 3.3%); and a South Afri-
can ancestry group (SAF, 0.2%). Association analyses accounted for 
study-level population structure and relatedness, and adjusted for age 
and sex, where appropriate, and additional study-specific covariates 
(Supplementary Table 3 and Methods).

Discovery of T2D loci
We aggregated association summary statistics across GWASs through 
multi-ancestry meta-regression, implemented in MR-MEGA (ref. 10), 
which allows for allelic effect heterogeneity that is correlated with 
ancestry. We included three axes of genetic variation as covariates 
in the meta-regression model that separated GWASs from different 
ancestry groups (Extended Data Fig. 1 and Methods), which resulted in 
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lower genomic control inflation than did a fixed-effects meta-analysis 
(λGC = 1.120 and λGC = 1.396, respectively).

The DIAMANTE Consortium previously advocated the use of a 
multi-ancestry genome-wide significance threshold (P < 5 × 10−9) to 
define loci, which takes account of the weaker linkage disequilib-
rium (LD) between single-nucleotide variants (SNVs) expected after 
multi-ancestry meta-analysis9. To gain insight into true positive signals 
meeting conventional genome-wide significance (P < 5 × 10−8) that 
would be overlooked at this more stringent threshold, we considered 
loci reported by the DIAMANTE Consortium, which contributed 39.5% 
of the effective sample size of the current study. Of 39 loci with asso-
ciation signals meeting 5 × 10−9 ≤ P < 5 × 10−8 in the DIAMANTE Con-
sortium analysis, 36 (92.3%) attained multi-ancestry genome-wide 
significance with the larger sample size available to us in the current 
study (Supplementary Text). We therefore focused our downstream 
analyses on SNVs that met the conventional genome-wide significance  
threshold.

We identified a total of 1,289 distinct T2D association signals 
(P < 5 × 10−8) that were represented by independent (r2 < 0.05) 
index SNVs (Supplementary Fig.  2, Supplementary Table  4 and 
Methods). The 1,289 association signals mapped to 611 loci, of 
which 145 (23.7%) loci have not to our knowledge been previously 
reported in GWASs of T2D. At association signals that mapped to 
loci not previously reported for T2D, index SNVs were predomi-
nantly common (minor allele frequency (MAF) higher than 5% in 
at least one ancestry group) with odds ratios (ORs) lower than 1.05  
(Supplementary Fig. 3).

 
Mechanistic clusters of T2D index SNVs
To understand the genetic contribution to phenotypic heterogeneity 
in T2D, we classified the 1,289 index SNVs according to their profile of 
associations (aligned to the T2D risk allele) with 37 cardiometabolic 
phenotypes. These included glycaemic traits, anthropometric meas-
ures, body fat and adipose tissue volume, blood pressure, levels of 
circulating plasma lipids, and biomarkers of liver function and lipid 
metabolism11–19 (Supplementary Table 5). We applied an unsupervised 
‘hard clustering’ approach with imputation of missing phenotype asso-
ciations, which identified eight non-overlapping but exhaustive subsets 
of index SNVs with similar cardiometabolic profiles (Fig. 1, Table 1, 
Extended Data Fig. 2, Supplementary Fig. 4, Supplementary Tables 6 
and 7 and Methods).

We observed that the cardiometabolic features and loci of five of 
our identified clusters overlapped with those reported in previous 
efforts3,4,20,21, representing beta-cell dysfunction with a positive or 
negative association with proinsulin (PI), and insulin resistance medi-
ated through obesity, lipodystrophy, and liver and lipid metabolism 
(Supplementary Table 8). T2D risk alleles at index SNVs in the two 
beta-cell-dysfunction clusters are associated with increased fasting glu-
cose, two-hour glucose and glycated haemoglobin, and with decreased 
fasting insulin. Index SNVs in both clusters are also associated with 
PI, but with opposite directions of effect for the T2D risk allele. The 
clusters reflecting mechanisms of insulin resistance mediated through 
obesity, lipodystrophy, and liver and lipid metabolism include index 
SNVs that are associated with anthropometric measures and levels of 
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Fig. 1 | Heat map of associations of 37 cardiometabolic phenotypes with  
8 mechanistic clusters of index SNVs for T2D association signals. Each 
column corresponds to a cluster. Each row corresponds to a cardiometabolic 

phenotype. The ‘temperature’ of each cell represents the z-score (aligned to 
the T2D risk allele) of association of the phenotype with index SNVs assigned to 
the cluster. *Phenotype is adjusted for body mass index.
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circulating plasma lipids. T2D risk alleles at index SNVs in the obesity 
cluster are associated with increased body mass index (BMI), waist–hip 
ratio (WHR), body fat percentage and basal metabolic rate, and with 
decreased high-density lipoprotein (HDL) cholesterol. The lipodys-
trophy cluster comprises index SNVs for which T2D risk alleles are 
associated with increased fasting insulin, WHR, blood pressure and 
triglycerides, and with decreased body fat percentage, gluteofemoral 
adipose tissue (GFAT) volume and HDL cholesterol. T2D risk alleles 
at index SNVs assigned to the liver and lipid metabolism cluster are 
associated with increased liver fat and liver-related biomarkers, and 
with decreased low-density lipoprotein (LDL) cholesterol and total 
cholesterol.

By increasing the number of index SNVs in the clustering by nearly 
fourfold relative to previous efforts, we provide a more granular view 
of the biological processes through which T2D associations affect 
disease, and highlight three previously unreported clusters of signals 
with cardiometabolic profiles that are representative of metabolic 
syndrome, body fat and residual glycaemic effects. We observed sig-
nificantly weaker allelic effects on T2D in these three clusters than in 
those previously reported (mean OR of 1.028 versus 1.033, P = 2.2 × 10−7), 
but there was no noticeable difference in disparity around the centroid 
between clusters (Extended Data Fig. 3, Supplementary Table 9 and 
Supplementary Fig. 5). T2D risk alleles at index SNVs assigned to the 
metabolic syndrome cluster are associated with increased fasting glu-
cose, WHR, triglycerides and blood pressure, and with decreased HDL 
cholesterol, which together are used to define metabolic syndrome. 
T2D risk alleles in this cluster are also associated with increased fast-
ing insulin, with accumulations of unhealthy fat depots (increased 
visceral adipose tissue (VAT) volume and liver fat) and with decreased 
GFAT volume. Previous investigations have shown that individuals with 
metabolic syndrome are at increased risk of T2D22, although Mende-
lian randomization studies indicate that a causal effect is driven by 
increased waist circumference and increased fasting glucose23. T2D 
risk alleles at index SNVs assigned to the body fat cluster are associ-
ated with increased abdominal subcutaneous adipose tissue volume, 
VAT volume and body fat percentage. Although the body fat cluster 
profile of associations with cardiometabolic phenotypes shares these 
features in common with obesity-mediated insulin resistance, index 
SNVs in the body fat cluster are not strongly associated with BMI, lipid 

levels or basal metabolic rate. Previous investigations have highlighted 
that body fat percentage is predictive of abnormal blood glucose in 
individuals with a healthy BMI24. Finally, T2D risk alleles at index SNVs 
assigned to the residual glycaemic cluster are most strongly associated 
with increased fasting glucose and glycated haemoglobin, but, unlike 
the two beta-cell-dysfunction clusters, are not associated with PI or 
decreased fasting insulin.

Clustering provides a framework to better understand the diverse 
physiological processes through which T2D develops and the shared 
biological pathways that drive genetic correlations with other 
insulin-resistance-related disorders, including gestational diabetes 
mellitus (GDM) and polycystic ovary syndrome (PCOS). T2D risk alleles 
at index SNVs showed a gradient of effects on insulin-related endophe-
notypes across clusters (Supplementary Text, Extended Data Fig. 4 
and Supplementary Tables 10 and 11), representing a cline from insulin 
production and processing in the two beta-cell-dysfunction clusters 
through to insulin resistance that was most extreme in the lipodystro-
phy cluster. Index SNVs in the beta cell +PI cluster showed the strongest 
associations with GDM, whereas those in the obesity cluster were most 
strongly associated with PCOS (Supplementary Text, Extended Data 
Fig. 5 and Supplementary Table 12).

Regulatory processes underlying clusters
To gain insight into tissue-specific regulatory processes underpinning 
mechanistic clusters, we integrated T2D association signals with assay 
for transposase-accessible chromatin using sequencing (ATAC-seq) 
peaks from single-cell atlases of chromatin accessibility (CATLAS and 
DESCARTES) for 222 cell types derived from 30 human adult and 15 
human fetal tissues25,26 and an additional 106 cell types from the human 
brain27 (Fig. 2, Supplementary Tables 13 and 14 and Methods).

We observed significant enrichment for regions of open chromatin 
in fetal islets and adult neuroendocrine cells in pancreatic islets (alpha, 
beta, gamma and delta) in the beta cell +PI, beta cell −PI and residual 
glycaemic clusters. In addition, the residual glycaemic cluster was 
enriched in fetal and adult pancreatic ductal cells, whereas the beta 
cell −PI cluster was enriched in adult enterochromaffin cells—a type of 
enteroendocrine cell that has an essential role in regulating intestinal 
motility and secretion in the gastrointestinal tract28. Enterochromaffin 

Table 1 | Cardiometabolic profile, example loci and physiological effect of index SNVs at T2D association signals allocated to 
eight mechanistic clusters

Mechanistic cluster Cardiometabolic profile Number of T2D 
associations

Example loci Physiological effect

Insulin secretion Insulin sensitivity

Beta cell +PI +FG*, +2hG*, +HbA1c, +PI* 91 TCF7L2, KCNQ1, CDKAL1, CDKN2A–
CDKN2B, SLC30A8

− +

Beta cell −PI +FG*, +2hG*, +HbA1c, −PI* 89 CDC123–CAMK1D, HNF1B, KCNJ11–
ABCC8, HNF4A, HNF1A

− +

Residual glycaemic +FG*, +HbA1c 389 GCC1–PAX4–LEP, ANKRD55, GCKR, 
UBE2E2

− −

Body fat +Body fat, +ASAT* 273 ZMIZ1, HMGA2, CTBP1 + −

Metabolic syndrome +FG*, +FI*, +WHR, +VAT*, −GFAT*, 
+TG, −HDL, +BP

166 IGF2BP2, CCND2, HHEX–IDE, JAZF1, 
GPSM1

+ −

Obesity +BMI, +WHR, +body fat, +BMR, 
+TG, −HDL

233 FTO, MC4R, MACF1, TMEM18 + −

Lipodystrophy +FI*, +WHR, −body fat, −GFAT*, 
+TG, −HDL, +BP

45 IRS1, GRB14–COBLL1, PPARG + −

Liver and lipid metabolism −LDL, −TC, +liver fat, +liver 
biomarkers

3 TOMM40–APOE–GIPR, TM6SF2, 
PNPLA3

− −

+/−: T2D risk alleles associated with increased or decreased phenotype values. 
ASAT, abdominal subcutaneous adipose tissue volume; BMI, body mass index; BMR, basal metabolic rate; BP, blood pressure; FG, fasting glucose; FI, fasting insulin; GFAT, gluteofemoral 
adipose tissue volume; HbA1c, glycated haemoglobin; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; PI, proinsulin; TC, total cholesterol; TG, triglycerides; 
VAT, visceral adipose tissue volume; WHR, waist–hip ratio; 2hG, two-hour glucose. 
*Adjusted for BMI.
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cells are a major target for glucagon-like peptide 1 (GLP-1) and highly 
express the GLP-1 receptor, agonists of which are widely used as medi-
cations for T2D29 (Supplementary Text).

The obesity cluster was also significantly enriched for regions of 
open chromatin in adult pancreatic islets, although not as strongly as 
were the beta-cell-dysfunction clusters. Enrichment was observed only 
for alpha, gamma and delta cells, suggesting that there are alternative 
pathways through which islets affect the development of T2D, other 
than through the secretion of insulin from beta cells. The obesity cluster 
was further enriched in fetal adrenal gland cells (chromaffin cells and 
adrenal neurons), fetal heart cells (ventricular cardiomyocytes) and 
fetal kidney cells (metanephric cells). Previous studies have reported 
an enrichment of BMI loci or heritability for epigenomic annotations 
in pancreatic islets and adrenal gland30,31, consistent with our findings. 
In the human brain, the obesity cluster was significantly enriched for 
regions of open chromatin in cell types including intratelencephalic (IT) 
projecting neurons, somatostatin-positive (SST+) GABAergic inhibitory 
neurons and D1 medium spiny neurons. SST+ GABAergic neurons exist in 
the hypothalamus and regulate food intake32. D1 medium spiny neurons 
are a type of GABAergic neuron in the human striatum that expresses 
D1-type dopamine receptors; these neurons have been implicated in 
food motivation and the development of diet-induced obesity in mice33.

The remaining four clusters (lipodystrophy; metabolic syndrome; 
body fat; and liver and lipid metabolism) were not significantly enriched 
for regions of open chromatin in pancreatic islets. The lipodystrophy 
cluster was enriched only in adult adipocytes, which confirms previ-
ous reports in bulk adipose tissue4,20. Consistent with these results, 
association signals for WHR, triglycerides and HDL cholesterol, which 
are strongly affected by index SNVs in the lipodystrophy cluster, have 
been shown to be enriched in candidate cis-regulatory elements in 
adipocytes26. The metabolic syndrome cluster was enriched in cells that 
reside in the walls of blood vessels (adult pericytes and fetal endothelial 
cells), fetal kidney cells (mesangial cells) and fetal fibroblasts. Associa-
tion signals for systolic and diastolic blood pressure, a key component 
of metabolic syndrome, have been shown to be enriched in candidate 
cis-regulatory elements in these cell types26. Endothelial dysfunction 
is not only a consequence of insulin resistance, but also impairs insulin 

signalling to further reduce insulin sensitivity, thereby providing a 
pathophysiological mechanism that links the metabolic and cardio-
vascular components of metabolic syndrome34. In human brain, the 
metabolic syndrome cluster was significantly enriched for regions 
of open chromatin in cell types including IT projecting neurons and 
SST+ GABAergic inhibitory neurons. IT projecting neurons are a type 
of glutamatergic excitatory pyramidal neuron in the cerebral cortex, 
and metabolic syndrome was previously associated with pyramidal 
neurons and GABAergic neurons in cell-type specificity analyses in 
a GWAS that examined genetic factors in metabolic syndrome35. We 
observed no significant enrichments in the body fat cluster or in the 
liver and lipid metabolism cluster.

Ancestry-correlated heterogeneity
Previous multi-ancestry GWASs have shown widespread heterogeneity 
in allelic effects at T2D association signals across ancestry groups9,36. We 
took advantage of the meta-regression model to partition heterogene-
ity into an ancestry-correlated component explained by three axes of 
genetic variation, and a residual component reflecting differences in 
environmental exposures (that are not correlated with ancestry) and/
or study design (Supplementary Table 15). We observed 127 (9.9%) 
independent T2D association signals with significant evidence for 
ancestry-correlated heterogeneity (PHET < 3.9 × 10−5, Bonferroni correc-
tion for 1,289 signals). We would expect less than one signal to meet 
this threshold of significance, highlighting that ancestry-correlated 
heterogeneity is strongly enriched at T2D associations (one-sided 
binomial test P < 2.2 × 10−16). By contrast, we observed significant evi-
dence of residual heterogeneity at only four (0.3%) association signals 
(one-sided binomial test P = 0.031). These results therefore suggest that 
differences in allelic effects at index SNVs are more strongly correlated 
with genetic ancestry than other factors that vary between GWASs.

We next sought to better understand the impact of genetic diversity 
on differences in allelic effects between GWASs at the 127 association 
signals with significant evidence of ancestry-correlated heterogene-
ity (Methods). For 118 (92.9%) signals, allelic effect sizes were most 
strongly associated with the first two axes of genetic variation, which 
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Fig. 2 | Heat map of cluster-specific enrichments of T2D associations for 
cell-type-specific regions of open chromatin derived from single-cell 
ATAC-seq peaks in adult and fetal tissue. a, Cell types (222 types) from 30 
human adult tissues and 15 human fetal tissues. b, Cell types (106 types) from 
the human brain. In each panel, columns represent mechanistic clusters. Each 
row represents a cell type that was significantly enriched (Bonferroni 

correction for the number of cell types) for T2D associations in at least one 
cluster (indicated by an asterisk). The ‘temperature’ of each cell defines the 
magnitude of the log fold enrichment. The liver and lipid metabolism cluster is 
not presented because it includes only three T2D association signals and the 
model parameter estimates were unstable.
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reflect differences between AFA/EUR and EAS GWASs (AFA–EAS axis), 
and between AFA/EAS and EUR GWASs (AFA–EUR axis), respectively 
(Supplementary Text, Extended Data Figs. 1 and 6 and Supplementary 
Table 16).

We observed significant differences in mean z-scores for association 
between clusters for both the AFA–EAS axis (P = 4.1 × 10−6) and the AFA–
EUR axis (P = 1.5 × 10−6). Index SNVs in the two beta-cell-dysfunction 
clusters were most positively associated with the AFR–EAS axis, indicat-
ing allelic effects on T2D that were greater in EAS GWASs than in AFA 
and EUR GWASs (Extended Data Fig. 7 and Supplementary Table 17). 
By contrast, index SNVs in the lipodystrophy and obesity clusters were 
most positively associated with the AFA–EUR axis, indicating allelic 
effects on T2D that were greater in EUR GWASs than in EAS and AFA 
GWASs. These results indicate that ancestry-correlated heterogeneity 
varies between mechanistic clusters, with allelic effects greatest for 
EAS GWASs at association signals assigned to clusters acting through 
beta-cell dysfunction and greatest for EUR GWASs at those assigned 
to clusters operating through insulin resistance.

Ancestry-correlated heterogeneity in allelic effects between GWASs is 
not driven by differences in allele frequency between ancestry groups, 
but can occur because of interaction between index SNVs and envi-
ronmental and lifestyle factors, if not accounted for in the associa-
tion analysis37. We observed substantial variation in the distribution of 
study-level mean BMI in T2D cases and controls across ancestry groups 
(Supplementary Fig. 6). Such variation could affect ancestry-correlated 
heterogeneity because, when cases and controls are selected from 
the extremes of the BMI distribution, the magnitude of allelic effect 
estimates at T2D signals acting through beta-cell dysfunction can 
be inflated38. We therefore extended the MR-MEGA meta-regression 
model to allow for allelic effect heterogeneity at index SNVs due to 
mean BMI in T2D cases and controls, in addition to axes of genetic 
variation (Methods).

After adjustment for study-level mean BMI in cases of T2D and in 
controls, only 24 association signals retained significant evidence 
of ancestry-correlated heterogeneity (P < 3.9 × 10−5), compared with 
127 signals without adjustment (Supplementary Text and Supple-
mentary Table 18). After adjustment for BMI, significant differences 
in mean z-scores for association between clusters for the AFA–EUR 
axis were maintained (P = 3.2 × 10−5 versus P = 1.5 × 10−6 without 

adjustment), whereas those for the AFA–EAS axis were not (P = 0.18 
versus P = 4.1 × 10−6 without adjustment). Furthermore, after adjust-
ment for BMI, the two beta-cell-dysfunction clusters were no longer 
strongly positively associated with the AFA–EAS axis (Extended Data 
Fig. 7 and Supplementary Table 19). Together, these results suggest 
that heterogeneity in allelic effects between EAS GWASs and EUR/AFA 
GWASs, which occur most often at association signals assigned to the 
beta-cell-dysfunction clusters, can be mostly accounted for by differ-
ences in the distributions of mean BMI in T2D cases and in controls 
between these ancestry groups.

Associations of partitioned PS with outcomes
The major complications in individuals with T2D are macrovascular 
outcomes including coronary artery disease (CAD), ischaemic stroke 
and peripheral artery disease, and microvascular outcomes, including 
end-stage diabetic nephropathy (ESDN) and proliferative diabetic 
retinopathy. We tested for association of a cluster-specific partitioned 
PS with these vascular outcomes in up to 279,552 individuals (including 
30,288 cases of T2D) across five ancestry groups (AFA, EAS, EUR, HIS 
and SAS) from the All of Us Research Program, Biobank Japan and the 
Genes & Health study (Methods). These individuals were not included in 
the multi-ancestry meta-analysis, thus avoiding potential inflated type I 
error rates owing to overlap between the discovery and the testing data-
sets. To maximize sample size, we tested macrovascular outcomes in all 
individuals, adjusted for T2D status, and microvascular complications 
only in individuals with T2D (Methods and Supplementary Table 20). 
To assess the additional information afforded by the partitioned PS 
over an overall T2D PS, agnostic to cluster membership, we tested for 
association of each cluster-specific component of the partitioned PS 
after adjustment for the overall PS. Figure 3 provides an overview of 
the associations of each cluster-specific component of the partitioned 
PS with the five vascular outcomes across ancestry groups.

We observed a significant association (P < 0.0063, Bonferroni cor-
rection for eight clusters) of two components of the partitioned PS with 
CAD: a negative association with the beta cell +PI cluster (OR = 0.96 
per standard deviation of the PS, P = 1.3 × 10−6) and a positive associa-
tion with the obesity cluster (OR = 1.04, P = 0.00019). There was no 
evidence of heterogeneity in the effects of these two clusters on CAD 
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Fig. 3 | Associations of cluster-specific components of the partitioned PS 
with five T2D-related vascular outcomes in up to 279,552 individuals from 
multiple ancestry groups. Summaries of the associations of each cluster- 
specific component of the partitioned PS with CAD, ischaemic stroke (IS), 
peripheral artery disease (PAD), ESDN and proliferative diabetic retinopathy 
(PDR). The height of each bar corresponds to the log-odds ratio (beta) per 

standard deviation of the PS, and the grey bar shows the 95% confidence 
interval. Analyses of T2D-related macrovascular complications (CAD, PAD and 
IS) were undertaken in all individuals, with adjustment for T2D status. Analyses 
of microvascular complications were undertaken in individuals with T2D only. 
*P < 0.05, nominal association; **P < 0.0063, Bonferroni correction for eight 
clusters. Exact P values are provided in Supplementary Table 21.
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across ancestry groups (Supplementary Fig. 7 and Supplementary 
Table 21). Notably, after adjustment for a CAD PS derived from a pre-
viously published multi-ancestry meta-analysis of CAD GWASs39, the 
positive CAD association with both components of the partitioned 
PS remained significant (Extended Data Fig. 8 and Supplementary 
Table 22): beta cell +PI cluster (OR = 0.96, P = 4.4 × 10−5) and obesity 
cluster (OR = 1.04, P = 0.00065). We also observed a significant posi-
tive association of the obesity cluster from the partitioned PS with 
peripheral artery disease (OR = 1.05, P = 0.00045), with no evidence 
of heterogeneity in effects across ancestry groups (Supplementary 
Fig. 8 and Supplementary Table 21). Across all three macrovascular 
outcomes, there was a general trend of negative association with the 
beta cell +PI cluster and positive association with the obesity clus-
ter, although no cluster-specific components of the partitioned PS 
attained significance for ischaemic stroke (Supplementary Fig. 9 and 
Supplementary Table 21). There was no strong association of the overall 
T2D PS with CAD (P = 0.17), ischaemic stroke (P = 0.022) or peripheral 
artery disease (P = 0.77) after meta-analysis across ancestry groups. 
Together, these results highlight the advantages of the partitioned PS 
over an overall T2D PS for detecting associations with macrovascular 
outcomes, and provide insight into the biological processes that lead 
to their development.

We observed significant associations of two components of the par-
titioned PS with ESDN: a negative association with the beta cell +PI 
cluster (OR = 0.83, P = 0.00024) and a positive association with the 
obesity cluster (OR = 1.19, P = 0.00050). There was no evidence of het-
erogeneity in the effects of these two clusters across ancestry groups, 
(Supplementary Fig. 10 and Supplementary Table 21), and the overall PS 
was not strongly associated with ESDN (P = 0.048). By contrast, none of 
the cluster-specific components of the partitioned PS were associated 
with proliferative diabetic retinopathy. However, there was a strong 
positive association of the overall PS with this microvascular outcome 
(OR = 1.32, P = 1.1 × 10−9), with no evidence of heterogeneity in effects 
across ancestry groups (Supplementary Fig. 11 and Supplementary 
Table 21). Together, these results suggest that ESDN is associated with 
obesity and beta-cell dysfunction with opposite directions of effect, 
and confirm previous reports that proliferative diabetic retinopathy 
is driven by hyperglycaemia40 and therefore strongly associated with 
the overall burden of T2D risk variants.

Finally, we tested for associations of the cluster-specific components 
of the partitioned PS and the overall T2D PS with age of onset of T2D 
(Extended Data Fig. 9 and Methods). The overall PS was strongly associ-
ated with an earlier age of onset (1.15 years per standard deviation of 
the PS, P = 5.1 × 10−8), although the effects were highly heterogeneous 
across ancestry groups (Supplementary Fig. 12 and Supplementary 
Table 23). However, even after adjustment for the overall PS, the obesity 
cluster was significantly associated with an earlier age of onset (0.38 
years, P = 1.4 × 10−7), with no evidence of heterogeneity across ancestry 
groups. These findings highlight the importance of obesity-related 
processes for the onset of T2D, in addition to the development of vas-
cular complications.

Associations with vascular outcomes in clinical trials
To gain insight into the associations of the obesity and beta cell +PI 
clusters with a broader range of vascular outcomes, we assessed the 
performance of the partitioned PS (after adjustment for the overall 
PS) in prospective GWASs in up to 29,827 EUR individuals with T2D 
from six clinical trials from the Thrombolysis in Myocardial Infarc-
tion (TIMI) Study Group (Methods and Supplementary Table 24). We 
observed the strongest associations of cluster-specific components of 
the partitioned PS with risk of hospitalization for heart failure: positive 
with the obesity cluster (hazard ratio (HR) = 1.15 per standard devia-
tion of the PS, P = 4.8 × 10−6) and negative with the beta cell +PI clus-
ter (HR = 0.90, P = 0.00092). Amongst macrovascular outcomes, the 

beta cell +PI cluster was also negatively associated with cardiovascular 
death (HR = 0.90, P = 0.0020), major cardiovascular events (HR = 0.94, 
P = 0.0050) and myocardial infarction (HR = 0.94, P = 0.027). For micro-
vascular outcomes, the two clusters showed associations with oppo-
site directions of effect for albuminuria: obesity cluster (HR = 1.06, 
P = 0.012) and beta cell +PI cluster (HR = 0.95, P = 0.047). Across all 
outcomes, there was a general trend of positive association with the 
obesity cluster and negative association with the beta cell +PI cluster 
(Extended Data Fig. 10), consistent with the associations observed 
from our analyses of retrospective GWASs across ancestry groups.

Discussion
To better understand the aetiological heterogeneity of T2D across 
diverse populations, we assembled a large collection of T2D GWASs 
for six ancestry groups through the Type 2 Diabetes Global Genom-
ics Initiative. By increasing the effective sample size by almost three-
fold compared with previous efforts, we identified a total of 611 loci 
attaining the conventional threshold of genome-wide significance 
(P < 5 × 10−8), 145 (23.7%) of which have not to our knowledge been 
previously reported. This conventional threshold is equivalent to a 
Bonferroni correction for the effective number of independent SNVs 
in EUR reference data41. Using empirical data from the 1000 Genomes 
Project, the DIAMANTE Consortium and others have advocated more 
stringent thresholds for multi-ancestry meta-analysis because the 
structure of LD is broken down across ancestry groups and the effec-
tive number of independent SNVs is increased9,42. In fact, our analyses 
suggest that loci meeting conventional genome-wide significance are 
unlikely to be false positive association signals, but instead are driven 
by index SNVs that have modest effects that require larger sample sizes 
to meet more stringent thresholds. We therefore recommend the use 
of this conventional threshold but advocate careful review of reported 
signals to ensure that associations are not driven by single studies or 
poorly imputed variants to protect against false positives.

Multi-ancestry meta-regression maximizes power to detect associa-
tions that are shared across ancestry groups by allowing for heterogene-
ity in allelic effects at index SNVs. MR-MEGA is not restricted to broad 
continental ancestry labels that can be used to reinforce the concept 
of fundamental genetic differences between groups43, but instead rep-
resents ancestry as continuous axes of genetic variation, which better 
reflect the continuum of human genetic diversity and demographic 
history44. Still, it is important to emphasize that our meta-analysis 
does not fully capture global genetic diversity, in particular under-
represented populations across Africa, South and Central America, 
the Middle East and Oceania. For example, 98.2% of the total effective 
sample size of individuals with the highest proportion of ancestry 
from Africa are African Americans. The ancestry of these individuals 
represents a cline of admixture that is predominantly from West Africa 
and is therefore not representative of other regions in Africa, where 
the level of genetic variation is equivalent to the differences observed 
between other continental groups43. Bolstering GWAS collections in 
these underrepresented populations remains an urgent priority for 
the human genetics research community and highlights the need for 
careful interpretation of results that does not generalize findings across 
ancestry groups that are sensitive to biased representation.

Within the landscape of the genetic architecture of T2D, we identified 
eight clusters of index SNVs with distinct profiles of associations with 37 
cardiometabolic phenotypes, which defined pathophysiology-relevant 
groupings. The addition of previously unreported T2D signals identi-
fied through the multi-ancestry meta-analysis helped define three 
clusters that were not detected in previous clustering efforts3,4,20,21, with 
cardiometabolic profiles that are consistent with residual glycaemic 
effects, accumulations of body fat and metabolic syndrome. These 
previous efforts have implemented ‘soft clustering’ approaches, such 
as Bayesian non-negative matrix factorization, that generate weights 
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for cluster membership for each index SNV4. The assignment of index 
SNVs to clusters is then determined given a threshold weight for clus-
ter membership, allowing for the possibility that a T2D association 
signal affects disease through multiple pathophysiological pathways. 
However, depending on the threshold for cluster membership, some 
index SNVs will be unassigned. Bayesian non-negative matrix factoriza-
tion also considers positive and negative associations with the same 
phenotype as independent variables, and most clustering methods 
cannot directly accommodate missing phenotype associations. To 
address these potential limitations, we implemented methodology 
that jointly conducts k-means clustering of index SNVs with powerful 
iterative multiple imputation of missing phenotype associations. In this 
‘hard clustering’ approach, each index SNV is assigned to exactly one 
cluster. This has the potential disadvantage, therefore, that index SNVs 
with outlying or intermediate profiles of trait associations are ‘forced’ 
into a cluster that does not fit well. However, the previously unreported 
clusters that we identified in our hard clustering were not noticeably 
more disparate than the clusters reported previously, suggesting that 
we have not introduced substantial noise by forcing all SNVs into exactly 
one cluster. Ultimately, the choice of clustering approach may depend 
on the objectives of any downstream investigations.

Our analyses highlighted a significant excess of T2D association 
signals with ancestry-correlated heterogeneity, which is driven mainly 
by differences in allelic effects between AFA, EAS and EUR GWASs. The 
two beta-cell-dysfunction clusters are most strongly associated with the 
AFA–EAS axis, in which effects are typically larger in EAS GWASs than 
in those for other ancestry groups. These two clusters are also most 
strongly associated with reduced insulin secretion and lower insulin 
resistance. By contrast, the lipodystrophy and obesity clusters, which 
are characterized by reduced insulin sensitivity and higher insulin 
resistance, are most strongly associated with the AFA–EUR axis, in 
which effects are typically larger in EUR than in other ancestry groups. 
These observations are consistent with studies reporting differences 
in the pathogenesis of T2D between ancestry groups, whereby T2D is 
initiated mainly through increased insulin resistance in EUR individu-
als, but is characterized by reduced insulin secretion with lower insulin 
resistance in EAS individuals45,46. We have shown that most signals with 
ancestry-correlated heterogeneity can be explained by differences 
in the distribution of BMI in T2D cases and controls between ances-
try groups. Furthermore, after adjustment for study-level mean BMI, 
we observe no difference in allelic effects between clusters along the 
AFA–EAS axis. This is consistent with previous studies that reported 
that body composition is the main determinant of variation in T2D 
pathogenesis between EAS and EUR individuals, because insulin sen-
sitivity and beta-cell response are similar in the two ancestry groups 
after accounting for differences in BMI45,47.

We reveal—across multiple ancestry groups—significant associa-
tions of vascular outcomes with cluster-specific components of the 
partitioned PS after adjustment for the overall PS, which suggests 
that disease trajectories are associated with genetic burden in certain 
biological pathways that are consistent across diverse populations. 
Although the effect sizes of the cluster-specific components of the par-
titioned PS were small, they motivate future work to strengthen these 
effects through the identification of further T2D associations in larger 
sample sizes. Through integration with single-cell chromatin accessibil-
ity data across diverse cell types, they also enhance understanding of 
key biological processes driving heterogeneity in the clinical features of 
T2D phenotypes. For example, the obesity-cluster-specific component 
of the PS was positively associated with CAD and ESDN, and included 
index SNVs that were enriched for regions of open chromatin in fetal 
ventricular cardiomyocytes, fetal adrenal neuron, adult chromaffin 
cells in the adrenal gland and fetal metanephric cells. These findings 
are in line with the reported enrichments of CAD association signals 
for transcriptomic and epigenomic annotations in bulk tissues includ-
ing the aorta and arteries, the heart and the adrenal gland39,48,49, and of 

renal function association signals in kidney-tissue-specific regulatory 
annotations50. Together, these findings provide a clear link to shared 
biological mechanisms that drive the development of T2D and other 
vascular diseases.

In conclusion, our findings show the value of integrating multi- 
ancestry GWASs of T2D and cardiometabolic traits with single-cell 
epigenomics across diverse tissues to disentangle the aetiological 
heterogeneity driving the development and progression of T2D across 
population groups. Improved understanding of the varied pathophysi-
ological processes that link T2D to vascular outcomes could offer a 
route to genetically informed diabetes care and global opportunities 
for the clinical translation of findings from T2D GWASs.
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Article
Methods

Study-level analyses
Within each study, we assigned individuals to ancestry groups using 
self-report and genetic background (Supplementary Tables 1 and 2). 
Any individuals not assigned to an ancestry group were excluded as 
population outliers. Within each ancestry group-specific GWAS, we con-
ducted quality control of genotype data and imputed up to reference 
panels from the Trans-Omics for Precision Medicine Program51, Haplo-
type Reference Consortium52, 1000 Genomes Project (phase 1, March 
2012 release; phase 3, October 2014 release)53,54, or population-specific 
whole-genome sequencing55–61 (Supplementary Table 3). Studies 
imputed to reference panels mapped to GRCh38 (hg38) were lifted 
back to hg19 using the UCSC LiftOver tool (https://genome.ucsc.edu/
cgi-bin/hgLiftOver). We excluded SNVs with poor imputation quality 
and/or minor allele count (MAC) < 5 (Supplementary Table 3).

Within each ancestry group-specific GWAS, we tested for association 
of each SNV with T2D through generalized linear (mixed) modelling, 
under an additive dosage of the minor allele, with adjustment for age 
and sex (where appropriate), and additional study-specific covariates 
(Supplementary Table 3). We used different strategies to account for 
population stratification and/or kinship: (i) exclude closely related 
individuals and adjust for principal components derived from a genetic 
relatedness matrix (GRM) as additional covariates; or (ii) incorporate 
a random effect for the GRM (Supplementary Table 3). Allelic effects 
and corresponding standard errors that were estimated from a linear 
mixed model were converted to the log-odds scale62. We corrected 
study-level association summary statistics for residual structure by 
the LD-score regression intercept63 (Supplementary Table 3) using 
an LD reference that we derived from ancestry-matched haplotypes  
from continental groups in the 1000 Genomes Project (phase 3, October 
2014 release)54. We matched AFA GWASs to the ‘African’ continental 
group and HIS GWASs to the ‘American’ continental group.

Multi-ancestry meta-analyses
We analysed autosomal bi-allelic SNVs that overlap reference pan-
els from the 1000 Genomes Project (phase 3, October 2014 release)54 
and the Haplotype Reference Consortium52. We considered SNVs with 
MAF > 0.5% in at least one of the five continental groups in the 1000 
Genomes Project (phase 3, October 2014 release)54. We excluded SNVs 
that differed in allele frequency by more than 20% when comparing 
reference panels in the same subsets of haplotypes.

We used meta-regression, implemented in MR-MEGA10, to aggre-
gate association summary statistics across GWASs. MR-MEGA models 
allelic effect heterogeneity that is correlated with genetic ancestry by 
including axes of genetic variation as covariates in the meta-regression 
model to capture diversity between GWASs. We used SNVs reported 
in all studies to construct a distance matrix of differences in mean 
effect allele frequency between each pair of GWASs. We implemented 
multi-dimensional scaling of the distance matrix to obtain three prin-
cipal components that represent axes of genetic variation to separate 
GWASs across ancestry groups (Extended Data Fig. 1).

For each SNV, we aggregated inverse-variance weighted allelic effects 
across GWASs through linear regression, including three axes of genetic 
variation as covariates. We tested for: (i) association with T2D allowing 
for ancestry-correlated allelic effect heterogeneity between GWASs; 
(ii) ancestry-correlated allelic effect heterogeneity between GWASs 
(defined by the axes of genetic variation); and (iii) residual allelic 
effect heterogeneity between GWASs. MR-MEGA is a meta-regression 
approach, and therefore does not produce an allelic effect estimate 
because this is allowed to vary with the axes of genetic variation. Con-
sequently, we also aggregated association summary statistics across 
GWASs through fixed-effects meta-analysis (inverse-variance weight-
ing of allelic effects) using METAL64. To assess the extent of residual 
structure between GWASs, we calculated the genomic control inflation 

factor65 for the multi-ancestry meta-regression and the fixed-effects 
meta-analysis. We considered only those SNVs reported in at least five 
GWASs for downstream interrogation.

Defining T2D signals and loci
We identified all SNVs attaining genome-wide significance (P < 5 × 10−8) 
for association with T2D from the multi-ancestry meta-regression. 
Clumps were formed around index variants, which were selected using 
a greedy algorithm in PLINK v.1.9 (ref. 66), after ranking SNVs by ascend-
ing P value. SNVs less than 5 Mb from an index SNV were assigned to the 
clump if r2 > 0.05 in at least one of the five continental groups from the 
1000 Genomes Project (phase 3, October 2014 release)54. Index SNVs 
separated by less than 1 Mb were assigned to the same locus. Each locus 
was then defined as mapping 500 kb up- and downstream of index SNVs 
contained within it. We considered the locus to have been previously 
reported if it contained variants discovered in published large-scale 
T2D GWASs at genome-wide significance.

Ancestry-group-specific meta-analyses
We aggregated association summary statistics across GWASs 
from the same ancestry group through fixed-effects meta-analysis 
(inverse-variance weighting of allelic effects) using METAL64. We 
estimated the mean effect allele frequency across GWASs from each 
ancestry group, weighted by the effective sample size of the study. 
We generated forest plots of association summary statistics of index 
SNVs across ancestry groups using the R package meta (https://
cran.r-project.org/package=meta/).

Defining clusters of T2D index SNVs with distinct 
cardiometabolic profiles
We considered cardiometabolic-related quantitative phenotypes that 
are used to define T2D status and/or are associated with risk of T2D or 
complications. We excluded phenotypes for which GWAS summary 
statistics were available only after imputation to reference panels from 
the International HapMap Project67 because they did not provide suf-
ficient coverage of SNVs included in the multi-ancestry meta-analysis. 
We considered the largest available GWAS meta-analysis 
(ancestry-specific or multi-ancestry) that provided the following asso-
ciation summary statistics for each SNV: effect allele, other allele, allelic 
effect and corresponding standard error (Supplementary Table 5). We 
re-aligned the effect estimate to the T2D risk allele from the fixed-effects 
multi-ancestry meta-analysis, denoted βij for the jth index SNV and the 
ith phenotype. We then calculated a sample size corrected z-score, 
given by Z β N s= /( )ij ij i ij , where sij is the standard error of the effect 
estimate of the jth index SNV and the ith phenotype, and Ni is the max-
imum sample size reported for the ith phenotype. Where association 
summary statistics were not reported, the z-score was set as ‘missing’.

We conducted k-means clustering of index SNVs with imputa-
tion of missing z-scores using the R package ClustImpute (https://
cran.r-project.org/package=ClustImpute). For a pre-defined number 
of clusters, ClustImpute replaces missing z-scores at random from the 
marginal distribution for the phenotype in the first iteration and per-
forms k-means clustering. In subsequent iterations, missing z-scores 
are updated, conditional on the current cluster assignment, so that 
correlations between phenotypes are considered. At each iteration, 
penalizing weights are imposed on imputed values and successively 
decreased (to zero) as the missing data imputation improves. Finally, we 
determined the ‘optimal’ number of clusters according to the majority 
rule across 27 indices of cluster performance68, implemented in the R 
package NbClust (https://cran.r-project.org/package=NbClust).

We tested for association of the ith phenotype with index SNVs across 
clusters in a linear regression model, given by ∑E Z γ C( ) =ij k ik jk, where 
Cjk is an indicator variable that takes the value 1 if the jth index SNV was 
assigned to the kth cluster and 0 otherwise. The strength or direction 
of the association of each phenotype with each cluster was then 
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presented in a heat map, in which the ‘temperature’ was defined by the 
direction of the regression coefficient γik and the corresponding −log10 
P value. Regression models were fitted using the glm function in R.

We extracted cardiometabolic phenotype z-scores from the final 
imputed dataset from ClustImpute. We calculated the Euclidean  
distance between the jth SNV and kth cluster centroid as

∑δ Z μ= ( − ) ,jk i ij ik
2

where Zij and μik are the z-score of the jth SNV and the location of the 
kth cluster centroid for the ith cardiometabolic phenotype. To assess 
cluster disparity, we also performed principal components analy-
sis of cardiometabolic phenotype z-scores from the final imputed 
dataset using the R package factoextra (https://cran.r-project.org/
package=factoextra).

Cluster-specific associations of index SNVs with T2D
We tested for association of T2D with index SNVs across clusters in a 
linear regression model, given by ∑E β γ C( ) =j k k jk, where Cjk is an indi-
cator variable that takes the value 1 if the jth index SNV was assigned 
to the kth cluster and 0 otherwise, and weighted by the inverse of the 
variance of the allelic effect. We tested for heterogeneity in cluster 
effects on T2D by comparing the deviance of this model with that of 
E β γ( ) =j 0

, again weighted by the inverse of the variance of the allelic 
effect. To compare associations between previously reported clusters 
and previously unreported clusters, we replaced Cjk with an indicator 
variable that takes the value 1 if the jth index SNV was assigned to a 
previously reported cluster and 0 otherwise. Regression models were 
fitted using the glm function in R.

Enrichment of T2D associations for cell-type-specific regions of 
open chromatin within clusters
For each T2D association signal, we defined ‘null’ SNVs that mapped 
within 50 kb of the index SNV and were not in LD (r2 > 0.05) with the 
index SNV in any of the five continental groups from the 1000 Genomes 
Project (phase 3, October 2014 release)54. We defined an indicator 
variable, Yj, taking the value 1 if the jth SNV is an index SNV and 0 if the 
jth SNV is a null SNV. We mapped index SNVs and null SNVs to genic 
regions defined by the Ensembl Project (release 104)69, including 
protein-coding exons, and 3′ UTRs and 5′ UTRs. We defined indicator 
variables, G j

EXON, G j
3UTR and G j

5UTR, which each take the value 1 if the jth 
SNV mapped to the respective genic annotation and 0 otherwise. We 
also mapped index SNVs and null SNVs to ATAC-seq peaks from 
single-cell atlases of chromatin accessibility (CATLAS and DESCARTES) 
for: 222 cell types derived from 30 human adult and 15 human fetal 
tissues25,26; and 106 cell types derived from human brain27. We defined 
an indicator variable, Xij, that takes the value 1 if the jth SNV mapped 
to an ATAC-seq peak for the ith cell type and 0 otherwise.

Within each cluster, we modelled enrichment of T2D associations for 
ATAC-seq peaks in the ith cell type, after accounting for genic annota-
tions, in a Firth bias-reduced logistic regression, given by

f Y α α G α G α G θ X( ) = + + + + ,j j j j i ij
−1

0 EXON
EXON

3UTR
3UTR

5UTR
5UTR

where f is the logit link function. In this expression, α0 is an intercept, 
αEXON, α3UTR and α5UTR are log fold enrichments of genic annotations, and 
θi is the log fold enrichment of ATAC-seq peaks in the ith cell type. We 
conducted a test of enrichment of the ith cell type by comparing the 
deviances of models in which θi = 0 and θi is unconstrained. We identi-
fied cell types with significant evidence of enrichment (P < 0.00023, 
Bonferroni correction for 222 cell types in adult and fetal tissues; 
P < 0.00047, Bonferroni correction for 106 cell types in the brain). All 
models were fitted using the R package logistf (https://cran.r-project.
org/package=logistf).

Contribution of each axis of genetic variation to 
ancestry-correlated heterogeneity
For each index SNV, we calculated a z-score (beta/SE) for associa-
tion with each axis of variation by aligning the effect from the meta- 
regression model to the T2D risk allele. For each index SNV, we identified 
the axis of genetic variation with the strongest association (greatest 
magnitude z-score).

Differences in ancestry-correlated heterogeneity between 
mechanistic clusters
We tested for differences in z-scores (beta/SE) for association of index 
SNVs in each cluster with the ith axis of genetic variation by comparing 
two linear models by ANOVA: (i) f Z τ( ) =ij i

−1
0 ; and (ii) ∑f Z τ C( ) =ij k ki jk

−1 . 
In these expressions: f is the identity link function; Zij is the z-score for 
the jth index SNV; Cjk is an indicator variable that takes the value 1 if the 
jth index SNV was assigned to the kth cluster and 0 otherwise; and τ0i 
and τki are regression coefficients. Regression models were fitted using 
the glm function in R.

Effect of BMI on ancestry-correlated and residual heterogeneity 
in allelic effects between GWASs
For each index SNV, we aggregated inverse-variance weighted allelic 
effects across GWASs by linear regression, implemented in MR-MEGA10, 
including as covariates: (i) three axes of genetic variation; (ii) mean 
BMI in controls; and (iii) mean BMI in T2D cases. After adjustment for 
BMI, we tested for: (i) ancestry-correlated allelic effect heterogeneity 
between GWASs; and (ii) residual allelic effect heterogeneity between 
GWASs. After adjustment, as outlined above, we re-assessed: (i) the 
contribution of each axis of genetic variation to ancestry-correlated 
heterogeneity; and (ii) the difference in ancestry-correlated heteroge-
neity between mechanistic clusters.

Cluster-specific partitioned PS analyses of vascular outcomes 
and age of T2D onset
We tested for association of cluster-specific components of the parti-
tioned PS and an overall PS with T2D-related macrovascular outcomes 
(CAD, ischaemic stroke and peripheral artery disease), microvascular 
complications (ESDN and proliferative diabetic retinopathy) and age of 
T2D onset in participants from the All of Us Research Program (AoURP; 
AFA, EUR and HIS ancestry groups), Biobank Japan (BBJ; EAS ancestry 
group), and Genes & Health (G&H; SAS ancestry group). Cohort descrip-
tions and details of sequencing and genotyping, quality control and 
phenotype derivation are provided in the Supplementary Methods.

We conducted analyses separately for each ancestry group in AoURP, 
BBJ and G&H. For each ancestry, we performed analyses for macrovas-
cular outcomes using all individuals, irrespective of T2D status, and 
for microvascular complications in individuals with T2D only. For each 
analysis, we calculated the overall PS and cluster-specific partitioned PS 
for each individual, with each index SNV weighted by the allelic log-OR 
from the ancestry-specific meta-analyses. We did not include index 
SNVs with MAF < 1% in the PS. We also excluded index SNVs with poor 
imputation quality (r2 < 0.7) in BBJ and G&H, and those with extreme 
deviation from Hardy–Weinberg equilibrium (P < 10−6) in AoURP. We 
standardized the overall PS and each cluster-specific component of 
the partitioned PS to have mean zero and unit variance. We tested for 
association with each vascular outcome through generalized linear 
regression and with age of T2D onset through linear regression. For 
each outcome, we considered a model including the overall PS and 
then each cluster-specific component the partitioned PS adjusted 
for the overall PS. All association analyses were conducted using the 
glm function in R.

We adjusted association analyses with vascular outcomes for age, 
sex and the first 20 principal components. In BBJ, we also adjusted 
for recruitment phase and status of the registered common diseases 
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(other than T2D) to account for ascertainment. We further adjusted 
analyses of macrovascular outcomes for T2D status. We also further 
adjusted analyses of microvascular complications for duration of T2D. 
In AoURP, we defined age as age at last hospital visit. In BBJ, we defined 
age as age at first record. In G&H, we defined age as age at diagnosis 
for T2D cases and age at last follow-up for controls. For CAD, we also 
conducted sensitivity analyses by including, as an additional covari-
ate, a CAD PS from the largest published multi-ancestry CAD GWAS39. 
The PS was constructed from index SNVs for 241 conditionally inde-
pendent CAD associations, weighted by the multi-ancestry allelic 
log-OR (ancestry-specific effects were not available), and standard-
ized to have mean zero and unit variance. We adjusted association 
analyses with age of T2D onset for sex and the first 20 principal com-
ponents. In BBJ, we also adjusted for recruitment phase and status 
of the registered common diseases (other than T2D) to account for  
ascertainment.

For each outcome, we aggregated association summary statistics 
from each cluster-specific component of the partitioned PS and the 
overall PS across ancestries through random-effects meta-analyses. 
All meta-analyses were conducted using the R package meta (https://
cran.r-project.org/package=meta).

Cluster-specific partitioned PS analyses of clinical outcomes
We tested for association of cardiovascular and kidney-related clinical 
outcomes in EUR individuals with T2D in prospective GWASs from six 
clinical trials from the Thrombolysis in Myocardial Infarction (TIMI) 
Study Group (https://timi.org/). Trial descriptions and details of geno-
typing and quality control are provided in the Supplementary Methods.

Within each trial, we calculated the overall PS and cluster-specific 
components of the partitioned PS for each individual, with each index 
SNV weighted by the allelic log-OR from the European ancestry-specific 
meta-analysis. We standardized the overall PS and each cluster-specific 
component of the partitioned PS to have mean zero and unit variance. 
Data from the six trials were subsequently pooled, and we considered 
the following clinical outcomes in patients with T2D only: myocardial 
infarction, ischaemic stroke, cardiovascular death, hospitalization for 
heart failure, atrial fibrillation, acute limb ischaemia, peripheral revas-
cularization, end-stage renal disease or renal death and albuminuria. 
We tested for association of each cluster-specific component of the 
partitioned PS with each clinical outcome under a Cox proportional 
hazards model, including age, sex, the first ten principal components 
and the overall PS as covariates. All association analyses were conducted 
using the coxph function with Efron ties handling from the R package 
survival (https://cran.r-project.org/package=survival).

Ethics statement
Study-level ethics statements are provided in the Supplementary Note.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Genome-wide association summary statistics from the multi-ancestry 
meta-analysis and ancestry-specific meta-analyses reported in this 
study are available through the DIAGRAM Consortium website  
(http://www.diagram-consortium.org/downloads.html).
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edu/browning/beagle/b4_1.html), SNPTEST v.2.5.6 (https://www.well.
ox.ac.uk/~gav/snptest/), GWAMA v.2.2.2 (https://genomics.ut.ee/en/
tools), EIGENSOFT v.7.2.1 (https://www.hsph.harvard.edu/alkes-price/
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Extended Data Fig. 1 | Axes of genetic variation separating GWASs of  
T2D across ancestry groups. We used SNVs that were reported in all studies  
to construct a distance matrix of mean effect allele frequency differences 
between each pair of GWASs. We implemented multi-dimensional scaling of 
the distance matrix to principal components that represent axes of genetic 
variation. The first three axes of genetic variation (PC1, PC2 and PC3) from 

multi-dimensional scaling of the Euclidean distance matrix between populations 
are sufficient to separate GWASs from six ancestry groups: African American 
(AFA), East Asian (EAS), European (EUR), Hispanic (HIS), South African (SAF), 
and South Asian (SAS). Variance explained by each axis: PC1 90.7%; PC2 6.5%; 
PC3 1.0%.



Extended Data Fig. 2 | Cluster-specific associations of index SNVs with 
defining cardiometabolic phenotypes. Each bar presents the −log10 P value 
for association, with effect direction aligned to the T2D risk allele. FG: fasting 

glucose. FI: fasting insulin. PI: proinsulin. BMI: body mass index. WHR:  
waist–hip ratio. LDL: low-density lipoprotein cholesterol. HDL: high-density 
lipoprotein cholesterol. TG: triglycerides. *Trait adjusted for BMI.
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Extended Data Fig. 3 | Cluster-specific associations of index SNVs with T2D. 
The height of each bar corresponds to the log-odds ratio (beta), and the grey 
bar shows the 95% confidence interval. *P < 0.05, nominal association. 
**P < 0.0063, Bonferroni correction for eight clusters. Exact P values are 
presented in Supplementary Table 9.



Extended Data Fig. 4 | Cluster-specific associations of T2D risk alleles at 
index SNVs with insulin-related endophenotypes. Measures of insulin 
secretion and insulin sensitivity were derived from hyperinsulinaemic- 
euglycaemic clamp assessments and oral glucose tolerance tests in up to  
1,316 Mexican American participants without diabetes. Homeostatic model 

assessment measures of beta-cell function (HOMA-B) and insulin resistance 
(HOMA-IR) were obtained from 36,466 non-diabetic individuals of European 
ancestry. Each point corresponds to the cluster-specific mean z-score for each 
trait, and grey bars represent 95% confidence intervals. The liver and lipid 
metabolism cluster has been removed for ease of presentation.
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Extended Data Fig. 5 | Cluster-specific associations of T2D risk alleles at 
index SNVs with insulin-resistance-related disorders. Association with 
gestational diabetes mellitus (GDM) was assessed in 5,485 cases and 347,856 
female controls of diverse ancestry. Association with polycystic ovary 
syndrome (PCOS) was assessed in 10,074 cases and 103,164 female controls of 

European ancestry. The height of each bar corresponds to the mean z-score, 
and the grey bar shows the 95% confidence interval. The liver and lipid 
metabolism cluster has been removed for ease of presentation. *P < 0.05, 
nominal association. **P < 0.0063, Bonferroni correction for eight clusters. 
Exact P values are presented in Supplementary Table 12.



Extended Data Fig. 6 | Ancestry-correlated heterogeneity is driven by 
differences in allelic effect sizes between AFA, EAS and EUR ancestry 
groups. In the scatter plot, index SNVs with significant evidence (PHET < 3.9 × 10−5, 
Bonferroni correction for 1,289 signals) for ancestry-correlated heterogeneity 
are plotted according to their association (z-score) with the first two axes of 
genetic variation. The first axis represents differences in allelic effect sizes 
between AFA/EUR GWASs and EAS GWASs (AFA–EAS axis), whilst the second 
axis represents differences in effect size between AFA/EAS GWASs and EUR 

GWASs (AFA–EUR axis). The forest plots present examples of ancestry-correlated 
heterogeneity at index SNVs. In each forest plot, the allelic log-odds ratio (OR) 
from each ancestry group-specific fixed-effects meta-analysis is given by the 
black tick mark, the 95% confidence interval is given by the horizontal line,  
and the weight (inverse-variance) of each ancestry group by the grey box.  
AFA: African American ancestry group. EAS: East Asian ancestry group. EUR: 
European ancestry group. HIS: Hispanic ancestry group. SAF: South African 
ancestry group. SAS: South Asian ancestry group.
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Extended Data Fig. 7 | Cluster-specific associations of index SNVs with the 
first two axes of genetic variation in T2D cases and controls. a, Unadjusted 
for BMI. b, Adjusted for study-level mean BMI. Each point corresponds to a 
cluster, plotted according to the mean z-score for association with the first two 

axes of genetic variation (PC1 and PC2) on the x axis and y axis, respectively. 
Grey bars correspond to 95% confidence intervals. The liver and lipid 
metabolism cluster has been removed for ease of presentation.



Extended Data Fig. 8 | Associations of cluster-specific components of  
the partitioned PS with CAD in up to 279,552 individuals across diverse 
ancestry groups. The panel summarizes the associations of each cluster-specific 
component of the partitioned PS with CAD, with and without adjustment for a 
previously published multi-ancestry CAD PS. The height of each bar corresponds 

to the log-OR (beta) per standard deviation of the PS, and the grey bar shows 
the 95% confidence interval. Analyses were undertaken in all individuals, with 
adjustment for T2D status. *P < 0.05, nominal association. **P < 0.0063, 
Bonferroni correction for eight clusters. Exact P values are presented in 
Supplementary Tables 21 and 22.
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Extended Data Fig. 9 | Associations of cluster-specific components of the 
partitioned PS with T2D age of onset in up to 30,288 individuals across 
diverse ancestry groups. The panel summarizes the associations of each 
cluster-specific component of the partitioned PS with age of onset. The height 
of each bar corresponds to years (beta) per standard deviation of the PS, and 
the grey bar shows the 95% confidence interval. A negative effect corresponds 
to earlier age of onset. *P < 0.05, nominal association. **P < 0.0063, Bonferroni 
correction for eight clusters. Exact P values are presented in Supplementary 
Table 23.



Extended Data Fig. 10 | Associations of the beta cell +PI and obesity 
cluster-specific components of the partitioned PS with vascular outcomes 
in up to 29,827 EUR individuals with T2D from six clinical trials from the 
TIMI Study Group. Major cardiovascular event is defined as myocardial 
infarction, ischaemic stroke, or cardiovascular death. Major limb event is 

defined as acute limb ischaemia or peripheral revascularization. The height  
of each bar corresponds to the log-hazard ratio per standard deviation of the 
PS, and the grey bar shows the 95% confidence interval. *P < 0.05, nominal 
association. **P < 0.0063, Bonferroni correction for eight clusters. Exact  
P values are presented in Supplementary Table 24.
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Supplementary Text 
 
Summary of loci identified through recent large-scale multi-ancestry meta-analyses. Two 
recent partially overlapping multi-ancestry meta-analyses of T2D GWAS together account for 
69.3% of the total effective sample size of the multi-ancestry meta-regression undertaken by 
the T2D Global Genomics Initiative (Supplementary Figure 1). First, the meta-analysis of 
GWAS from the Million Veteran Program1, which includes 228,499 T2D cases and 1,178,783 
controls. Second, the meta-analysis of GWAS from the DIAMANTE Consortium2, which 
includes 180,834 cases and 1,159,055 controls. We aimed to provide a comprehensive 
overview of the genetic contribution to T2D by summarising loci reported in these multi-
ancestry GWAS meta-analyses at the conventional genome-wide significance threshold 
(P<5x10-8) and a more stringent multi-ancestry genome-wide significance threshold 
(P<5x10-9) proposed by the DIAMANTE Consortium. We aggregated loci reported in each of 
the three meta-analyses, ensuring no overlap between adjacent loci. Taken together, the 
three studies report 636 non-overlapping loci spanning 835.5Mb, of which 536 (84.3%) meet 
stringent multi-ancestry genome-wide significance in at least one of the multi-ancestry 
meta-analyses (Supplementary Table 25). 

We investigated the likelihood that loci reported at the conventional genome-wide 
significance threshold by the DIAMANTE Consortium meet the more stringent multi-ancestry 
threshold in the larger sample size afforded by the T2D Global Genomics Initiative. We 
focussed on comparing results from these two efforts because both used the same meta-
regression approach (MR-MEGA) to aggregate association summary statistics across GWAS. 
Of 39 loci with association signals meeting 5x10-9≤P<5x10-8 reported by the DIAMANTE 
Consortium, 36 (92.3%) attained multi-ancestry genome-wide significance in the T2D Global 
Genomics Initiative (Supplementary Table 25). Of the three loci that did not meet the more 
stringent threshold, the signal at the RASA1 locus was marginally more strongly associated 
(lead SNV rs11953892, P=1.6x10-8 versus P=1.9x10-8) in the T2D Global Genomics Initiative 
meta-analysis than in the DIAMANTE Consortium meta-analysis. However, association 
signals at the two remaining loci were weaker in the T2D Global Genomics Initiative than in 
the DIAMANTE Consortium, despite the increase in sample size. At the locus encompassing 
CCDC39 and FXR1, the association signal was nominally significant in the Million Veteran 
Program (lead SNV rs4854992, P=0.0081) with the same direction of effect as in the 
DIAMANTE Consortium meta-analysis. However, at the CFAP6 locus, there was no 
association in the Million Veteran Program (lead SNV rs7261425, P=0.13).    

Taken together, these results indicate that index SNVs attaining the conventional 
threshold of P<5x10-8 are unlikely to be false positive association signals but have modest 
effects that require larger sample sizes to meet multi-ancestry genome-wide significance. 
 
Clusters are differentially associated with insulin-related endophenotypes. We assessed 
the association of index SNVs with insulin-related endophenotypes that were not used for 
clustering and derived from: hyperinsulinemic-euglycemic clamp assessments and oral 
glucose tolerance tests (OGTT) in up to 1,316 Mexican American participants without 
diabetes from the GUARDIAN Consortium3; and homeostatic model assessment measures of 
beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 36,466 non-diabetic 
EUR individuals from MAGIC4 (Supplementary Methods). We observed significant 
heterogeneity in the effects of T2D risk alleles at index SNVs between clusters on HOMA-B 
(PHET<2.2x10-16), HOMA-IR (PHET=4.1x10-15), insulin secretion (OGTT-derived area under the 



curve for insulin normalised for glucose from baseline to 30 minutes, PHET=0.0026), and 
insulin sensitivity (clamp-derived glucose infusion rate, PHET=0.026). T2D risk alleles at index 
SNVs showed a gradient of effects on these correlated measures across clusters (Extended 
Data Figure 4, Supplementary Tables 10 and 11), representing a cline from insulin 
production and processing in the two beta-cell dysfunction clusters (increased insulin 
sensitivity; decreased insulin secretion, HOMA-B, and HOMA-IR) through to insulin 
resistance (decreased insulin sensitivity; increased insulin secretion, HOMA-B, and HOMA-IR) 
that was most extreme in the lipodystrophy cluster. 
 
Clusters are differentially associated with insulin resistance-related disorders. To 
understand the shared biological pathways driving genetic correlations with gestational 
diabetes mellitus (GDM) and polycystic ovary syndrome (PCOS), we extracted association 
summary statistics for each T2D index SNV from the largest available published GWAS for 
both disorders5,6 (Supplementary Methods). We observed significant heterogeneity in the 
effects of T2D risk alleles at index SNVs between clusters for both disorders (Extended Data 
Figure 5, Supplementary Table 12): GDM (PHET=7.0x10-16) and PCOS (PHET=0.00022). Index 
SNVs in the beta-cell +PI cluster demonstrated the strongest associations with GDM. This 
cluster includes T2D index SNVs that overlap with association signals previously reported for 
GDM, mapping to/near MTNR1B, CDKAL1, TCF7L2, and CDKN2A-CDKN2B, consistent with 
hyperglycaemia due to beta-cell dysfunction on a background of pregnancy-induced 
physiologic insulin resistance7. In contrast, PCOS is most strongly associated with index SNVs 
in the obesity cluster, consistent with previous Mendelian randomization studies that report 
a strong causal effect of higher BMI on increased PCOS risk8. 
 
Cluster-specific associations of index SNVs with circulating GLP-1 concentrations. The beta-
cell -PI cluster was enriched in adult enterochromaffin cells, a type of enteroendocrine cell 
that plays an essential role in regulating intestinal motility and secretion in the 
gastrointestinal tract9. Enterochromaffin cells are a major target for GLP-1 and highly express 
GLP-1 receptor, whose agonists are widely used as medications for T2D10. Between clusters, 
we compared the associations of index SNVs with 2-hour and fasting circulating GLP-1 
concentrations in up to 3,514 EUR individuals from the Malmo Diet and Cancer Study11 and 
the PPP-Botnia Study12 (Supplementary Methods). Whilst differences in the effects of index 
SNVs on these measures were not significant between clusters (P>0.05), T2D risk alleles for 
index SNVs in the beta-cell -PI cluster showed a trend of association with decreased 2-hour 
GLP-1, whilst those in other clusters showed a trend of association with increased fasting 
GLP-1 (Supplementary Figure 13). Additional analyses in GLP-1 GWAS with larger sample 
sizes will be required to validate this finding. 
 
T2D association signals are differentially enriched for ancestry-correlated heterogeneity 
across mechanistic clusters. To understand better the impact of genetic diversity on 
differences in allelic effects between GWAS at T2D association signals, we assessed the 
contribution of each of the three axes of genetic variation to heterogeneity (Methods). For 
118 (92.9%) of the 127 association signals with significant evidence of ancestry-correlated 
heterogeneity, allelic effect sizes were most strongly associated with the first two axes of 
genetic variation (Extended Data Figure 1, Supplementary Table 16). This may simply reflect 
greater power to detect heterogeneity because these two axes separate GWAS from the 
three ancestry groups (AFA, EAS, and EUR) that make the largest contributions to the 



effective sample size of the multi-ancestry meta-analysis. The magnitude and direction of 
the association of index SNVs with these two axes reflected differences in allelic effect size 
between AFA/EUR and EAS GWAS on the AFA-EAS axis, and AFA/EAS and EUR GWAS on the 
AFA-EUR axis (Extended Data Figure 6). For example, the T2D association signal indexed by 
rs7766070 at the CDKAL1 locus was positively associated with the AFA-EAS axis 
(P=4.2x10-14), but not the AFA-EUR axis (P=0.74) and is therefore characterised by a larger 
allelic effect in EAS GWAS than in AFA and EUR GWAS. On the other hand, at the locus 
encompassing CILP2, CRTC1, and TM6SF2, the T2D association signal indexed by rs8107974 
has a larger allelic effect in EUR GWAS than in AFA and EAS GWAS, consistent with a positive 
association with the AFA-EUR axis (P=3.7x10-10), but not the AFA-EAS axis (P=0.72). 

The most significant evidence of ancestry-correlated heterogeneity was observed for 
the T2D association signal at the HNF1A locus indexed by rs1169299 (PHET=4.8x10-35). This 
index SNV was negatively associated with the AFA-EAS axis (PHET=2.7x10-11), and positively 
associated with the AFA-EUR axis (PHET=4.6x10-9), corresponding to an AFA allelic effect 
(OR=1.02) that was intermediate between the EAS and EUR allelic effects (OR=0.95 and 
OR=1.05, respectively). In contrast, the association signal indexed by rs2237884, at the locus 
encompassing INS, IGF2, and KCNQ1, was not associated with either the AFA-EAS axis 
(PHET=0.61) or AFA-EUR axis (PHET=0.56), indicating no difference in allelic effects between 
AFA, EAS, and EUR GWAS (OR=1.03 for all three ancestry groups). Instead, the heterogeneity 
for this signal was driven by association with the third axis of genetic variation 
(PHET=2.8x10-8), which separates HIS and SAS GWAS (OR=1.09 and OR=0.97, respectively). 

We investigated whether the observed ancestry-correlated differences in allelic 
effects on T2D between ancestry groups varied across mechanistic clusters. To do this, we 
compared the magnitude and direction of association of index SNVs in each cluster with the 
first three axes of genetic variation (Methods). We observed significant differences in mean 
Z-scores for association between clusters for both the AFA-EAS axis (P=4.1x10-6) and the AFA-
EUR axis (P=1.5x10-6), but not for the HIS-SAS axis (P=0.17), reflecting at least in part 
differences in sample size and therefore statistical power. Index SNVs in the two beta-cell 
clusters were most positively associated with the AFR-EAS axis, indicating allelic effects on 
T2D that were greater in EAS than in AFA and EUR GWAS (Extended Data Figure 7, 
Supplementary Table 17). In contrast, index SNVs in the lipodystrophy and obesity clusters 
were most positively associated with the AFA-EUR axis, indicating allelic effects on T2D that 
were greater in EUR GWAS than in EAS/AFA GWAS.  

 
Impact of BMI on ancestry-correlated heterogeneity between GWAS. To investigate the 
impact of ancestry-correlated heterogeneity in allelic effects between GWAS, we extended 
the MR-MEGA meta-regression model to account for mean BMI in T2D cases and controls, in 
addition to axes of genetic variation (Methods). After adjustment for study-level mean BMI 
in T2D cases and in controls, only 24 association signals retained significant evidence of 
ancestry-correlated heterogeneity (P<3.9x10-5), compared with 127 signals without 
adjustment (Supplementary Table 18). For example, at the HNF1A locus, the ancestry-
correlated heterogeneity at the T2D association indexed by rs1169299 was attenuated after 
BMI adjustment (P=0.00016 versus P=4.8x10-35 without adjustment), which is consistent 
with the assignment of this signal to the beta-cell -PI cluster. In contrast, at the association 
signal indexed by rs2237884, at the locus encompassing INS, IGF2, and KCNQ1, which was 
assigned to the body fat cluster, ancestry-correlated heterogeneity was not meaningfully 
impacted by BMI adjustment (P=5.0x10-7 versus P=2.7x10-7 without adjustment). After 



adjustment for BMI, significant differences in mean Z-scores for association between clusters 
for the AFA-EUR axis were maintained (P=3.2x10-5 versus P=1.5x10-6 without adjustment), 
whilst those for the AFA-EAS axis were not (P=0.18 versus P=4.1x10-6 without adjustment). 
Furthermore, after adjustment for BMI, the two beta-cell clusters were no longer strongly 
positively associated with the AFA-EAS axis (Extended Data Figure 7, Supplementary Table 
19).  
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Supplementary Methods 
 
Cluster-specific associations of index SNVs with insulin-related endophenotypes and 
insulin resistance-related disorders. We extracted association summary statistics for 
measures of glucose homeostasis derived from hyperinsulinemic-euglycemic clamp 
assessments and oral glucose tolerance tests (OGTT) performed by the GUARDIAN 
Consortium1, which were obtained from GWAS undertaken in up to 1,316 non-diabetic 
Mexican American participants from the Mexican American Coronary Artery Disease 
(MACAD) study2 and the Hypertension and Insulin Resistance (HTN-IR) study3. The measures 
used were: insulin sensitivity (clamp-derived glucose infusion rate in 1,316 participants from 
MACAD and HTN-IR); insulin clearance (clamp-derived metabolic clearance rate of insulin in 
1,261 participants from MACAD and HTN-IR); and insulin secretion (OGTT-derived area 
under the curve for insulin normalised for glucose from baseline to 30 minutes in 513 
participants from MACAD). We also extracted association summary statistics for homeostatic 
model assessment measures of beta-cell function (HOMA-B) and insulin resistance (HOMA-
IR) from published GWAS meta-analyses of up to 36,466 non-diabetic European ancestry 
individuals from MAGIC4. We also extracted association summary statistics for insulin 
resistance-related disorders from published GWAS meta-analyses of: (i) 5,485 GDM cases 
and 347,856 female controls of diverse ancestry from the GenDIP Consortium5; and (ii) 
10,074 PCOS cases and 103,164 female controls of European ancestry6. 

For each endophenotype/disorder, we aligned the effect estimate to the T2D risk 
allele from the fixed-effects multi-ancestry meta-analysis, denoted 𝛽𝑗 for the 𝑗th index SNV. 

We then calculated the Z-score, given by 𝑍𝑗 = 𝛽𝑗 𝑠𝑗⁄ , where 𝑠𝑗 is the standard error of the 

effect estimate of the 𝑗th index SNV. We tested for association of each endophenotype with 

index SNVs across clusters in a linear regression model, given by 𝐸(𝑍𝑗) = ∑ 𝛾𝑘𝐶𝑗𝑘𝑘 , where 

𝐶𝑗𝑘 is an indicator variable that takes the value “1” if the 𝑗th index SNV was assigned to the 

𝑘th cluster and “0” otherwise. We tested for heterogeneity in cluster effects on each 

endophenotype by comparing the deviance of this model with that of 𝐸(𝑍𝑗) = 𝛾0. 

Regression models were fitted using the glm function in R. 
 
Cluster-specific associations of index SNVs with circulating GLP-1 concentrations. The 
Malmo Diet and Cancer Study (MDCS) is a prospective population-based cohort study that 
includes 31088 men and women aged 44 to 74 who completed a baseline examination 
between 1991 and 1996 and lived in Malmo7. A random subset was invited to a 
reinvestigation starting in 2007, where GLP-1 was measured8. Individuals with diabetes were 
excluded from the analysis. An overnight fast was followed by the administration of 75g 
OGTT for diabetes free individuals. Blood samples were analyzed for GLP-1 concentrations at 
0 and 120 minutes. Total plasma GLP-1 concentrations, including intact GLP-1 and the 
metabolite GLP-1 9-36 amide, were determined radioimmunologically with an in-house anti-
serum (no. 89390; sensitivity <1 pmol/l)9,10. 

The Prevalence, Prediction and Prevention of type 2 diabetes (PPP)-Botnia Study is a 
population-related study that began in 2004 in Finland. Participants were randomly selected 
from the National Finnish Population Registry, representing 6%-7% of the 18-75 age 
population. Of the original 5,208 participants, 3,850 (77%) attended the first follow-up study 
in 2011-2015, where GLP-1 was measured11. A 75g OGTT was conducted after overnight 10-
12 hours fasting with blood samples drawn at 0, 30, and 120 minutes. GLP-1 was measured 
at 0 and 120 minutes. GLP-1 was measured using GLP-1 (total) radioimmunoassay (GLP1T-



36HK, EMD Millipore) with high specificity to GLP-1 (GLP-2, glucagon, and exendin <0.2%). 
The range was 3–333 pmol/l. Serum insulin was measured by an AutoDelfia 
fluoroimmunometric assay (B080-101, PerkinElmer)11. 

MDCS was genotyped at the Broad genotyping facility using the Infinium 
OmniExpressExome v1.0 B Beadchip array (Illumina). PPP-Botnia genotyping was performed 
on a FinnGen ThermoFisher Axiom custom array12 at the Thermo Fisher genotyping service 
facility in San Diego. Standard quality control filters were applied to filter SNvs and samples 
before imputation. SNVs were excluded for monomorphism, low call rate, or Hardy-
Weinberg deviation. Samples with duplications or low call rates, unexpected relatives, sex 
mismatches, heterozygosity outliers, ancestral outliers (non-EUR) were excluded. For MDCS, 
genotype imputation for autosomal chromosomes was performed using the Haplotype 
Reference Consortium version 1.0.3 on the Michigan Server. For PPP-Botnia, genotype 
imputation was carried out using the population-specific SISu v3 reference panel12 with 
Beagle 4.113. In both studies, GLP-1 hormone levels were log-transformed before analysis. 
SNPTEST v.2.5.614 was used for genome-wide association analyses, using frequentist score 
method adjusted for age, sex and first four principal components. The results were filtered 
based on MAF >0.01, Hardy-Weinberg equilibrium P>5x10-7, and imputation info >0.4. A 
fixed effect meta-analysis (inverse-variance weighting) was performed using GWAMA15. The 
final analysis included 3,514 individuals with fasting GLP-1 and 3,511 individuals with 2-hour 
GLP-1.  
 
All of Us Research Program (AoURP) cohort description, sequencing, quality control, and 
phenotype derivation. We considered participants with whole-genome sequencing (WGS) 
and electronic health record (EHR) data from the AoURP Controlled Tier Dataset v716,17. 
Details of the generation and quality control of the genomic data can be found in the AoURP 
Genomic Quality Report release C2022Q4R9 (https://support.researchallofus.org/hc/en-
us/article_attachments/17973653017236). Briefly, we used computed genetic ancestries 
and removed related individuals in the maximal independent set (kinship score >0.1). To 
reduce the computational burden of the WGS dataset, we considered only high-quality SNVs 
(as defined in the AoURP Genomic Quality Report release C2022Q4R9) with MAF >1% or 
MAC >100 in at least one of the computed genetic ancestries. To correct for population 
structure, within each computed genetic ancestry, we derived principal components using 
the smartpca function from EIGENSOFT v7.2.1 with the “fastmode” option enabled18. In the 
principal component calculations, we excluded SNVs that were not present in the 1000 
Genomes Project (phase 3, October 2014 release) reference panel19. We also excluded SNVs 
with MAF <1%, that deviated from Hardy-Weinberg equilibrium (P<10-6), or were located in 
the major histocompatibility complex and regions of high LD. Subsequently, we extracted 
autosomal LD-pruned SNVs (r2<0.05) using PLINK v2.020. Cases of T2D, T2D-related 
macrovascular outcomes, and microvascular complications were derived from the 
combination of diagnosis codes (ICD-9-CM and ICD-10-CM), drug exposures, and LOINC 
codes for laboratory test results, extracted from EHR data. Age of T2D onset was defined by 
age at the first diagnosis code or age at the first drug exposure code.  

Derivation of T2D cases and controls. For T2D cases, we used a previously developed 
method (https://phekb.org/phenotype/type-2-diabetes-mellitus). Briefly, we considered 
participants as T2D cases if they fit the following criteria: (a) at least one T2D diagnosis code 
and at least one drug exposure for T2D medications, unless at least one type 1 diabetes 
(T1D) diagnosis code; (b) at least one T2D diagnosis code, at least two drug exposures for 



T1D and T2D medications with a T2D drug exposure occurring at least one day before T1D 
drug exposure, unless at least one T1D diagnosis code; (c) at least two T2D diagnosis codes 
and at least one drug exposure for T1D medication, unless at least one T1D diagnosis code; 
or (d) at least one drug exposure for T2D medications and at least one abnormal laboratory 
test result (random glucose, fasting glucose, or HbA1c), unless at least one T1D diagnosis 
codes. For controls, we considered those participants that were free of all diabetes diagnosis 
codes, including T2D, T1D, and other forms of diabetes. Additionally, we excluded 
participants that matched criteria (d) from the T2D definition. Age of T2D onset was defined 
by age at the first diagnosis code under criteria (a-c), and by age at the first drug exposure 
code under criteria (d). 

For T2D, we used diagnosis codes 250.00, 250.02, 250.20, 250.22, 250.30, 250.32, 
250.40, 250.42, 250.50, 250.52, 250.60, 250.62, 250.70, 250.72, 250.80, 250.82, 250.90, 
250.92 from ICD-9-CM and E11.00, E11.01, E11.21, E11.29, E11.311, E11.319, E11.36, 
E11.39, E11.40, E11.51, E11.618, E11.620, E11.621, E11.622, E11.628, E11.630, E11.638, 
E11.641, E11.649, E11.65, E11.69, E11.8, E11.9 from ICD-10-CM. For T2D drug exposures, we 
used the following medications: acarbose, acetohexamide, albiglutide, alogliptin, 
canagliflozin, chlorpropamide, colesevelam, dapagliflozin, dulaglutide, empagliflozin, 
exenatide, glimepiride, glipizide, glyburide, linagliptin, liraglutide, lixisenatide, metformin, 
miglitol, nateglinide, pioglitazone, repaglinide, rosiglitazone, saxagliptin, semaglutide, 
sitagliptin, tolazamide, and troglitazone. Finally, we considered the following abnormal lab 
results: random glucose (LOINC codes: 2339-0, 2345-7) > 200mg/dl, fasting glucose (LOINC 
code: 1558-6) ≥ 125mg/dl, and HbA1c (LOINC codes: 4548-4, 17856-6, 4549-2, 17855-8) ≥ 
6.5%. For T1D, we used diagnosis codes 250.01, 250.03, 250.11, 250.13, 250.21, 250.23, 
250.31, 250.33, 250.41, 250.43, 250.51, 250.53, 250.61, 250.63, 250.71, 250.73, 250.81, 
250.83, 250.91, 250.93 from ICD-9-CM and E10.10, E10.11, E10.21, E10.29, E10.311, 
E10.319, E10.36, E10.39, E10.40, E10.51, E10.618, E10.620, E10.621, E10.622, E10.628, 
E10.630, E10.638, E10.641, E10.649, E10.65, E10.69, E10.8, E10.9 from ICD-10-CM. For T1D 
drug exposures, we used the following medications: insulin, insulin NPH, insulin aspart, 
insulin degludec, insulin detemir, insulin glargine, insulin glulisine, insulin lispro, pramlintide. 
For other forms of diabetes, we used diagnosis codes 249*, 648.0*, 648.8* in ICD-9-CM and 
E08*, E09*, E13*, O24* in ICD-10-CM. 

Derivation of cases and controls for T2D-related clinical outcomes. For each T2D-
related clinical outcome, we used previously-defined ICD-9-CM and ICD-10-CM diagnosis 
codes from EHR data to identify cases and controls21-24. For macrovascular outcomes (CAD, 
ischemic stroke, and peripheral artery disease), we defined cases and controls as 
participants with and without, respectively, the relevant diagnosis codes, irrespective of T2D 
status. For CAD, we used 410*, 411*, 412*, 413* in ICD-9-CM and I20*, I21*, I22*, I23*, 
I24*, I25* in ICD-10-CM. For ischemic stroke, we used 433*, 434* in ICD-9-CM and I63* in 
ICD-10-CM. For peripheral artery disease, we used 4400, 4402, 4438, 4439 in ICD-9-CM and 
I70.0, I70.00, I70.01, I70.2, I70.20, I70.21, I70.8, I70.80, I70.9, I70.90, I73.8, I73.9 in ICD-10-
CM. For microvascular complications (ESDN and proliferative diabetic retinopathy), we 
considered only T2D cases. ESDN cases were defined with relevant diagnosis codes for both 
diabetic nephropathy and end-stage kidney disease (ESKD), and ESDN controls were defined 
as being free of any diagnosis code for diabetic nephropathy, defined using the AoURP 
cohort builder. For ESKD, we used 403.01, 403.11, 403.91, 404.02, 404.03, 404.12, 404.13, 
404.92, 404.93, 585.6 in ICD-9-CM and I12.0, I13.11, I13.2, N18.6 in ICD-10-CM. For DN, we 
used E11.21 in ICD-10-CM. Proliferative diabetic retinopathy cases were defined with 



relevant diagnosis codes. Proliferative diabetic retinopathy controls were defined as being 
free of any diagnosis code for diabetic retinopathy. For proliferative diabetic retinopathy, we 
used 362.02 in ICD-9-CM and E08.35*, E09.35*, E10.35*, E11.35*, E13.35* in ICD-10-CM. 
For diabetic retinopathy, we used 362.0* in ICD-9-CM and E08.31*, E08.32*, E08.33*, 
E08.34*, E08.35*, E09.31*, E09.32*, E09.33*, E09.34*, E09.35*, E10.31*, E10.32*, E10.33*, 
E10.34*, E10.35*, E11.31*, E11.32*, E11.33*, E11.34*, E11.35*, E13.31*, E13.32*, E13.33*, 
E13.34*, E13.35* in ICD-10-CM. 
 
Biobank Japan (BBJ) cohort description, genotyping, quality control, and phenotype 
derivation. BBJ is a multi-institutional hospital-based registry that comprises DNA and 
medical records from individuals of Japanese ancestry25,26. The first BBJ cohort comprises 
approximately 200,000 participants with at least one of 47 common diseases collected 
between 2003 and 2007. The second BBJ cohort comprises approximately 67,000 
participants with at least one of 38 common diseases collected between 2013 and 2017. 
Physicians of 66 cooperating hospitals determined the eligibility of cases. Only those 
individuals who were not included in the multi-ancestry meta-analysis were considered for 
testing of the partitioned GRS. 

Genomic DNA was prepared following standard protocols from peripheral blood 
samples and genotyped using the Illumina Asian Screening Array, following the 
manufacturer’s instructions. We excluded individuals with call rate <98% and outliers from 
the cluster of East Asian populations based on principal component analysis with reference 
individuals from Phase II HapMap27. We excluded SNVs with call rate <99%, MAC <5, exact 
Hardy-Weinberg equilibrium P<10-10, and >5% difference in MAF when compared with 
Japanese whole-genome sequence data28,29 and the Tohoku Medical Megabank Project30. 
After quality control, we performed pre-phasing using SHAPEIT431. Phased haplotypes were 
imputed to the combined reference panel of 1000 Genomes Project Phase 3 and Japanese 
whole-genome sequencing data from 1,037 individuals28,29 using Minimac432. We 
subsequently excluded individuals with a mismatch between inferred genetic sex and sex 
registered in clinical information, who were not in a set of unrelated individuals defined by 
using PLINK with KING-cutoff <0.09375, or were outliers of heterozygosity rates (more than 5 
SD from the mean). To correct for population structure, we derived principal components 
using PLINKv2.020, calculated from a set of autosomal LD-pruned SNVs (r2<0.1) with MAF 
≥0.5% after excluding the major histocompatibility complex region. 

We selected participants of at least 18 years of age for PS analyses. We defined T2D 
cases as participants with a diagnosis of T2D, made by physicians at participating hospitals, 
but not type 1 diabetes, mitochondrial diabetes, maturity-onset diabetes of the young, or 
any other type of diabetes33. We extracted cases of microvascular complications from 
medical records in which diagnosis was made by physicians at participating hospitals. We 
defined controls for microvascular complications as T2D cases without any diagnosis of 
diabetic nephropathy or diabetic retinopathy. We defined CAD as a composite of stable 
angina, unstable angina, and myocardial infarction. These conditions, in addition to ischemic 
stroke and peripheral artery disease, were diagnosed by physicians at collaborating hospitals 
based on general medical practices following relevant guidelines. Age of T2D onset was 
defined from a questionnaire of medical history. 

 
Genes & Health (G&H) cohort description, genotyping, quality control, and phenotype 
derivation. G&H is a UK-based cohort of British Pakistani and Bangladeshi individuals 



recruited and consented for lifelong electronic health record access and genetic analysis34. 
Medical records are linked to ICD-10-CM, OPCS and SNOMED diagnosis and procedural 
codes across inpatient and hospital settings as well as clinical laboratory measurements, and 
a baseline questionnaire containing demographic information. Individuals were genotyped 
using the Illumina Infinium Global Screening Array. Full details of quality control have been 
reported previously35. KING was used to calculate kinship metrics36 and individuals with at 
least second-degree relatedness were subsequently removed. Ancestry outliers based on 
principal component analysis were also excluded. Individuals were imputed to the TOPMed 
r2 reference panel37. Cases of T2D, T2D-related macrovascular outcomes, and microvascular 
complications were derived from the combination of diagnosis codes (ICD-10-CM), drug 
exposures, and laboratory test results, extracted from EHR data. Age of T2D onset was 
defined as the date a diagnosis was made (ICD-10-CM), or a medication was prescribed, or 
an abnormal laboratory test was recorded, whichever occurred first.  

Derivation of T2D cases and controls. We considered participants as T2D cases if they 
fit the following criteria: (a) at least one T2D diagnosis code and at least one drug exposure 
for T2D medications, unless at least one type 1 diabetes (T1D) diagnosis code; (b) at least 
one T2D diagnosis code, at least two drug exposures for T1D and T2D medications with a 
T2D drug exposure occurring at least one day before T1D drug exposure, unless at least one 
T1D diagnosis code; (c) at least two T2D diagnosis codes and at least one drug exposure for 
T1D medication, unless at least one T1D diagnosis code; or (d) at least one drug exposures 
for T2D medications and at least one abnormal laboratory test result (random glucose, 
fasting glucose, or HbA1c), unless at least one T1D diagnosis codes. For controls, we 
considered those participants that were free of all diabetes diagnosis codes, including T2D, 
T1D, and other forms of diabetes. Additionally, we excluded participants that matched 
criteria (d) from the T2D definition. 

For T2D, we used diagnosis codes E11.00, E11.01, E11.21, E11.29, E11.311, E11.319, 
E11.36, E11.39, E11.40, E11.51, E11.618, E11.620, E11.621, E11.622, E11.628, E11.630, 
E11.638, E11.641, E11.649, E11.65, E11.69, E11.8, E11.9 from ICD-10-CM. For T2D drug 
exposures, we used the following medications: acarbose, acetohexamide, albiglutide, 
alogliptin, canagliflozin, chlorpropamide, colesevelam, dapagliflozin, dulaglutide, 
empagliflozin, exenatide, glimepiride, glipizide, glyburide, linagliptin, liraglutide, lixisenatide, 
metformin, miglitol, nateglinide, pioglitazone, repaglinide, rosiglitazone, saxagliptin, 
semaglutide, sitagliptin, tolazamide, and troglitazone. Finally, we considered the following 
abnormal lab results: random glucose > 200mg/dl, fasting glucose ≥ 125mg/dl, and HbA1c ≥ 
6.5%. For T1D, we used diagnosis codes E10.10, E10.11, E10.21, E10.29, E10.311, E10.319, 
E10.36, E10.39, E10.40, E10.51, E10.618, E10.620, E10.621, E10.622, E10.628, E10.630, 
E10.638, E10.641, E10.649, E10.65, E10.69, E10.8, E10.9 from ICD-10-CM. For T1D drug 
exposures, we used the following medications: insulin, insulin NPH, insulin aspart, insulin 
degludec, insulin detemir, insulin glargine, insulin glulisine, insulin lispro, pramlintide. For 
other forms of diabetes, we used diagnosis codes E08*, E09*, E13*, O24* in ICD-10-CM. 

Derivation of cases and controls for T2D-related clinical outcomes. For macrovascular 
outcomes (CAD, ischemic stroke, and peripheral artery disease), we defined cases and 
controls as participants with and without, respectively, the relevant diagnosis codes, 
irrespective of T2D status. For CAD, we used I20*, I21*, I22*, I23*, I24*, I25* in ICD-10-CM. 
For ischemic stroke, we used I63* in ICD-10-CM. For peripheral artery disease, we used 
I70.0, I70.00, I70.01, I70.2, I70.20, I70.21, I70.8, I70.80, I70.9, I70.90, I73.8, I73.9 in ICD-10-
CM. For microvascular complications (ESDN and proliferative diabetic retinopathy), we 



considered only T2D cases. ESDN cases were defined with relevant diagnosis codes for both 
diabetic nephropathy and end-stage kidney disease (ESKD), and ESDN controls were defined 
as being free of any diagnosis code for diabetic nephropathy. For ESKD, we used I12.0, 
I13.11, I13.2, N18.6 in ICD-10-CM. For DN, we used E11.21 in ICD-10-CM. Proliferative 
diabetic retinopathy cases were defined with relevant diagnosis codes. Proliferative diabetic 
retinopathy controls were defined as being free of any diagnosis code for diabetic 
retinopathy. For proliferative diabetic retinopathy, we used E08.35*, E09.35*, E10.35*, 
E11.35*, E13.35* in ICD-10-CM. For diabetic retinopathy, we used E08.31*, E08.32*, 
E08.33*, E08.34*, E08.35*, E09.31*, E09.32*, E09.33*, E09.34*, E09.35*, E10.31*, E10.32*, 
E10.33*, E10.34*, E10.35*, E11.31*, E11.32*, E11.33*, E11.34*, E11.35*, E13.31*, E13.32*, 
E13.33*, E13.34*, E13.35* in ICD-10-CM. No cases with proliferative diabetic retinopathy 
were identified in the G&H cohort. 
 
Clinical trials from the Thrombolysis in Myocardial Infarction (TIMI) Study. ENGAGE AF-
TIMI 48 was a 3-arm trial comparing two doses of the Factor Xa inhibitor edoxaban to 
warfarin in patients with atrial fibrillation and CHADS2 risk score of 2 or higher, where co-
morbidities included diabetes (38%), stroke (28%), and heart failure (57%). SOLID-TIMI 52 
was a trial of the lipoprotein-associated phospholipase A2 inhibitor darapladib versus 
placebo in patients with recent acute coronary syndrome on optimal background medical 
therapy, where co-morbidities included hypertension (73%), hyperlipidemia (64%), and 
diabetes (35%). SAVOR-TIMI 53 was a trial of the DPP4 inhibitor saxagliptin in patients with 
T2D, where co-morbidities included atherosclerosis (78%) and hypertension (81%). 
PEGASUS-TIMI 54 was a trial of the antiplatelet drug ticagrelor in patients with prior 
myocardial infarction, where co-morbidities included smoking (17%), hypertension (78%), 
diabetes (32%), prior percutaneous coronary intervention (83%), and prior coronary artery 
bypass graft (5%). FOURIER-TIMI 59 was a trial of the PCSK9 inhibitor evolocumab in patients 
with myocardial infarction, stroke, or peripheral artery disease, where co-morbidities 
included hypertension (80%), diabetes (37%), and prior myocardial infarction (81%). 
DECLARE-TIMI 58 was a trial of the SGLT-2 inhibitor dapaglifozin in patients with T2D, where 
co-morbidities included established atherosclerotic cardiovascular disease (40%) or multiple 
risk factors for atherosclerotic cardiovascular disease (60%). 
 Genotyping was performed on the Infinium Global Array chip (FOURIER-TIMI 59), 
Affymetrix Biobank Array (SOLID-TIMI 52), Infinium Global Screening Array MD (DECLARE-
TIMI 58) and Illumina Multi-Ethnic Genotyping Array (ENGAGE AF-TIMI 48, PEGASUS-TIMI 54 
and SAVOR-TIMI 53). PLINK v2.020 was used for pre-imputation quality control, which 
included mapping to hg38 coordinates, removing SNVs and individuals with missingness >0.2 
(first round) and >0.02 (second round), removing individuals with sex discrepancies based on 
X-chromosome F-values (<0.2 for females and >0.8 for males) and heterozygosity more than 
3 SD from the mean, and removing SNVs with MAF <1% and extreme deviation from Hardy-
Weinberg equilibrium (P<10-6). Imputation was performed on the Michigan Imputation 
Server using Eagle v2.438 for phasing and Minimac432 on TOPMed Freeze 5 reference panel37 
with imputation quality filter r2>0.3. Cryptic relatedness was assessed using identity by 
descent, and a pi-hat threshold of 0.2 was used to identify related samples. EUR individuals 
were identified using the 1000 Genomes phase 3 v5 reference panel and the ADMIXTURE 
tool39 (cutoff for European ancestry was set at 0.8) and were retained for analysis. 
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Supplementary Figure 1. Overlap of samples contributing to recent multi-ancestry T2D GWAS meta-analyses. The Type 2 Diabetes Global Genomics 
Initiative (T2DGGI) includes 428,452 cases and 2,107,149 controls, of which 315,433 cases and 1,477,345 controls have contributed to previous multi-
ancestry investigations of the genetic contribution to T2D from the Million Veterans Program (MVP) and the DIAMANTE Consortium.



Supplementary Figure 2. Manhattan plot of genome-wide T2D association from multi-ancestry meta-regression (MR-MEGA) of up to 428,452 T2D 
cases and 2,107,149 controls across multiple ancestry groups. Each point represents a SNV passing quality control in the multi-ancestry meta-
regression, plotted with their association p-value (on a -log10 scale, truncated at 300) as a function of genomic position (NCBI build 37). Genome-wide 
significance (P<5x10-8) is highlighted by the dashed horizontal red line.
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Supplementary Figure 3. Distribution of risk allele frequency and odds-ratio at index SNVs for distinct 
T2D association signals. Each point corresponds to an index SNV, plotted according to the mean risk 
allele frequency across GWAS (on the x-axis) and the odds-ratio from fixed-effects meta-analysis (on 
the y-axis). Index SNVs highlighted in blue map to previously reported loci for T2D susceptibility. Index 
SNVs highlighted in red do not map to previously reported loci for T2D susceptibility.



Supplementary Figure 4. Distribution of clusters of SNVs on the first three principal components 
derived from 37 cardiometabolic traits. The principal components analysis was conducted on the 
final imputed dataset obtained from K-means clustering with ClustImpute. Each point corresponds to 
the mean values of the first three principal components for SNVs assigned to the cluster. The bars 
correspond to +/- standard deviation. The percentage of variance explained by each principal 
component (PC) was: 16.7% by PC 1, 12.6% by PC 2, and 10.5% by PC 3. 
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Supplementary Figure 5. Distribution of clusters of SNVs on the first two principal components derived from 37 cardiometabolic traits. The principal 
components analysis was conducted on the final imputed dataset obtained from K-means clustering with ClustImpute. The “X” corresponds to the 
cluster centroid. The percentage of variance explained by each principal component (PC) was: 16.7% by PC 1 and 12.6% by PC 2.
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Supplementary Figure 6. Distribution of study-level mean BMI in T2D cases and controls across ancestry groups. Each box and whisker plot presents 
the median (back horizontal line), upper and lower quartiles (extremes of coloured boxes), minimum and maximum (excluding outliers, extremes of 
black vertical line), and outliers (more than 1.5x inter-quartile range, black dots). AFA: African American ancestry group (n=25 GWAS). EAS: East Asian 
ancestry group (n=40 GWAS). EUR: European ancestry group (n=36 GWAS). HIS: Hispanic ancestry group (n=17 GWAS). SAF: South African ancestry 
group (n=1 GWAS). SAS: South Asian ancestry group (n=17 GWAS).



Supplementary Figure 7. Association of overall T2D PS and cluster-specific 
components of partitioned PS with CAD across multiple ancestry groups. In each 
forest plot, the log-odds ratio (log-OR) of the standardised PS for each ancestry is 
presented, together with the 95% confidence interval (horizontal bar) and weight 
(inverse variance, size of grey box). The grey diamonds correspond to the fixed- and 
random-effects estimates of the log-OR of the PS across ancestry groups (upper/lower 
points of diamond) and corresponding 95% confidence interval (left/right points of 
diamond). The cluster-specific components of the partitioned PS are adjusted for the 
overall T2D PS. Analyses were conducted in all individuals with adjustment for T2D 
status. AFA: African American ancestry group (3,537 cases and 40,932 controls). EAS: 
East Asian ancestry group (4,078 cases and 58,904 controls). EUR: European ancestry 
group (13,602 cases and 96,793 controls). HIS: Hispanic ancestry group (2,171 cases and 
31,612 controls). SAS: South Asian ancestry group (2,398 cases and 25,525 controls).   
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Supplementary Figure 8. Association of overall T2D PS and cluster-specific 
components of partitioned PS with peripheral artery disease across multiple ancestry 
groups. In each forest plot, the log-odds ratio (log-OR) of the standardised PS for each 
ancestry is presented, together with the 95% confidence interval (horizontal bar) and 
weight (inverse variance, size of grey box). The grey diamonds correspond to the fixed- 
and random-effects estimates of the log-OR of the PS across ancestry groups 
(upper/lower points of diamond) and corresponding 95% confidence interval (left/right 
points of diamond). The cluster-specific components of the partitioned PS are adjusted 
for the overall T2D PS. Analyses were conducted in all individuals with adjustment for 
T2D status. AFA: African American ancestry group (1,241 cases and 43,228 controls). 
EAS: East Asian ancestry group (615 cases and 62,367 controls). EUR: European ancestry 
group (4,847 cases and 105,548 controls). HIS: Hispanic ancestry group (723 cases and 
33,060 controls). SAS: South Asian ancestry group (199 cases and 27,724 controls).
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Supplementary Figure 9. Association of overall T2D PS and cluster-specific 
components of partitioned PS with ischemic stroke across multiple ancestry groups. In 
each forest plot, the log-odds ratio (log-OR) of the standardised PS for each ancestry is 
presented, together with the 95% confidence interval (horizontal bar) and weight 
(inverse variance, size of grey box). The grey diamonds correspond to the fixed- and 
random-effects estimates of the log-OR of the PS across ancestry groups (upper/lower 
points of diamond) and corresponding 95% confidence interval (left/right points of 
diamond). The cluster-specific components of the partitioned PS are adjusted for the 
overall T2D PS. Analyses were conducted in all individuals with adjustment for T2D 
status. AFA: African American ancestry group (1,241 cases and 43,228 controls). EAS: 
East Asian ancestry group (2,396 cases and 60,586 controls). EUR: European ancestry 
group (3,782 cases and 106,613 controls). HIS: Hispanic ancestry group (722 cases and 
33,061 controls). SAS: South Asian ancestry group (230 cases and 27,693 controls).
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Supplementary Figure 10. Association of overall T2D PS and cluster-specific 
components of partitioned PS with ESDN across multiple ancestry groups. In each 
forest plot, the log-odds ratio (log-OR) of the standardised PS for each ancestry is 
presented, together with the 95% confidence interval (horizontal bar) and weight 
(inverse variance, size of grey box). The grey diamonds correspond to the fixed- and 
random-effects estimates of the log-OR of the PS across ancestry groups (upper/lower 
points of diamond) and corresponding 95% confidence interval (left/right points of 
diamond). The cluster-specific components of the partitioned PS are adjusted for the 
overall T2D PS. Analyses were conducted in individuals with T2D only. AFA: African 
American ancestry group (105 cases and 5,330 controls). EAS: East Asian ancestry group 
(133 cases and 3,155 controls). EUR: European ancestry group (116 cases and 9,538 
controls). HIS: Hispanic ancestry group (141 cases and 3,695 controls). SAS: South Asian 
ancestry group (56 cases and 8,019 controls).
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Supplementary Figure 11. Association of overall T2D PS and cluster-specific 
components of partitioned PS with end stage diabetic retinopathy across multiple 
ancestry groups. In each forest plot, the log-odds ratio (log-OR) of the standardised PS 
for each ancestry is presented, together with the 95% confidence interval (horizontal 
bar) and weight (inverse variance, size of grey box). The grey diamonds correspond to 
the fixed- and random-effects estimates of the log-OR of the PS across ancestry groups 
(upper/lower points of diamond) and corresponding 95% confidence interval (left/right 
points of diamond). The cluster-specific components of the partitioned PS are adjusted 
for the overall T2D PS. Analyses were conducted in individuals with T2D only. AFA: 
African American ancestry group (132 cases and 5,072 controls). EAS: East Asian 
ancestry group (196 cases and 3,461 controls). EUR: European ancestry group (100 
cases and 9,417 controls). HIS: Hispanic ancestry group (146 cases and 3,441 controls).

Overall
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Overall Supplementary Figure 12. Association of overall T2D PS and cluster-specific 
components of partitioned PS with age of onset of T2D across multiple ancestry 
groups. In each forest plot, the effect (years) of the standardised PS for each ancestry is 
presented, together with the 95% confidence interval (horizontal bar) and weight 
(inverse variance, size of grey box). The grey diamonds correspond to the fixed- and 
random-effects estimates of the effect (years) of the PS across ancestry groups 
(upper/lower points of diamond) and corresponding 95% confidence interval (left/right 
points of diamond). The cluster-specific components of the partitioned PS are adjusted 
for the overall T2D PS. Analyses were conducted in individuals with T2D only. AFA: 
African American ancestry group (5,435 individuals). EAS: East Asian ancestry group 
(3,288 individuals). EUR: European ancestry group (9,654 individuals). HIS: Hispanic 
ancestry group (3,836 individuals). SAS: South Asian ancestry group (8,075 individuals).   
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Supplementary Figure 13. Cluster-specific associations of T2D risk alleles at index SNVs with circulating 
GLP-1 concentrations. Association was assessed in 3,514 individuals of European ancestry from the 
Malmo Diet and Cancer Study and the PPP-Botnia Study. The height of each bar corresponds to the 
mean Z-score, and the grey line shows the 95% confidence interval. The liver/lipid metabolism cluster 
has been removed for ease of presentation. *P<0.05, nominal association. 

*

P=0.99 P=0.020 P=0.17 P=0.96


