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ABSTRACT  

 

Importance 
African Americans have a higher prevalence of Type 2 Diabetes (T2D) compared to White 
groups. T2D is a health disparity clinically characterized by dysregulation of lipids and chronic 
inflammation. However, how the relationships among biological and sociological predictors of 
T2D drive this disparity remains to be addressed. 
 
Objective 
To determine characteristic plasma lipids and systemic inflammatory biomarkers contributing to 
diabetes presentation between White and African American groups.  
 
Design 
We performed a cross-sectional retrospective cohort study using pre-existing demographic and 
clinical data from two diverse studies: Healthy Aging in Neighborhoods of Diversity across the 
Life Span (HANDLS) and AllofUs. From HANDLS (N=40), we used information from wave 1 
(2004). From AllofUs (N=17,339), we used data from the Registered Tier Dataset v7, available 
in the AllofUs researcher workbench. 
 

Setting 

HANDLS is a population-based cohort study involving 3720 participants in the Baltimore area 
supported by the Intramural Research Program of the National Institute on Aging. HANDLS is a 
longitudinal study designed to understand the sources of persistent health disparities in overall 
longevity and chronic disease in White and African American individuals. The AllofUs study is 
an NIH funded multicenter study consisting of patient-level data from 331,382 individuals from 
35 hospitals in the United States aimed at sampling one million or more people living in the 
United States to provide a collection of broadly accessible data. 
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Participants 

The HANDLS subcohort participants (N=40) were divided into four groups equally distributed by 

race, sex, and diabetes status. Groups were also matched by age, body mass index, and 

poverty status. The analysis pipeline consisted of evaluating the significance of the variables 

race and disease status using the 2-way ANOVA test and post-ANOVA comparisons using 

Fisher LSD test, reporting unadjusted p-values. Additionally, unsupervised (PCA) and 

supervised (OPLS-DA) clustering analysis was performed to determine putative biological 

drivers of variability and main immunological and metabolic features characterizing diabetes in 

White and African American groups from HANDLS. Major clinical findings were validated in a 

large cohort of White and African American groups with T2D in the AllofUS research study 

(N=17,339). AllofUs groups were of similar range in age and BMI as HANDLS. Furthermore, a 

linear regression model was built adjusting for age and BMI to determine differences in clinical 

findings between White and African American groups with T2D. 

 

Main Outcomes and Measures 

Primary outcomes using a HANDLS subcohort (N=40) were clinical parameters related to 

diabetes, plasma lipids determined by lipidomics and measured by mass spectrometry, and 

cytokine profiling using a customized panel of 52 cytokines and growth factors measured by 

Luminex. Outcomes evaluated in the AllofUs study (N=17,339) were clinical: cholesterol to HDL 

ratio, triglycerides, fasting glucose, insulin, and hemoglobin A1C. 

 

Results 

In the HANDLS subcohort, White individuals with diabetes had elevated cholesterol to HDL ratio 

(mean difference -1.869, p=0.0053), high-sensitivity C-reactive protein (mean difference -9.135, 

p=0.0040), and clusters of systemic triglycerides measured by lipidomics, compared to White 

individuals without diabetes. These clinical markers of dyslipidemia (cholesterol to HDL ratio 

and triglycerides) and inflammation (hs-CRP) were not significantly elevated in diabetes in 

African Americans from the HANDLS subcohort. These results persisted even when controlling 

for statin use. Diabetes in White individuals in the HANDLS cohort was characterized by a 

marked elevation in plasma lipids, while an inflammatory status characterized by Th17-

cytokines was predominant in the African American group from the HANDLS subcohort. We 

validated the key findings of elevated triglycerides and cholesterol to HDL ratio in White 

individuals with T2D in a sample (N=17,339) of the AllofUs study.  

 

Conclusions and Relevance 

Our results show that diabetes can manifest with healthy lipid profiles, particularly in these 

cohorts of African Americans. This study suggests that Th17-inflammation associated with 

diabetes is characteristic of African Americans, while a more classic inflammation is distinctive 

of White individuals from HANDLS cohort. Further, clinical markers of dyslipidemia seem to 

characterize diabetes presentation only in White groups, and not in African Americans. 
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INTRODUCTION  

Diabetes affects a staggering 38.4 million individuals in the United States which is an estimated 
11.6% of the entire population (Centers for Disease Control and Prevention (CDC), 2024). 
Diabetes is an impactful health disparity given its disproportionate incidence in some 
populations from different ethnic and racial backgrounds (Rodríguez & Campbell, 2017). 
Approximately 15 million diagnosed and undiagnosed people with diabetes belong to minority 
health populations, including non-Hispanic African American, non-Hispanic Asian, and Hispanic 
groups. People from these populations bear significant proportions of the burden and 
complications of diabetes within the US (Centers for Disease Control and Prevention (CDC), 
2024; Haw et al., 2021). 

Insulin resistance and clinical measurements of glucose management like HbA1C, blood insulin, 
and blood glucose are preferably used in the study of diabetes (Christensen et al., 2010; Khalili 
et al., 2023; Khan et al., 2018). However, presentation of diabetes is also characterized by 
dysregulation of lipid metabolism (dyslipidemia) and chronic inflammation (Calle & Fernandez, 
2012; Galicia-Garcia et al., 2020; Mooradian, 2009). Efforts to study diabetes-related metabolic 
phenotypes in diverse populations have provided insights into the characterization of lipid 
profiles and inflammatory markers in populations with diabetes. For example, Yang and 
collaborators (Yang et al., 2023) found that Chinese patients with prediabetes and diabetes had 
an increased abundance of plasma ceramides including, Cer(d18:1/22:0), Cer(d18:1/23:0), and 
Cer(d18:1/24:0) compared to healthy Chinese control patients, revealing a novel relationship 
between diabetes and plasma lipid profiles previously unappreciated. Regarding the relationship 
of inflammation to diabetes, reports have historically found an increase in systemic markers 
such as C-reactive protein (CRP), and the pro-inflammatory cytokines interleukin 6 (IL-6) and 
tumor necrosis factor alpha (TNF-α) as features of diabetes (Popko et al., 2010; Stanimirovic et 
al., 2022; Swaroop et al., 2012). More recent literature in type 2 diabetes (T2D) research has 
discovered an elevation of Th17 cytokines (IL-17A, IL-17E, IL-17F, IL-21, and IL-22) in people 
with T2D. Particularly, IL-17A has been reported to be elevated in patients with T2D compared 
to patients without T2D (Ip et al., 2015, 2016; Nicholas et al., 2019). Notably, an interesting 
study demonstrated the potential association between Th17 inflammatory profiles and 
compromised lipid metabolism in the context of fatty acid uptake in T2D (Nicholas et al., 2019). 
However, these studies were not powered to assess the relationship between lipids and Th17 
inflammation by race and ethnicity. Studies in the field of cardiometabolic disease provide 
evidence to support that disparities persist regarding clinical features of diabetes in diverse 
populations. For example, disparate levels of lipids (cholesterol, high-density lipoprotein (HDL), 
low-density lipoprotein (LDL), and triglycerides) have been reported in African Americans 
compared to White individuals in the context of cardiometabolic disease (Koutroumpakis et al., 
2016; Riccardi et al., 2020). 

Given the known health disparities in diabetes, our goal was to determine the relationship 
between lipid profiles and inflammatory markers in diabetes within White and African American 
cohorts. We hypothesized that the relationship of lipids to inflammation in the presentation of 
diabetes varies across diverse populations. To this end, we specifically compared clinical 
measures of dyslipidemia and inflammation and unbiased biochemical measures of plasma 
lipids and cytokines between White and African American individuals using multivariate 
analyses.   
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RESEARCH DESIGN AND METHODS 
 
HANDLS Population  

Study participants were sampled from the Healthy Aging in Neighborhoods of Diversity across 
the Life Span (HANDLS) (Evans et al., 2010), a population-based cohort study involving 3720 
participants supported by the Intramural Research Program of the National Institute on Aging.  

HANDLS is a longitudinal study designed to understand the sources of persistent health 
disparities in overall longevity and chronic disease in White and African American individuals. 
For this study, participants were recruited from 13 contiguous U.S. Census tracts in the 
Baltimore area and were 30 to 64 years of age at the time of enrollment. A subsample of 40 
participants was randomly selected and divided into 4 matched comparison groups based on 
race and disease status (No diagnosis of diabetes=NoDx; diagnosis of diabetes=Dx). These 
groups are White individuals without diabetes (NoDx-White), White people with diabetes (Dx-
White), African Americans without diabetes (NoDx-AA), and African Americans with diabetes 
(Dx-AA). Based on the absence of insulin use, 80% of the cohort with diabetes had confirmed 
T2D. To maximize the potential to identify different biological contributors to health disparities, 
the comparison groups were equally distributed by race, diabetes status, and sex, with each 
group being matched by age, body mass index (BMI), and poverty status (Table 1). Importantly, 
all statistical comparisons in this study were performed between matched groups, based on 
diabetes status and race. As such, we evaluated comparisons between NoDx-White vs Dx-
White, NoDx-AA vs Dx-AA, NoDx-White vs NoDx-AA, and Dx-White vs Dx-AA.  

Shipment of plasma and peripheral blood mononuclear cells (PBMCs) samples used for this 
study was coordinated by HANDLS study coordinators from the National Institute on Aging, NIH, 
Baltimore to the University of California, Irvine (UCI). Cryopreserved plasma and PBMCs were 
stored upon arrival at the Nicholas laboratory at UCI in a -80C freezer and a liquid nitrogen (LN) 
tank, respectively. Plasma samples were thawed on ice before processing for targeted 
lipidomics and multiplex cytokine profiling. PBMCs were thawed in a water bath at 37°C prior to 
in vitro activation and staining for flow cytometry.  

 

AllofUS Population study and experimental design 

In addition to using a HANDLS subcohort, we used information on clinical data related to lipids 
and inflammation from a T2D subcohort from the AllofUs multi-ethnic study (Ramirez et al., 
2022). The AllofUs study is an NIH funded multicenter study consisting of patient-level data from 
331,382 individuals from 35 hospitals in the United States aimed at sampling one million or 
more people living in the United States to provide a collection of broadly accessible data. The 
AllofUs research program reflects the diverse population in the United States, including minority 
groups historically underrepresented in biomedical research. We used the AllofUs researcher 
workbench to create a dataset of 17,339 participants with T2D from two different racial groups 
(White and AA) from the same age and body mass index ranges as our HANDLS subcohort 
(Registered Tier Data v.7). We further selected the AllofUs T2D subcohort based on disease 
status (T2D), race, age (range matched to HANDLS: 30 to 65 yo), and BMI (range matched to 
HANDLS: 20 to 42). We evaluated differences in glycated hemoglobin (HbA1C), insulin, 
glucose, cholesterol to HDL ratio (CholHDLRat), triglycerides, and C-Reactive protein (CRP) 
between White and African American cohorts.    

The institutional review board of the National Institute of Environmental Health Sciences and the 
National Institutes of Health approved these protocols. The University of California Irvine 
Institutional Review Board exempted this study from review. 
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Demographics and clinical parameters, HANDLS study cohort 

Demographic and clinical parameters relevant to diabetes were provided to us by HANDLS 
study coordinators. The data provided was from a cross-sectional sample collected between 
2004 and 2008. After informed consent and enrollment into the study, participants were 
interviewed and subjected to an examination on a mobile research vehicle. Height and weight 
were measured to calculate body mass index, whole blood was processed and stored as serum, 
plasma, and peripheral blood mononuclear cells (PBMCs). Disease status, race, sex, age, body 
mass index, and poverty status were used to equally distribute and match our comparison 
groups as follow: non-diabetic White (NoDx-White), diabetic White (Dx-White), non-diabetic 
African Americans (NoDx-AA), and diabetic African Americans (Dx-AA). Clinical measurements 
used for analysis were related to metabolic homeostasis and systemic inflammation and include 
cholesterol, high-density lipoprotein (HDL), cholesterol/HDL ratio, triglycerides, low-density 
lipoprotein, very-low-density lipoprotein, HbA1c, waist hip ratio, high sensitivity C-reactive 
protein (hs-CRP), insulin, and fasting blood glucose.  

 

Dietary recall data 

Dietary intake of lipids was determined using the USDA Automated Multiple Pass Method of 
dietary recall, which is an interviewer-administered computerized method for collecting 24-hour 
dietary recalls (U.S. Department of Agriculture, n.d.) 

 

Clinical Data analysis 

Univariate analysis on clinical measurements was performed using two-way ANOVA and post-
ANOVA comparisons using Fisher’s LSD test. In addition, we performed principal component 
analysis (PCA) of clinical variables to assess factors contributing to variability of groups. PCA is 
a mathematical algorithm that determines which factors correlate with each other and which 
factors contribute the most and the least to variability within the dataset. The squared cosine 
(Cos2) is the parameter of a PCA that shows the importance of a component for any given 
observation (Ringnér, 2008).  

 

Targeted Lipidomics using Liquid Chromatography Mass Spectrometry (LC-MS) 

Metabolite Extraction: To extract metabolites from plasma samples, 300μL -20°C 1000:1 
isopropanol:lipidomics standard (extraction solvent) was added to 10μL of aliquoted plasma 
sample and incubated on ice for 10 min, followed by vortexing and centrifugation at 15,800 x g 
for 15 min at 4°C. 100μL of the clear supernatant (extract) was transferred to a glass mass 
spectrometry vial.  

LC-MS: Plasma extracts were analyzed by LC-MS. Metabolites were analyzed using a 
quadruple-orbitrap mass spectrometer (Q-Exactive Plus Quadrupole-Orbitrap, Thermo Fisher) 
coupled to reverse-phase ion-pairing chromatography. The mass spectrometer was operated in 
positive ion mode with resolving power of 140,000 at m/z 200 and scan range of m/z 290-1200. 
The LC method utilized an Atlantis T3 column (150 mm x 2.1 mm, 3 μm particle size, 100Å pore 
size, Waters) with a gradient of solvent A (90:10 water: methanol with 1mM ammonium acetate 
and 35 mM acetic acid) and solvent B (98:2 Isopropanol: methanol with 1mM ammonium 
acetate and 35 mM acetic acid). The LC gradient was 0 min, 25% B, 0.150 ml/min; 2 min, 25% 
B, 0.15 ml/min; 5.5 min, 65% B, 0.150 ml/min; 12.5 min, 100% B, 0.150 ml/min: 16.5 min, 100% 
B, 0.150 ml/min, 17 min, 25% B, 0.150 ml/min and 30 min, 25% B, 0.150 ml/min. Other LC 
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parameters were column temperature 45C, autosampler temperature was set to 4°C and the 
injection volume of the sample was 3μL.  

Data analysis: Lipidomics data analysis was performed with Compound Discover and MAVEN 
software.  

 

Cytokine profiling using Luminex platform: 

Plasma samples: One aliquot per donor of frozen plasma samples from the HANDLS cohort 
(N=40) were thawed on ice to perform cytokine profiling using the Luminex Intelliflex platform. 
Plasma samples were used in a 1:100 dilution using serum matrix provided with MILLIPLEX® 
MAP human kits used and in a neat state (no dilution) for comparison to assess background 
signal. 10µl of each sample (diluted and neat) were evaluated per kit in a 384-well plate for 

cytokine profiling. 

Cytokine concentration measurements: For performance of cytokine profiling of plasma samples 
from the HANDLS cohort, we used the MILLIPLEX® MAP human kits 
Cytokine/Chemokine/Growth Factor Panel A 47-plex (EGF, eotaxin, FGF-2, FLT-3L, fractalkine, 
G-CSF, GM-CSF, GROa, IFNa2, IFNy, IL-1a, IL-1b, IL-1ra, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, 
IL-9, IL-10, IL-12p40, IL-12p70, IL-13, IL-15, IL-17a, IL-17e, IL-17f, IL-18, IL-22, IL-27, IP-10, 
MCP-1, MCP-3, M-CSF, MDC, MIG, MIP-1a, MIP-1b, PDGF-AA, PDGF-AABB, sCD40L, TGFa, 
TNFa, TNFb, VEGF-A) + 1 customized (RANTES) (Millipore Cat# HCYTA-60K-PXBK48) and 
the Th17 5-plex (customized: IL21, IL23, IL31, IL33, and MIP-3a) (Millipore Cat# HTH17MAG-
14K) total 53 cytokines assayed per sample. To adjust the manufacturer’s protocol to our 384-
well plate format all other reagents including antibodies, magnetic beads, and detection 
reagents, were used at 10 µL. Outcomes from wells with <50 beads for each analyte were 

excluded from analysis. Plates were washed in between incubations using a Biotek 450S touch 
plate washer (Biotek) and read using a xMAP INTELLIFLEX® System (Luminex). 

Data analysis: Quality control was performed on cytokine quantification data using the Belysa® 
Immunoassay Curve Fitting Software (Millipore). This consisted of evaluating standard curves 
for all 53 analytes and quality control samples (provided in each kit) measured in the 
experiment. The interpolated concentrations of the plasma samples were exported in an excel 
file format for statistical and bioinformatic analysis (univariate, multivariate: K-means and gap 
stats, PCA, and OPLS-DA).  

 

Immune phenotyping of cellular populations using Flow cytometry 

Tissue Culture: PBMCs were quickly thawed in a 37°C water bath and washed with 10mL of 
RPMI 1640 media (Genesee Scientific, CAT#25-506) supplemented with 10% Fetal Bovine 
Serum (Omega Scientific, CAT#FB-1), 20µM HEPES (ThermoFisher Scientific, CAT# 

15630080), and 100 U/mL penicillin and 100µg/mL streptomycin (Genesee, CAT#25-512). 

Individual donor samples were split in half, one half was used for stimulation and the half left 
was used for immediate staining and flow cytometry acquisition. Half of the PBMCs for 
stimulation purposes were seeded at 1x106 in a 96-well U-bottom plate coated with anti-human 
CD3/28 (Thermo Scientific CAT#501129356 & 501129714). Each donor PBMC sample (N=40) 
were plated in technical duplicates. CD3/28 activated PBMCs were cultured for 40 hours in 
37°C 5% CO2 followed by sample preparation and analysis by flow cytometry. 

Flow cytometry: A panel of 22 surface and intracellular markers and 1 viability dye were used to 

phenotype various leukocyte populations in PBMCs (Table 2). PBMCs were first stained with 
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live/dead stain Zombie NIR diluted in PBS, pH 7.4 for 20 minutes at 4°C away from light. 

PBMCs were washed with FACS buffer (PBS + 0.1% BSA + 2µM EDTA) and centrifuged at 

500g for 5 minutes. Supernatant was removed and 25µL of Human TruStain FcX was added for 

10 minutes on ice and protected from light to block human FC receptor to prevent nonspecific 

antibody staining. After 10 minutes, 25µL of surface antibody master mix diluted in BD 

Biosciences Brilliant Stain Buffer (CAT# 566349) was added to PBMCs for 20 minutes on ice 

away from light. PBMCs were then washed with FACs buffer, centrifuged and supernatant 

removed. PBMCs were then fixed with Biolegend’s Fixation Buffer (CAT# 420801) for 20 

minutes at 4°C and protected from light. PBMCs were washed with Biolegend’s Intracellular 

Staining Permeabilization Wash Buffer (CAT# 421002) twice and supernatant was removed for 

the addition of 25µL of intracellular antibody master mix diluted in Biolegend’s Intracellular 

Staining Permeabilization Wash Buffer for 20 minutes at 4°C and protected from light. PBMCs 

were washed with Biolegend’s Intracellular Staining Permeabilization Wash Buffer and 

resuspended in 200uL of 1% paraformaldehyde diluted in PBS pH 7.4 for acquisition using the 

spectral flow cytometer Cytek’s 3-laser Northern Lights.  

Data analysis: Flow Cytometry data was analyzed with FlowJo v.10. Cells were gated first by 

time of sample acquisition followed by doublet discrimination using FCS-H and FSC-A. Next live 

cells were gated based on viability dye, then for size and granularity for lymphocytes and 

myeloid cells based on SSC-A and FSC-A. Boolean gating was used for each population of 

interest based on their specific markers, for example CD3+CD4+ for CD4+ T cell, CD3+CD8+ 

for CD8+T cells, etc. Percentages of cell populations (frequencies) from the parent population 

and from the total of live immune cells were exported from the software and uploaded in R 

Studio and GraphPad prism v.10 for statistical analysis and figure generation. 

 

Statistical analysis ANOVA model in HANDLS subcohort 
Statistical analysis, specifically two-way ANOVA and post-ANOVA multiple comparisons were 
performed using R studio and GraphPad prism. Briefly, all datasets (clinical parameters, 
targeted lipidomics, and plasma cytokines) were assessed for normal distribution. Then, for 
targeted lipidomics and plasma cytokines, we performed a box-cox transformation on the 
datasets as needed to correct for heteroscedasticity and to better satisfy the normality 
assumption of the two-way ANOVA model. We then fit the model considering disease status 
and race as our factors along with the interaction between the two and evaluated the main 
effects and interaction effects through the F-test on the sums of squares. After determining 
which measurements were significantly different in an overall model considering disease status, 
race, and the interaction between the two, we performed post hoc multiple comparison analysis 
using Fisher Least Significant Difference (LSD) test and plotted the results. All graphics were 
generated using GraphPad Prism v. 10. 
 

Feature selection analysis using Orthogonalized Partial Least Squares discriminant 
analysis (OPLS-DA) 

OPLS-DA is an iteration of the supervised clustering approach partial least squares discriminant 
analysis (PLS-DA), similar to the more conventionally used principal component analysis (PCA). 
OPLS-DA is a machine learning tool that selects features characteristic in a training dataset to 
build a predictive model tested on a validation dataset (Tapp & Kemsley, 2009; Trygg & Wold, 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted November 13, 2024. ; https://doi.org/10.1101/2024.11.13.24317202doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.13.24317202


2002; Worley & Powers, 2012). OPLS-DA generates latent variables (LVs), like PLS-DA, that 
are analogous to the principal components obtained by PCA but constrained by categorical 
information. Different from PLS-DA, OPLS-DA applies orthogonal rotations to the analysis to 
obtain maximum separation of classes along the LV1 axis, hence a single LV serves as a 
predictor for the class, while other components describe the variation orthogonal to the first 
predictive component (LV1). 
Analysis: OPLS-DA was performed for both datasets independently (targeted lipidomics and 
cytokine profiling) using the Solo eigenvector research software. Due to the sample size of our 
HANDLS subcohort (40 participants), we limited the application of this tool to build a feature 
selection model using our dataset as a calibration set only, an approach conducted in previously 
published work (Barroeta-Espar et al., 2019; Wood et al., 2015). This allowed for the discovery 
of distinct immunometabolic features of diabetes between White and African American cohorts. 
Each dataset was normalized (z-scored) before uploaded to the Solo software. Classes 
selected for comparison were based on disease status (with and without diagnosis of diabetes) 
in each racial group (African American and White). For example, diabetes group comparing 
classes as White vs African American cohorts. Cross-validation was performed using the leave-
one-out cross-validation strategy, available in the Solo software. Performance of the feature 
selection model generated was evaluated by statistics R2 Cal or R2 calibration which refers to 
the coefficient of determination for the calibration set and measures the proportion of variance in 
the response variable that can be explained by the model using the calibration set. A higher R2 
Cal value indicates a better fit of the model for the calibration data, suggesting that the model 
captures the underlying patterns well. LV1 and LV2 loadings were used to plot the datasets and 
orthogonalized LV1 loadings were used to determine features that correlated positively and 
negatively with disease status in each racial group. 
 

Correlative analysis of lipid:cytokine ratios to clinical markers of diabetes 

The ratio of every possible lipid:cytokine combination was computed for all subjects of the 
HANDLS subcohort (N=40). The ratios and their significance were generated using the 
corAndPvalue() function from the WGCNA package (version 1.72-5) in R studio (version 4.2.1). 
Further, we evaluated which lipid:cytokine ratios uniquely correlated to HbA1c, a clinical 
parameter used to diagnose diabetes, and HOMA-IR, a measurement of insulin sensitivity, in 
each group. We filtered for lipid:cytokine ratios that correlated significantly (p-value < 0.05) with 
HbA1C and HOMA-IR in at least one racial group. We plotted correlation statistics for these 
ratios each for White and African American individuals using ggplot2 (version 3.5.1).  

 

Demographics and health data from the AllofUs study cohort: 

Data Extraction: Data for this study were extracted from the AllofUs study using the AllofUs 
Researcher workbench platform. The dataset was queried focusing on specific demographic 
and health information. Custom SQL queries were used to extract data related to measurement 
concepts of interest (e.g., biomarker levels), condition occurrences, and participant 
demographic details such as race and sex. The data were exported to the online platform 
Rstudio, available in the AllofUs Researcher Workbench, allowing for efficient access and 
analysis.  

Data analysis: Once imported, the data underwent preliminary cleaning, such as removal of 
missing values and unnecessary columns. After this, we computed descriptive statistics, 
including the mean, standard deviation, and standard error of the mean (SEM) for each clinical 
biomarker stratified by racial group. These statistics were presented in a tabulated format using 
the kable package. To adjust biomarker levels for potential confounders (body mass index and 
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age) across different racial groups, a custom R function was implemented. This function fitted 
linear models to each biomarker of interest, adjusting for BMI and age while accounting for race. 
Adjusted biomarker levels were calculated by subtracting the contributions of BMI and age, as 
determined by the linear model coefficients. Subsequent t-tests were performed to compare the 
adjusted biomarker levels between racial groups, excluding the racial group Asian due to 
insufficient data values. The results were visualized using ggplot2 and ggpubr, with t-test 
statistics annotated on box plots that displayed the adjusted biomarker levels by race. 
All analyses were conducted in R, with statistical significance set at p < 0.05. 
 

RESULTS 

Overall study design 

We generated three independent biological datasets for integrated analysis from the HANDLS 
subcohort (Fig. 1). First, we analyzed serum clinical parameters (Fig. 1A and 1B). Second, we 
used plasma samples from HANDLS study participants to perform targeted lipidomics using 
liquid chromatography mass spectrometry (LC-MS) and to perform cytokine and growth factor 
multiplex quantification using Luminex. These approaches resulted in 128 lipids and 47 
cytokines for analysis (Fig. 1C and 1D). Within each data type, we performed univariate and 
multivariate analysis among our 4 study groups. Finally, we performed an integrated analysis of 
all biological datasets to identify clinical and immunometabolic features characteristic of 
diabetes in either White or African American populations (Fig. 1E).  

Clinical lipids are major drivers of variability in the HANDLS subcohort 

To define the clinical features characteristic of diabetes in White and African American 
participants, we first performed univariate comparison of clinical parameters. We evaluated 
waist hip ratio (WHR), cholesterol (Chol) levels, high-density lipoprotein (HDL), cholesterol to 
HDL ratio (CholHDLRat), low-density lipoprotein (LDL), very low-density lipoprotein (VLDL), 
triglycerides, HbA1C, insulin, fasting glucose, and high sensitivity C-reactive protein (hs-CRP). 
We performed a two-way ANOVA to determine whether disease (diabetes status), race, and/or 
the interaction of both variables modify the clinical parameters in our cohort (Fig. 2A). We found 
that CholHDLRat, VLDL, HbA1C, hs-CRP, insulin, and glucose levels were significantly 
modulated by diabetes status. Insulin was the only parameter that was significantly modulated 
by race in our statistical model (Fig. 2A). Though insulin was not significantly different in any 
individual comparisons (Suppl. Fig S1A), insulin levels were significantly different between 
NoDx-White and Dx-White when adjusted for insulin use (Suppl. Fig S1B). Interestingly, hs-
CRP was the only parameter that was significantly modulated by the interaction of disease and 
race. Confirming our statistical model (Fig. 2A), standard-of-care clinical measurements for 
diagnosis of diabetes such as HbA1C and fasting glucose, were significantly different between 
individuals with and without diabetes in each racial group independently (Fig. 2B).  

To better understand the sources of variation in the clinical parameters evaluated in our diverse 
HANDLS subcohort, we performed principal component analysis (PCA) (Fig. 2C and 2D). PCA 
is a mathematical algorithm that determines which factors contribute the most and least to 
variability within the dataset (Ringnér, 2008). By projecting the variables on principal component 
1 (PC1), we determined that clinical lipid measurements like CholHDLRat, HDL, and 
triglycerides were the top 3 contributors to variability in our cohort (Fig. 2D). Counterintuitively, 
standard-of-care diabetes measurements such as HbA1C, fasting glucose, and insulin 
contributed the least to the variability evaluated in our cohort. Intriguingly, CholHDLRat, the 
main driver of variability, was only significantly different when compared between individuals 
with and without diabetes in the White group, even after adjusting for lipid-lowering drug use 
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(statins) which could affect cholesterol levels (Fig. 2E and Suppl Fig. S2). From these data, we 
conclude that variability in diabetes associated with clinical parameters is lipid driven. 

Plasma lipidomes characterize diabetes in White but not in African American groups in 
the HANDLS subcohort 

Intrigued by the results indicating that lipid measurements are main drivers of variability in the 
HANDLS subcohort (Fig. 2C and 2D) and that CholHDLRat distinguishes diabetes from non-
diabetes status in White but not in African American cohorts (Fig. 2E), we performed a more in-
depth analysis of dietary and endogenous lipids in the HANDLS subcohort. First, we evaluated 
the dietary intake of lipids, as measured by the USDA Automated Multiple Pass Method of 
dietary recall. No differences were observed when comparing intake of lipids: fats (mono, poly, 
and saturated) and fatty acids (short, medium, and long chain fatty acids) between Dx-White 
and Dx-AA and in each group. We only observed slight differences when comparing some 
short-chain fatty acids between NoDx-White and NoDx-AA (Suppl. Table S1). Next, we 
performed targeted plasma lipidomics to identify specific endogenous lipid species that could be 
differentially abundant across our comparison groups (NoDx-White, Dx-White, NoDx-AA, and 
Dx-AA). Similar to our analysis of clinical measurements (Fig. 2A), we performed two-way 
ANOVA to assess whether disease (diabetes status), race, and/or both variables significantly 
modulated the differences in lipid abundance seen in our HANDLS subcohort. We found that out 
of 128 lipids measured through targeted plasma lipidomics, 38 lipids were significantly 
modulated in a model where disease, race, or both variables were evaluated (Fig. 3A). Majority 
of these lipids were triglycerides (TG) (Fig. 3B). We continued performing multivariate analysis 
using K-means and gap statistics on the significantly modulated lipids. By comparing cluster 
centers, a measurement that represents the average expression of all correlated lipids in one 
cluster, we found that all 3 clusters generated were significantly different in at least one 
comparison performed (Fig. 3B). Cluster 1, comprising mainly polyunsaturated long chain 
triglycerides (TG) phosphatidylcholine (PC), phosphatidylethanolamine (PE), and sphingosine, 
was increased in White individuals over the African American group regardless of diabetes 
status (Fig. 3C). Cluster 2 was increased in Dx-AA and Dx-White compared to NoDx-AA and 
NoDx-White, respectively (Fig. 3D). Cluster 3, composed of mainly long chain diacylglycerides 
(DG), and very long chain TG, was increased in Dx-White compared to Dx-AA (Fig. 3E). We 
conclude from the targeted plasma lipidomics analysis that long and very long chain DG and TG 
are most abundant in and most impacted by diabetes status in the White participants. 

Classical measures of inflammation characterize diabetes in White but not in African 
American groups in HANDLS subcohort 

From the lipid analysis, it became evident that the contribution of dyslipidemia to the 
presentation of diabetes in the African American cohort was different than in the White cohort. 
Because diabetes is not only a metabolic condition, but also an inflammatory disease (Calle & 
Fernandez, 2012), we decided to address whether diabetes-related inflammation was also 
manifesting differently in our populations. We were puzzled to see that hs-CRP, the most 
common clinical inflammatory marker (Blake & Ridker, 2002; Kalaiselvan et al., 2023; Lee et al., 
2024), was not a significant contributor to variability in our dataset (Fig. 2C and 2D). Further, we 
were surprised to see that despite hs-CRP being significantly modulated in a model in which 
diabetes status and race were interactive variables (Fig. 2A), multiple comparison analysis 
showed that hs-CRP was only elevated in diabetes in the White group, even after adjusting for 
statin use which could alter hs-CRP levels (Fig. 4A, Supp. Fig. S3). These data prompted us to 
explore other systemic inflammatory biomarkers that could better characterize inflammation in 
this African American cohort and potentially reveal novel features of diabetes presentation in 
this population. 
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To determine whether additional systemic inflammatory proteins could be better discriminators 
of diabetes in African Americans, we performed multiplex cytokine and growth factor profiling 
using the Luminex platform. We probed for 52 analytes in plasma samples from our HANDLS 
subcohort (40 individuals). After quality control, we obtained concentration values for 47 
molecules. Our initial statistical model assessment and univariate multiple comparisons among 
the 4 groups indicated that two cytokines were significantly modulated by disease status, IL-
12p70 and MCP-1, and two other cytokines by race, eotaxin and IL-27 (Fig. 4B and 4C). 
Notably, all 4 cytokines (eotaxin, IL-27, MCP-1, and IL12-p70) were increased in Dx-White when 
compared to Dx-AA (Fig. 4D). Additionally, IL-27 and IL12-p70 were decreased in Dx-AA when 
compared to NoDx-AA and MCP-1 was increased in Dx-White compared to NoDx-White (Fig. 
4D). Because cytokine production typically has a high probability of covariance, we performed a 
multivariate clustering analysis. Using K-means and gap statistics we generated 6 clusters 
representative of the 47 evaluated molecules. By comparing cluster centers, we determined that 
cluster 4, which included eotaxin, IL-27, and MCP-1, was significantly increased in Dx-White 
compared to all other groups (Fig. 4C and 4E). We conclude that immune cell function, as 
measured by systemic levels of specific cytokines eotaxin, IL-27, and MCP-1, could account for 
differences in diabetes inflammatory status among diverse populations. 

Intrigued by the lack of a classical diabetes-associated inflammatory profile (i.e. IL-6, TNF-α, IL-
1b, and hs-CRP) in the plasma of the African American cohort (Fig. 4A and Suppl. Fig. S4), we 
analyzed immune cell populations to determine if specific immune cell types could be 
contributing to this difference in inflammatory responses. We performed flow cytometry using a 
panel of 23 markers to phenotype immune cell populations and compare their frequencies 
among our 4 studied groups. Interestingly, central memory CD4+ T cells, a population of 
immune cells reported to play a modulatory role in diabetes (Rattik et al., 2019; Tan et al., 
2022), was significantly increased only in Dx-White and not in Dx-AA (Fig. 4F, Supp. Fig. S5). 
No other phenotyped cell populations in human peripheral blood mononuclear cells (innate and 
adaptive cells) were significantly modulated amongst our 4 groups. We conclude that in our 
HANDLS subcohort, immune cell populations reported in literature to have changes in 
frequencies in diabetes could only characterize disease in White and not in the African 
American cohorts.  

Elevated lipids and classical inflammatory markers are features of diabetes in the White 
group while Th17 inflammatory features characterize diabetes in the African American 
group in the HANDLS subcohort 

Conducting 4-group comparisons revealed lipids and inflammatory mediators were modulated 
distinctively in Dx-White. However, this approach did not allow us to detect markers of 
inflammation specific to Dx-AA. Therefore, we decided to use a supervised clustering approach 
to identify lipids and inflammatory features that characterize diabetes in both White and African 
American cohorts, and between individuals with and without diabetes of each racial group. We 
performed orthogonalized partial least squares discriminant analysis (OPLS-DA) to determine 
such features characterizing each racial group.  

By performing feature selection with OPLS-DA using the set of 38 significantly modulated lipids 
from our targeted lipidomics diabetes diagnosed dataset, we first noticed a clear separation on 
latent variable 1 (LV1) driven by lipid profiles that correlated with disease status in African 
American or White groups (though the classification error for the cross-validation model was 
0.5) (Fig. 5A). This separation between classes was even less clear when classifying racial 
groups independently by diabetes status (Suppl. Fig S6A and S6C). By comparing Dx-White 
from Dx-AA, we observed that the top 10 lipids that correlated positively with the presentation of 
diabetes in White individuals were long and very long chain TG in addition to monounsaturated 
species of phospholipids (Fig. 5B). Despite the classification model having high error, the lipid 
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species identified using this model were significantly increased in Dx-White in comparison to 
NoDx-White and to Dx-AA (Fig. 3B). Additionally, some of the lipids reported to be markers of 
dyslipidemia, like ceramides and sphingosine, correlated positively with diabetes in White (both 
lipids) and African American (ceramides only) individuals (Suppl. Fig S5B and S5D). Our 
findings suggest that lipid profiles characterize the presentation of diabetes in White individuals, 
but not in African American individuals in this HANDLS subcohort.  

Next, we analyzed inflammatory profiles using the same methodology. We observed a striking 
separation between Dx-AA and Dx-White with a model classification error of cross-validation = 
0.3, significantly above random error (Fig. 5C). These results were different from what we saw 
when selecting inflammatory features within each racial group (Suppl. Fig S7A and S7C). 
Consistent with what was determined in our previous univariate and multivariate analysis, 
cytokines MCP-1, eotaxin, and IL-27 were important for the classification of diabetes in White 
individuals. Importantly, we saw that TNF-α, IL-6, and IL-1β (Th1 cytokines known to induce 
CRP) were also important for classifying diabetes in White individuals. In contrast, IL-17A, IL-
1E, IL-17F, G-CSF, and IFN-γ (Th17-associated cytokines) were important contributors to the 
classification of diabetes in African Americans (Fig. 5D). We also identified IL-33, IL-31, TGF-α, 
GRO-α and epithelial growth factor (EGF) (Fig. 5D) as important for distinguishing diabetes in 
African American vs White groups.  

Interestingly, we also found that features characteristic of diabetes in White or African American 
groups were also positively correlated to disease when compared with non-disease controls 
within each racial population (Suppl. Fig S7B and S7D). Finally, TNF-α, one of the most 
reported markers of inflammation in diabetes, was the third most relevant feature that correlated 
negatively with diabetes specifically in AA (Suppl. Fig S7D). This reaffirms the differences seen 
in classical inflammation markers manifesting in African Americans, compared to White 
individuals. Taken together, results from this supervised clustering analysis identified systemic 
inflammatory features that correlated positively with the presentation of diabetes in African 
Americans, specifically Th17-type inflammation. Similar to the immune phenotyping results, we 
conclude from the OPLS-DA analysis that plasma cytokines generally reported to characterize 
diabetes (TNF-α, IL-6 and IL-1β) mainly do so in cases of diabetes in the White subcohort from 
the HANDLS study. However, this finding does not hold in the African American HANDLS 
subcohort.  

Relationships between lipids and inflammatory markers exhibit inverse correlations with 
clinical measures of diabetes in White and African American participants within the 
HANDLS subcohort 

Our clinical findings support an interaction between lipids and inflammation as modulators of 
diabetes, especially in White individuals (Fig. 2). Literature supports the role of lipids in 
activation of immune cells, specially T cells and macrophages (De Jong, 2015; Hubler & 
Kennedy, 2016; Seufert et al., 2022). Since such immune cells could secrete much of the 
cytokines that were differentially modulated between racial groups upon stimulation with lipids, 
we next investigated the relationship between lipids and inflammatory cytokines with respect to 
diabetes status. To address these associations, we first calculated all possible permutations of 
ratios between all 128 lipids and 47 cytokines measured on a per-subject basis. This approach 
generated lipid:cytokine ratios. Then, we correlated each ratio with clinical markers of diabetes 
such as HbA1C and the homeostatic model assessment for insulin resistance (HOMA-IR), both 
significantly different between NoDx and Dx in both racial groups (Fig. 2B and Suppl. Fig S8) 
(Christensen et al., 2010; Khalili et al., 2023). We plotted the differences on a per-racial group 
basis (Fig. 6). We observed a striking inverse pattern in the relationships that correlated to 
diabetes in the White group compared to those in the African American cohort. The vast 
majority of lipid:cytokine ratios that significantly correlated to HbA1C (Fig 6A) and HOMA-IR 
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(Fig. 6B) in White individuals were not significantly correlated in the African American group, 
and vice versa. Only a handful of ratios correlated significantly to clinical markers of diabetes in 
both groups, however such correlations represented weaker signals relative to the strongest 
race-associated ratios identified. In the White cohort, most of the ratios that correlated positively 
to HbA1C (Fig 6A) included at least one cytokine (MCP-1 or eotaxin) that was significantly 
increased in the White cohort in our previous analysis (Fig. 4 and 5). Conversely, in the African 
American group, relationships that included either MCP-1 and eotaxin correlated negatively to 
HOMA-IR (Fig 6B). These findings build upon previous conclusions on the cytokines that were 
found to be differentially increased in Dx-White over NoDx-White and Dx-AA. In African 
Americans, we found that the inflammatory markers soluble CD40 ligand (sCD40L) and 
RANTES were expressed in most of the relationships positively correlated to HOMA-IR, marker 
of insulin resistance (Fig. 6B). With this analysis, we conclude that lipid:cytokine relationships 
are inversely correlated to clinical markers of diabetes and insulin resistance in the White vs 
African American HANDLS cohort. 

Lipid and inflammatory features of diabetes seen in the HANDLS subcohort are validated 
in a T2D subcohort from the AllofUs multi-ethnic study  

Given our findings describing dramatic differences in lipids, inflammatory markers, and 
lipid:cytokine ratios between the White and African American groups from the HANDLS 
subcohort (Fig. 6), we wanted to determine whether we could observe similar outcomes in a 
larger cohort. To this end, we investigated the differences in clinical parameters associated with 
diabetes, dyslipidemia, and inflammation using a T2D cohort from the multi-ethnic study AllofUs 
(N=17,339).   

By evaluating the same clinical measurements that were significantly modulated in the HANDLS 
diabetes subcohort in the AllofUs T2D subcohort, we noted similarities and differences (Fig. 7). 
First, we evaluated diabetes standard-of-care clinical markers, such as HbA1C, glucose, and 
insulin in the AllofUs T2D subcohort (Suppl. Fig. S9). Initially, we observed that HbA1C (Suppl. 
Fig. S9A) and insulin (Suppl. Fig. S9C) were significantly increased in African Americans with 
T2D, compared to the White group with T2D. On the other hand, glucose was not significantly 
different between White and African American groups with T2D (Suppl. Fig. S9E). When we 
performed a linear regression model adjusting for BMI and age, two biological variables used to 
match comparison groups in the HANDLS diabetes subcohort, we found that only HbA1C 
remained higher in African Americans with T2D (Suppl. Fig. S9B, S9D, and S9F). Second, 
similar to the HANDLS diabetes subcohort, we noticed that CholHDLRat (Fig. 7A) and total 
triglycerides (Fig. 7C) were significantly increased in the White population with T2D compared 
to African Americans with T2D. Third, opposite to the hs-CRP findings in the HANDLS diabetes 
subcohort, we noticed that classical inflammation detected by standard CRP levels, was 
significantly increased in AA with T2D, compared to White individuals with T2D (Fig. 7E). These 
findings became even more evident when we performed a linear regression model adjusting for 
BMI and age in the AllofUs T2D subcohort (Fig. 7B, 7D, and 7F). 

Overall, by using the AllofUs T2D subcohort to validate the clinical findings obtained in the 
analysis of our well-matched HANDLS diabetes subcohort, we confirmed that dyslipidemia 
distinctively characterizes diabetes in White vs African American cohorts. 

DISCUSSION 

Our study demonstrates a disparity in the relationship of lipids and inflammatory mediators to 
indicators of glycemic control, potentially providing an explanation for how diabetes persists as a 
health disparity. In this study, we leveraged data from two well-described cohorts, HANDLS and 
AllOfUs. With HANDLS (N=40), we demonstrated that lipid profiles abundant in triglycerides, 
diacylglicerides, and ceramides characterize diabetes distinctively in the White group (with 
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diagnosis of diabetes vs. without diagnosis of diabetes) compared to the African American 
group with diabetes. Such profiles failed to characterize diabetes in African Americans (with 
diagnosis of diabetes vs. without diagnosis of diabetes). Our findings also show that diabetes in 
the White groups is characterized by dyslipidemia associated with a classic systemic 
inflammatory signature. This signature can be identified using CholHDLRat, TGs, and hs-CRP 
as clinical proxies. Conversely, diabetes in the AA cohort is characterized by a Th17-type 
inflammation. Further, we show that systemic relationships between lipids and inflammatory 
markers in the HANDLS subcohort inversely correlate to indicators of glycemic control in each 
population evaluated. We validated elevated dyslipidemia in diabetes in White vs African 
American HANDLS participants in a large cohort of people with T2D (N=17,339) through the 
multi-ethnic study AllofUs.  

In our study, we first conclude that clinical lipid measurements, though accounting for variability 
in our dataset, only reflect diabetes status in White and not in African American groups. 
Dysregulation of clinically measured lipids or dyslipidemia has been reported in inter-ethnic 
comparative studies. For example, one report suggested that minority groups, except for African 
Americans, are generally more likely to have high TGs and low HDL levels compared to White 
groups (Frank et al., 2014). Further, most research addressing dyslipidemia and disease 
presentation comparing diverse populations concludes that some routinely measured lipids do 
not reflect risk in cases of cardiovascular disease and reproductive disorders in African 
Americans (Koval et al., 2010; Mcintosh et al., 2013), consistent with this study. 

Results from our lipidomics analysis revealed that a variety of TGs were significantly increased 
in diabetes in our White cohort compared to the African American cohort. These findings, 
specifically in the White HANDLS cohort, recapitulate previous conclusions from cohorts of 
European ancestry. For example, in the Malmo cohort researchers found that increased levels 
of TG and DG were associated with increased risk of T2D similar to our White cohort having 
increased TG and DG when diagnosed with diabetes (Fernandez et al., 2020). In concordance 
with our findings, studies in AA continuously report healthier lipid profiles in this population 
(Bentley & Rotimi, 2017; Frank et al., 2014; Mcintosh et al., 2013). These findings support that 
plasma and clinical lipids are not uniformly related to diabetes risk and disease presentation, 
and affirm that AA risk for type 2 diabetes may be underestimated, thereby contributing to the 
health disparity in disease burden in African Americans. Further, our data may explain why a 
racial disparity in efficacy of lipid lowering drugs to improve HbA1c persists (Cromer et al., 
2023), despite lipid lowering drugs being equally if not more effective for cardiovascular risk in 
AA populations compared to White populations (Kalra, 2021).  

Our findings suggest that the classical markers of inflammation CRP, IL-6, and TNF-α mainly 
discriminate diabetes from non-diabetes cases in the White HANDLS cohort, but not in the 
African American group. Our findings in the White cohort are consistent with increased levels of 
CRP, IL-6, and TNF-α observed in T2D in several studies (Bowker et al., 2020; Effoe et al., 
2015; Kristiansen & Mandrup-Poulsen, 2005; Mirza et al., 2012; Swaroop et al., 2012). In our 
study we found that cytokines eotaxin, MCP-1, and IL-27 were increased in diabetes, though 
only in the White cohort and not in African American group. Eotaxin and MCP-1 are 
inflammatory markers reported to be elevated in patients with T2D (Okdahl et al., 2022; Panee, 
2012), while IL-27 is reported as an inhibitor of Th17 cell proliferation (Hunter & Kastelein, 2012; 
Jouhault et al., 2023). In this study, supervised feature selection revealed that cytokines 
secreted by Th17 cells (IL-17F, IL-17E, and IL-21) were amongst the top features that 
correlated positively with diabetes in AA. This Th17-type signature in AA was accompanied by 
higher levels of IL-33. A role for IL-33 in modulating the balance between Th1/Th17 cells in 
autoimmune disorders has been postulated (Liu et al., 2019). Since Th17 type cytokines were 
associated with diabetes in the African American group, our findings may implicate a non-
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classical inflammatory mechanism contributing to diabetes presentation. Several studies 
support such a mechanism including the reported relationship of T2D-associated inflammation 
with Th17 cell cytokines (Ip et al., 2016; Nicholas et al., 2019) (Ip et al., 2016; Jagannathan-
Bogdan et al., 2011) and the discovery that reduced IL-17 is associated with improved glucose 
management (Sumarac-Dumanovic et al., 2013). Our study reveals novel features 
characterizing diabetes-related inflammation distinctively in the HANDLS African American 
cohort. Our conclusions suggest that specific immune features reported in literature as relevant 
for diabetes could be impacted by the lack of diversity of the cohorts studied, hence contributing 
to the lack of efficacy in discovering and targeting immune pathways central to diabetes 
pathophysiology based on presentation.  

In this study, we observed race-dependent correlations of lipid-inflammatory marker ratios to 
HbA1c and HOMA-IR. Specifically, we uncovered broad correlations of lipids to RANTES and 
CD40L ratios in the AA cohort. Though its role and mechanisms remain under debate, the 
chemokine RANTES, also called CCL5, is associated with T2D, glucose intolerance, and 
obesity (Chou et al., 2016; Dworacka et al., 2014; Yao et al., 2014). In a loss-of-function murine 
study, it was found that genetic deficiency of CD40L attenuated the development of diet-induced 
obesity, hepatic steatosis, and increased systemic insulin sensitivity (Poggi et al., 2011). Our 
findings correlating CD40L and RANTES to several types of lipids like PC, PE, cholesterol ester 
(CE), sphingomyelins (SM), and ceramides in Dx-AA could suggest the existence of an 
unexplored interplay among endogenous lipids, inflammation, diabetes and insulin sensitivity.  

The AllofUs dataset enabled us to corroborate the lipid differences observed in the HANDLS 

subcohort. However, the hs-CRP findings from the HANDLS diabetes subcohort were not 

replicated using CRP values in the AllofUS T2D subcohort. This difference could be due to a 

limitation in comparison between both cohorts, given that the HANDLS study assesses hs-CRP, 

while the large cohort in the AllofUS data was limited to CRP levels in T2D, which is measured 

with a less sensitive assay. Even if this limitation does not account for the discrepancy between 

the HANDLS and AllofUS cohorts due to reported significant positive correlation between hs-

CRP and CRP levels (Helal et al., 2012), there are several other factors that could account for 

the difference. Unlike the HANDLS cohort, in AllofUs we could not account for poverty status, a 

social determinant of health that may contribute to the elevated CRP observed in the AllofUS 

cohort. Literature directly implicates lower socioeconomic status in increased systemic 

inflammation and in increased risk of diabetes in AA (Arnold et al., 2020; Boylan et al., 2020; 

Butler, 2017; Cooper et al., 2024; Gaskin et al., 2014; Muscatell et al., 2020; Van Dyke et al., 

2017). In this context, our data reaffirms the importance of including sociological measurements 

in studies evaluating health and disease in diverse populations (Williams et al., 2016). 

Further limitations of our study include a relatively small sample size (N = 40, HANDLS cohort) 

and limited inclusion of sociological factors other than to match comparison groups. We 

overcame these limitations by using the AllofUs dataset to validate key clinical findings from the 

reduced but matched participants from the HANDLS cohort. However, the AllofUs participants 

could not be matched with all the same variables as in HANDLS.  

In summary, we show that presentation of diabetes is heterogenous. By using comparative 

analysis and diverse cohorts, these results raise fundamental questions regarding how diabetes 

and specifically T2D is managed in the clinic based on their TG levels and CRP status. Future 

research addressing the efficacy of Th17 anti-inflammatory therapy, especially in patients who 

do not achieve glycemic control targets is warranted. Finally, our study highlights the need for 
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large scale diabetes trials to be diverse to capture the full spectrum of disease presentation and 

intervention outcomes, thus paving the way for mechanistic understanding and individualized 

approaches to diabetes management. 
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TABLES: 

Table 1. HANDLS subcohort demographics. 

Table legend: A subcohort of 40 individuals from the HANDLS study were divided into 4 
comparison groups based on disease status and race: White without diabetes (NoDx-White), 
White with diabetes (Dx-White), African Americans without diabetes (NoDx-AA), and African 
Americans with diabetes (Dx-AA). Comparison groups were equally distributed in terms of sex 
of participants. Comparison groups were also matched for body mass index (BMI), age, and 

poverty status.  

 

 

 

 

 

 

 

 

 

 

 NoDx-White 
(N=10) 

Dx-White 
 (N=10) 

NoDx-AA 
 (N=10) 

Dx-AA  
(N=10) 

Overall 
(N=40) 

Sex 
- Women 
- Men 

 
5 (50%) 
5 (50%) 

 

 
5 (50%) 
5 (50%) 

 

 
5 (50%) 
5 (50%) 

 

 
5 (50%) 
5 (50%) 

 

 
20 (50%) 
20 (50%) 

Body Mass 
Index (BMI) 
Mean (SD) 
Median  
[Min, Max] 

 
 

29.46 (3.75) 
30.47  

[22.66, 34.29] 

 
 

32.54 (5.99) 
33.86 

[24.78, 41.28] 

 
 

30.03 (5.67) 
27.64  

[23.18, 40.71] 

 
 

29.03 (3.58) 
29.35  

[20.57, 34.01] 
 

 
 

30.27 (4.88) 
29.76 

[20.57, 41.28] 

BMI category 
(20,30] 
(30,42] 

 
4 (40%) 
6 (60%) 

 

 
4 (40%) 
6 (60%) 

 
6 (60%) 
4 (40%) 

 
6 (60%) 
4 (40%) 

 
20 (50%) 
20 (50%) 

Age 
Mean (SD) 
Median  
[Min, Max] 

 
51.35 (11.31) 

55.6  
[32.5,64.7] 

 
49.53 (8.53) 

52.1 
 [34.4,58.1] 

 

 
52.3 (11.13) 

57.45  
[30, 61.9] 

 
54.56 (10.47) 

58.25 
[37.4,64.8] 

 
51.93 (10.18) 

55.45 
[30.0, 64.8] 

Poverty status 
Above 
Below 

 
9 (90%) 
1 (10%) 

 

 
7 (70%) 
3 (30%) 

 
9 (90%) 
1 (10%) 

 
7 (70%) 
3 (30%) 

 
32 (80%) 
8 (20%) 
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Table 2. Flow cytometry panel used to phenotype cellular populations in PBMCs. 

Marker Fluorophore Clone Purpose Supplier Cat. # Dilution 

CCR7/ 
CD197 

PE/Fire 810 
 

G043H7 
Memory T cells Biolegend 

 
353269 

200 

CD11c Pacific Blue 3.9 Dendritic cells Biolegend 301626 100 

CD14 PE/Cyanine7 63D3 Monocytes Biolegend 
 

367112 
100 

CD16 BUV 805 3G8 NKC & monocyte 
BD 

Biosciences 
748850 400 

CD19 AF647 
 

HIB19 
B cells Biolegend 302220 400 

CD25 APC-R700 2A3 
Regulatory T 

cells 
BD 

Biosciences 
565106 200 

CD3 PerCP 
 

OKT3 
T cells Biolegend 317338 200 

CD4 Spark YG 593 
 

SK3 
helper T cells Biolegend 344672 100 

CD45 BV 510 2D1 Pan leukocytes Biolegend 368526 400 

CD45RA BV 785 
 

HI100 
Naive T cells Biolegend 304140 400 

CD56 BUV496 NCAM16.2 NK cells 
BD 

Biosciences 
750479 50 

CD69 BUV 563 FN50 T cell activation 
BD 

Biosciences 
748764 100 

CD8 Spark Blue 550 
 

SK1 
Cytotoxic T cells Biolegend 344760 200 

FOXP3 PE-Cy5.5 PCH101 Treg 
ThermoFish
er Scientific 

35-4776-
42 

50 

HLA-DR BV711 
 

L243 
Antigen 

presenting cells 
Biolegend 307644 100 

PD1 
Super Bright 

645 
MIH4 T cell activation 

ThermoFish
er Scientific 

64-9969-
42 

100 

TIGIT BUV615 741182 T cell exhaustion 
BD 

Biosciences 
752314 100 

IgM BUV395 G20-127 B cell 
BD 

Biosciences 
563903 400 

IgD BUV661 IA6-2 Mature B cells 
BD 

Biosciences 
741637 400 

CD45RO BUV737 UCHL1 Memory T cells 
BD 

Biosciences 
748368 100 

CD62L APC-Fire 810 DREG-56 T cell subsets Biolegend 304866 400 

CD44 
Nova Fluor Blue 

610/70S 
IM7 T cells 

ThermoFish
er Scientific 

M010T02
B06 

100 

Live/Dead Zombie NIR --- Cell viability Biolegend 423106 3200 

Fc Receptor  
Human TruStain 

FcX 
---  

Block human FC 
receptors to 
prevent false 

positives or false 
negatives 

Biolegend 422302 50 
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Table 3. List of 128 lipids evaluated using targeted lipidomics in HANDLS subcohort. 

Table legend: A subcohort of 40 individuals from the HANDLS study were divided into 4 
comparison groups based on disease status and race: White without diabetes (NoDx-White), 
White with diabetes (Dx-White), African Americans without diabetes (NoDx-AA), and African 
Americans with diabetes (Dx-AA). 

Class of lipid Lipid Species 

Cholesterol Ester  
1. CE.16.1 
2. CE.16.2 
3. CE.18.0 
4. CE.18.1 
5. CE.20.0 

 

 
6. CE.20.1 
7. CE.20.5 
8. CE.22.0 
9. CE.22.5 
10. CE.24.0 

Cearamides  
1. Cearamide.d18:1/14:0 
2. Cearamide.d18:1/16:1 
3. Cearamide.d18:1/18:0 
4. Cearamide.d18:1/18:1 
5. Cearamide.d18:1/18:3 
6. Cearamide.d18:1/20:0 

 

 
7. Cearamide.d18:1/22:0 
8. Cearamide.d18:1/22:1 
9. Cearamide.d18:1/24:0 
10. Cearamide.d18:1/24:1 
11. Cearamide.d18:1/26:1 
12. Cearamide.d18:1/28:3 

Diacylglycerides  
1. DG.28:0 
2. DG.30:0 
3. DG.30:1 
4. DG.32:0 
5. DG.32:1 
6. DG.32:2 
7. DG.34:0 
8. DG.34:1 

 

 
9. DG.34:2 
10. DG.34:3 
11. DG.38:0 
12. DG.40:0 
13. DG.46:4 
14. DG.48:10 
15. DG.48:11 
16. DG.48:12 

Glucosyl / Galactosyl 

Cearamide 

 
1. Glucosyl/Galactosyl 

Cearamide.d18:1/22:1 

 
2. Glucosyl/Galactosyl 

Cearamide.d18:1/22:5 
 

Lyso - 

phosphatidilethanolamine 

 
1. LPE.16:0 

 

 

Monoglycerides  
1. MG.18:1 

 

 
2. MG.20:5 

Phosphatidylcholine  
1. PC.32:0 
2. PC.34:0 

 

 
3. PC.34:1 
4. PC.38:4 

Phosphatidylethanolamine  
1. PE.34:1 
2. PE.36:1 

 
5. PE.O-36:2 
6. PE.O-36:3 
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3. PE.38:4 
4. PE.44:11 

 

7. PE.O-36:5 
8. PE.O-38:5 
9. PE.O-38:6 

 

Phosphatidylserine  
1. PS.34:0 
2. PS.36:1 

 

 
3. PS.42:6 

Sphingomyelin  
1. SM .d18:1/24:0 
2. SM .d18:1/26:0 
3. SM .d18:1/28:0 
4. SM.d18:1/22:0 
5. SM.d18:1/22:1 
6. SM.d18:1/24:1 

 

 
7. SM.d18:1/24:2 
8. SM.d18:1/26:1 
9. SM.d18:1/26:2 
10. SM.d18:1/28:1 
11. SM.d18:1/28:2 

Sphingosine  
1. Sphingosine.24:0. / 

sphinganine.24:1 
 

 
2. Sphingosine.24:1 

Triglycerides 

 

 
1. TG.42:0 
2. TG.42:1 
3. TG.42:2 
4. TG.42:3 
5. TG.44:0 
6. TG.44:1 
7. TG.44:2 
8. TG.44:3 
9. TG.46:0 
10. TG.46:1 
11. TG.46:2 
12. TG.46:3 
13. TG.48:0 
14. TG.48:1 
15. TG.48:2 
16. TG.48:3 
17. TG.48:4 
18. TG.48:6 
19. TG.50:0 
20. TG.50:1 
21. TG.50:2 
22. TG.50:3 
23. TG.50:4 
24. TG.50:5 
25. TG.50:6 
26. TG.50:7 
27. TG.52:1 
28. TG.52:2 

 

 
29. TG.52:3 
30. TG.52:4 
31. TG.52:5 
32. TG.54:1 
33. TG.54:2 
34. TG.54:3 
35. TG.54:4 
36. TG.54:5 
37. TG.54:6 
38. TG.54:7 
39. TG.54:8 
40. TG.56:1 
41. TG.56:2 
42. TG.56:3 
43. TG.58:1 
44. TG.58:2 
45. TG.58:3 
46. TG.58:4 
47. TG.58:5 
48. TG.58:6 
49. TG.60:1 
50. TG.60:2 
51. TG.60:3 
52. TG.60:5 
53. TG.60:6 
54. TG.62:2 
55. TG.62:3 
56. TG.62:4 
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Figure 1. Study experimental design using a diverse HANDLS subcohort. A) HANDLS cohort schematic showing equal distribution of 

participants by race and sex. Participants were also equally divided by diabetes status. Techniques employed for the generation of datasets are 

shown in B, C, and D. B) Clinical parameters measured in serum consisted of glucose measurements (HbA1C and glucose), lipids 

measurements (cholesterol, triglycerides, HDL, LDL, and VLDL), and inflammation measurements (C-reactive protein). C) Plasma lipidomes 

profiles were generated using targeted lipidomics. D) Plasma cytokines profiles were generated using multiplex Luminex platform. All 
independent analysis consisted of statistical and bioinformatic assessment and visualization tools. Lastly, E) Integrative analysis of all datasets 

generated was performed.
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Figure 2. Clinical lipids are main drivers of variability in a diverse HANDLS subcohort.

A) Table showing clinical parameters that differed statistically based on disease (no diabetes vs diabetes), race (White vs AA), and on the 

interaction of both variables (ns= not significant, * = p-value<0.05, ** = p-value<0.01, *** = p-value<0.001, **** = p-value<0.0001). B) Bar/dot 

graph showing results from multiple post-anova comparison of HbA1C (left) and fasting glucose (right) among white and AA with and without 

diabetes. C) Principal Component Analysis (PCA) showing correlations among clinical parameters evaluated and Cos2 color gradient
indicating the quality of representation of clinical parameters of PCA from lowest to highest (black to lightest green). D) Contribution bar chart 

displaying the order of parameters contributing to variability from highest to lowest (highest light green bar to lowest black bar) based on 

Cos2. E) Bar/dot graph showing results from multiple statistical comparison of Cholesterol/HDL ratio (CholHDLRat) among White and AA 

with and without diabetes. Blue = People without diabetes, red = people with diabetes. Statistical analysis performed using Two-way ANOVA 

with Box Cox transformed values followed by Fisher’s LSD post-comparison test (unadjusted p-values). Statistical post-hoc comparisons 
were performed only between matched groups based on diabetes status and race and comparisons between persons with and without

diabetes were not included in the analysis. P-values obtained from multiple post-hoc comparison analysis are represented using a statistical 

letter system, where significantly different p-values are represented by different letters and non-significant p-values are represented by the 

same letters.
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Figure 3. Plasma lipidomes characterize diabetes in White groups but not in AA groups in a diverse HANDLS subcohort.

A) Venn diagram showing 38 lipids that were significantly modulated based on disease (no diabetes vs diabetes), race (White vs AA), and on 

both disease and race. B) Heatmap showing mean z-score value per comparison group from lowest (dark grey) to highest (light green) lipid 

species evaluated univariately and through cluster analysis (clusters 1, 2, and 3) generated using K-means and gap statistics. “ns” next to 

TG.50 and TG.48.2 represent non-significance in post-anova comparisons and red asterisks next to clusters represent statistically significant 

clusters. C) Bar/dot graph showing results from post-anova multiple comparison of lipid cluster 1 among White and AA with and without 

diabetes. D) Bar/dot graph showing results from post-anova multiple comparison of lipid cluster 2 among white and AA with and without 

diabetes. E) Bar/dot graph showing results from post-hoc multiple comparison of lipid cluster 3 among White and AA groups with and without 

diabetes. X axis represents cluster center measurements. Blue = People without diabetes, Red = people with diabetes. Statistical analysis 

performed using Two-way ANOVA with Box Cox transformed values followed by Fisher’s LSD post-comparison test (unadjusted p-values). 

Statistical post-anova comparisons were performed only between matching groups based on diabetes status and race and comparisons 

between persons with and without diabetes were not included in the analysis. P-values obtained from multiple post-hoc comparison analysis 

were represented using a statistical letter system, where significantly different p-values are represented by different letters and non-significant 

p-values are represented by the same letters.
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Figure 4. Plasma inflammatory profiles characterize diabetes in White but not in AA groups in a diverse HANDLS subcohort.

A) Bar/dot graph showing results from multiple statistical comparison of high sensitivity C-reactive protein (hsCRP) among White and AA 

with and without diabetes. B) Table showing cytokines and their respective cluster that differed statistically based on disease (no diabetes 

vs diabetes), race (White vs AA) or interaction of the variables (ns= not significant, * = p-value<0.05, **** = p-value<0.0001). C) Heatmap 

displaying mean z-score value per comparison group of plasma cytokines evaluated and per cytokine cluster (generated by K-means and 
Gap statistics analysis). Asterisks next to cytokines and cluster of cytokines represent significantly modulated clusters. D) Bar/dot graph 

showing cytokines eotaxin (left), IL-27 (center), MCP-1, and IL12p-70 (right) which were statistically different among comparison groups. E) 

Bar/dot graph showing results from statistical comparison of cytokine cluster 4 among White and AA with and without diabetes. F) Bar/dot 

graph showing results from statistical comparison of cellular population central memory CD4+ T cells among White and AA with and

without diabetes. X axis represents cluster center measurements. Blue = people without diabetes, Red = people with diabetes. Statistical 
analysis performed using Two-way ANOVA with Box Cox transformed values followed by Fisher’s LSD post-comparison test (unadjusted

p-values). Statistical post-anova comparisons were performed only between matched groups based on diabetes status and race. 

Comparisons between persons with and without diabetes were not included in the analysis. P-values obtained from multiple post-anova

comparison analysis were represented using a statistical letter system, where significantly different p-values are represented by different 

letters and non-significant p-values are represented by the same letters.
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Figure 5. Lipid and inflammatory features characteristic of diabetes in a diverse HANDLS subcohort.

A) Orthogonal partial least squares discriminant analysis (OPLS-DA) plot of lipid features correlated with presentation of diabetes in White 

(pink circle) and AA (burgundy circle) cohorts. B) Bar graph plot displaying scores on LV1 showing lipids that distinguish diabetes in the 

White cohort. Top 10 correlated features to diabetes in the White cohort are highlighted in pink. C) OPLS-DA plot of inflammatory features 

correlated with presentation of diabetes in White (pink circle) and AA (burgundy circle) groups. D) Bar graph plot displaying scores on LV1 
which show inflammatory characteristic features of diabetes in White (pink bars) and AA (burgundy bars) groups. Top 10 correlated 

features to diabetes in White and AA groups are highlighted in pink and burgundy, respectively. X-axis represents scores on latent variable 

(LV) 1. Y-axis represents scores on LV2 not used for analysis. 
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Figure 6. Modulatory relationships of lipids and inflammatory markers in White and AA groups correlate inversely to diabetes markers.

Volcano plots showing all permutated lipid:cytokine relationships in White and AA. Briefly, all ratios were calculated for each lipid:cytokine relation, 

correlated to HbA1C (A) and HOMA-IR (B), and subset for all correlations that were significant in each racial group only or in both. Correlations 

uniquely significant in white are colored in blue and correlations uniquely significant in AA are colored in yellow . Significant correlations in both 

groups are represented by red triangles. X axis indicates the pearson correlation coefficient. Y axis indicates the –log10 of p-values for the 
lipid/cytokine relationships correlated to HbA1C (A) and HOMA-IR (B). The dotted red line represents threshold of significance values, above p-

value<0.05 and below p-value>0.05.
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Figure 7. Clinical lipid and inflammatory parameters in AllofUs T2D subcohort confirm differential features seen in HANDLS 

diabetes subcohort

Clinical parameters that were differentially associated in White and AA groups from HANDLS subcohort were assessed using the multi-study 

AllofUs. Differences between the means of White and AA are plotted for CholHDLRat (A), triglycerides (C), and CRP (represented by 

logarithmic values due to exponential distribution) (E). A linear regression model was performed in the AllofUs T2D subcohort adjusting for 

variables body mass index (BMI) and age, biological variables used to match comparison groups in HANDLS diabetes subcohort. Adjusted 

differences between the means of Whites and AA are shown for CholHDLRat (B), triglycerides (D), and CRP (represented by logarithmic 

values due to exponential distribution) (F). The X axis represents race and the Y axis represents the clinical parameters evaluated. The White 

population is color represented in teal and the AA population is color represented in mustard. Statistical test used for comparison was 

Student T-test.
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Supplemental Figure S1. Statistical post-ANOVA comparison of insulin. Bar/dot graph showing results from multiple 

statistical comparisons of insulin levels among Whites and AA without and with diabetes. Insulin levels for all participants(A) 

and adjusted for participants who were not prescribed insulin (B) are shown . Blue = People without diabetes, red = people 

with diabetes. Statistical analysis performed using Two-way ANOVA with followed by Fisher’s LSD post-comparison test 

(unadjusted p-values). Statistical post-ANOVA comparisons were performed only between matching groups based on 

diabetes status and race and comparisons between groups with and without diabetes were excluded from the analysis. P-

values obtained from analysis were represented using a statistical letter system, where significantly different p-values are 

represented by different letters and non-significant p-values are represented by same letters.

Supplemental Figure S2. Statistical post-ANOVA comparison of Cholesterol/HDL ratio (CholHDLRat) adjusting for 

statins (lipid lowering drug) use. Bar/dot graph showing results from multiple statistical comparison of CholHDLRat

among Whites and AA without and with diabetes. Blue = People without diabetes, red = people with diabetes. Statistical 

analysis performed using Two-way ANOVA with followed by Fisher’s LSD post-comparison test (unadjusted p-values). 

Statistical post-ANOVA comparisons were performed only between matching groups based on diabetes status and race and 

comparisons between groups with and without diabetes were excluded from the analysis. P-values obtained from analysis 

were represented using a statistical letter system, where significantly different p-values are represented by different letters 

and non-significant p-values are represented by same letters.
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Supplemental Figure S3. Statistical post-ANOVA comparison of high sensitivity C-reactive protein (hsCRP) 

adjusting for statins (lipid lowering drug) use. Bar/dot graph showing results from multiple statistical comparison of 

hsCRP among Whites and AA without and with diabetes. Blue = People without diabetes, red = people with diabetes. 

Statistical analysis was performed using Two-way ANOVA with followed by Fisher’s LSD post-comparison test (unadjusted 

p-values). Statistical post-ANOVA comparisons were performed only between matching groups based on diabetes status 

and race and comparisons between groups with and without diabetes were excluded from the analysis. P-values obtained 

from analysis were represented using a statistical letter system, where significantly different p-values are represented by 

different letters and non-significant p-values are represented by same letters.
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Supplemental Figure S4. Statistical post-ANOVA comparison of classical inflammatory markers IL-6, TNF-a, and IL-

1b in HANDLS subcohort. Bar/dot graph showing results from post-ANOVA multiple statistical comparisons among Whites 

and AA without and with diabetes for IL-6 (left), TNF-a (middle), and IL-1b (right). Blue = People without diabetes, red = 

people with diabetes. Statistical analysis was performed using Two-way ANOVA with followed by Fisher’s LSD post-

comparison test (unadjusted p-values). Statistical post-ANOVA comparisons were performed only between matching groups 

based on diabetes status and race and comparisons between groups with and without diabetes were excluded from the 

analysis. P-values obtained from analysis were represented using a statistical letter system, where significantly different p-

values are represented by different letters, and non-significant p-values are represented by the same letters.
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Supplemental Figure S5. Gating strategy for CD4+ Central Memory T cells.

A) First, cells were gated by time of sample acquisition followed by doublet discrimination using FCS-H and FSC-A. Next live 

cells were gated based on viability dye. Then for size and granularity for lymphocytes and myeloid cells based on SSC-A and 

FSC-A. After that CD3+ T cells were gated based on CD3 and CD19 antibodies. From CD3+ T cells, CD4+ T cells were 

gated based on antibodies CD4 and CD8. Next, CD4+CD45RO+ T cells were gated based on CD45RO and CD45RA 

antibodies. B) Lastly, CD4+ Central memory T cells were gated based on markers CCR7 and CD62L. C) Stain controls were 

included in the experiment to verify positive populations. Percentages on plot represent frequencies based on parent 

population.
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Supplemental Figure S6.  Lipid features characteristics of White and AA with diabetes in a diverse HANDLS subcohort.

Orthogonal partial least squares discriminant analysis (OPLS-DA) plot of lipids features correlated with presentation of diabetes in White (A)

and AA (C). Blue dots refer to group without diabetes and red dots refer to group with diabetes. X-axis represents scores on latent variable 

(LV) 1 and Y-axis represent scores on LV2 not used for analysis. Bar graph plot displaying scores on LV1 showing lipids that dis tinguish 

diabetes in White (B) and AA (D). Top 10 features that correlated positively (red) and negatively (blue) to diabetes in White and AA are 

colored in the charts.
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Supplemental Figure S7. Inflammatory features characteristics of White and AA with diabetes in a diverse HANDLS subcohort.

Orthogonal partial least squares discriminant analysis (OPLS-DA) plot of lipids features correlated with presentation of diabetes in White (A) 

and AA (C). Blue dots refer to participants without diabetes and red dots refer to participants with diabetes. X-axis represents scores on latent 

variable (LV) 1 and Y-axis represents scores on LV2 not used for analysis. Bar graph plot displaying scores on LV1 showing lipids that 

distinguish diabetes in white (B) and AA (D). Top 10 features that correlated positively (red) and negatively (blue) to diabetes in white and AA 

are colored in the charts.
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Supplemental Figure S8. Statistical post-ANOVA comparison of homeostasis model assessment for insulin 

resistance (HOMA-IR). Bar/dot graph showing results from multiple statistical comparisons of HOMA-IR values among 

Whites and AA without and with diabetes. Blue = People without diabetes, red = people with diabetes. Statistical analysis 

performed using Two-way A NOVA with followed by Fisher’s LSD post-comparison test (unadjusted p-values). Statistical 

post-ANOVA comparisons were performed only between matching groups based on diabetes status and race and 
comparisons between groups with and without diabetes were excluded from the analysis. P-values obtained from analysis 

were represented using a statistical letter system, where significantly different p-values are represented by different letters 

and non-significant p-values are represented by same letters.
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Supplemental Figure S9. Clinical lipid and inflammatory parameters in AllofUs T2D subcohort confirm differential features seen in 

HANDLS diabetes subcohort

Clinical parameters that were differentially associated to diabetes in socially diverse populations from HANDLS subcohort were assessed 

using the multi-study AllofUs. Differences between the means of white and AA are plotted for HbA1C (A), glucose (C), and insulin (E). A 

linear regression model was performed in the AllofUs T2D subcohort adjusting for variables body mass index (BMI) and age, biological 

variables used to match comparison groups in HANDLS diabetes subcohort. Adjusted differences between the means of whites and AA are 

shown for HbA1C (B), glucose (D), and insulin (F). X axis represent race of group and Y axis represents clinical parameters evaluated. White 

population are colored represented in teal and AA population are colored represented in mustard. Statistical test used for comparison was 

student T-test.
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