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Abstract
Aims/hypothesis Characterisation of genetic variation that influences the response to glucose-lowering medications is instrumental 
to precision medicine for treatment of type 2 diabetes. The Study to Understand the Genetics of the Acute Response to Metformin 
and Glipizide in Humans (SUGAR-MGH) examined the acute response to metformin and glipizide in order to identify new 
pharmacogenetic associations for the response to common glucose-lowering medications in individuals at risk of type 2 diabetes.
Methods One thousand participants at risk for type 2 diabetes from diverse ancestries underwent sequential glipizide and 
metformin challenges. A genome-wide association study was performed using the Illumina Multi-Ethnic Genotyping Array. 
Imputation was performed with the TOPMed reference panel. Multiple linear regression using an additive model tested for 
association between genetic variants and primary endpoints of drug response. In a more focused analysis, we evaluated the 
influence of 804 unique type 2 diabetes- and glycaemic trait-associated variants on SUGAR-MGH outcomes and performed 
colocalisation analyses to identify shared genetic signals.
Results Five genome-wide significant variants were associated with metformin or glipizide response. The strongest association 
was between an African ancestry-specific variant (minor allele frequency  [MAFAfr]=0.0283) at rs149403252 and lower fasting 
glucose at Visit 2 following metformin (p=1.9×10−9); carriers were found to have a 0.94 mmol/l larger decrease in fasting glucose. 
rs111770298, another African ancestry-specific variant  (MAFAfr=0.0536), was associated with a reduced response to metformin 
(p=2.4×10−8), where carriers had a 0.29 mmol/l increase in fasting glucose compared with non-carriers, who experienced a 0.15 
mmol/l decrease. This finding was validated in the Diabetes Prevention Program, where rs111770298 was associated with a worse 
glycaemic response to metformin: heterozygous carriers had an increase in  HbA1c of 0.08% and non-carriers had an  HbA1c increase 
of 0.01% after 1 year of treatment (p=3.3×10−3). We also identified associations between type 2 diabetes-associated variants and 
glycaemic response, including the type 2 diabetes-protective C allele of rs703972 near ZMIZ1 and increased levels of active gluca-
gon-like peptide 1 (GLP-1) (p=1.6×10−5), supporting the role of alterations in incretin levels in type 2 diabetes pathophysiology.
Conclusions/interpretation We present a well-phenotyped, densely genotyped, multi-ancestry resource to study gene–drug 
interactions, uncover novel variation associated with response to common glucose-lowering medications and provide insight 
into mechanisms of action of type 2 diabetes-related variation.
Data availability The complete summary statistics from this study are available at the Common Metabolic Diseases 
Knowledge Portal (https:// hugea mp. org) and the GWAS Catalog (www. ebi. ac. uk/ gwas/, accession IDs: GCST90269867 to 
GCST90269899).
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gePS  Global extended polygenic score
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PC  Principal component
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SUGAR-MGH  Study to Understand the Genetics of the 

Acute Response to Metformin and Glip-
izide in Humans

V1  Visit 1
V2  Visit 2

Introduction

Treatment of type 2 diabetes currently follows a standard 
algorithm that begins with metformin [1], but involves the 

trial and error of additional drug regimens as the disease 
progresses. The choice of agent is based on several consid-
erations, including an individual’s comorbidities, the drug’s 
side effect profile and costs of the therapy, but does not 
include information about the molecular target of the agent 
or genetic factors that might predict response or develop-
ment of adverse effects [2]. The understanding of who 
responds best to each medicine is instrumental to furthering 
and optimising care of patients with diabetes.

Large-scale genome-wide association studies (GWAS) 
have identified over 700 genetic variants influencing type 
2 diabetes risk and glycaemic traits. Data on how genetic 
variation influences response to glucose-lowering medica-
tions are starting to emerge. In individuals with established 
type 2 diabetes, GWAS have revealed novel loci for gly-
caemic response to metformin [3, 4]. With respect to sul-
fonylureas, candidate gene studies have uncovered genetic 
predictors of glycaemic response [5, 6] as well as sulfony-
lurea-induced hypoglycaemia [7, 8]. Recently, a GWAS 
of sulfonylurea response identified two independent loci 
associated with  HbA1c reduction [9]. Since the majority 
of pharmacogenetic studies have been conducted in those 
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with established type 2 diabetes, a genome-wide approach 
evaluating the response to metformin and sulfonylureas in 
a population at risk for developing type 2 diabetes has not 
previously been carried out.

Moreover, the functional relevance of many type 2 dia-
betes and glycaemic loci is not fully understood. The mech-
anisms leading to the development of type 2 diabetes are 
complex, both intrinsic and extrinsic to the beta cell [10]. 
For instance, an intronic variant in TCF7L2 is the strong-
est common genetic risk factor for type 2 diabetes [11], yet 
multiple mechanisms have been proposed, including reduced 
beta cell mass, diminished insulin secretion and alterations 
in the incretin response [12]. In the Study to Understand the 
Genetics of the Acute Response to Metformin and Glipizide 
in Humans (SUGAR-MGH), we previously observed that 
an impaired incretin effect may contribute to the increased 
risk of type 2 diabetes in carriers of the high-risk allele at 
TCF7L2 [5, 13].

In this study, we applied a genome-wide approach to com-
prehensively identify novel genetic predictors of acute met-
formin and glipizide response in individuals at risk of type 
2 diabetes but naive to these medications. We examined the 
effects of known genetic variants associated with type 2 diabe-
tes and glycaemic traits across all outcomes in SUGAR-MGH 
to gain further insights into the mechanisms by which they 
confer increased risk of type 2 diabetes or glycaemic dys-
regulation. Overall, we present and make available a resource 
for studying how genetic variation influences the biochemical 
response to two common glucose-lowering agents.

Methods

Study design and participants SUGAR-MGH is a pharma-
cogenetic study in which 1000 individuals who were naive to 
type 2 diabetes medications received a single-dose glipizide 
challenge and a short course of metformin [5, 14]. Participants 
at risk for diabetes, defined as participants with the metabolic 
syndrome, obesity, a history of gestational diabetes, a his-
tory of polycystic ovarian syndrome or a family history of 
type 2 diabetes, were preferentially enrolled. The rationale for 
selecting an at-risk population was twofold: (1) a recruitment 
strategy to increase participation; and (2) individuals with 
relatively intact beta cell function may have a more robust 
response to sulfonylureas and metformin. Figure 1 summa-
rises the study design, which is described in detail in the elec-
tronic supplementary material (ESM) Methods. The study has 
been registered on Clini calTr ials. gov (NCT01762046) and is 
approved by the Mass General Brigham Human Research 
Committee Institutional Review Board (IRB).

Genotyping and imputation One thousand samples 
underwent genome-wide genotyping on the Multi-Ethnic 

Genotyping Array (Illumina, San Diego, CA, USA), which 
covers over 1.7 million genetic markers. A three-step qual-
ity control protocol was applied using PLINK 1.9 [15]. 
This included two stages of variant removal and an inter-
mediate stage of sample exclusion. Variants were filtered 
for minor allele frequency (MAF) <0.01, low call rate 
<95% and failure to meet Hardy–Weinberg equilibrium 
within each self-described ancestry group (p<5×10−7). 
Samples were excluded for sex discrepancies, close relat-
edness (pairs with πˆ [pi-hat]≥0.125, from which we 
removed the individual with the highest proportion of 
missingness) and call rate <98%. Phasing was performed 
using SHAPEIT2 [16]. Imputation was performed with the 
Michigan Imputation Server using the TOPMed reference 
panel [17]. After post-imputation quality control, exclud-
ing variants with imputation  R2<0.8 and MAF<0.005, 
~12 million variants were available for analyses in 890 
individuals. Genome annotations were generated using the 
GRCh38 assembly.

Endpoints of metformin and glipizide response As previ-
ously described [14], the primary endpoint of metformin 
response was defined as the fasting glucose at Visit 2 (V2), 
adjusted for fasting glucose at Visit 1 (V1). For the primary 
outcome of glipizide response, we selected the following 
closely related endpoints: insulin peak adjusted for baseline 
insulin, glucose trough adjusted for baseline glucose and 
time to glucose trough. We identified secondary outcomes 
of metformin and glipizide response based on measure-
ments taken during the glipizide challenge and the 75 g 
OGTT following metformin (ESM Table 1), including 
insulin, incretin and homeostasis model assessments.

Genome‑wide association analysis We performed genome-
wide association analyses to assess the role of genetic var-
iation in the acute response to metformin and glipizide. 
Multiple linear regression using an additive model tested 
for association between genetic variants and the primary 
endpoints, implemented using SNPTEST v2.5.4. Analyses 
were adjusted for age, sex, BMI and the first ten ances-
try principal components (PCs) to account for population 
stratification. Quantitative traits were rank-inverse normal-
ised to avoid spurious associations driven by outliers or 
skewed distributions and β estimates reflect rank-inverse 
normalisation. When relevant, we adjusted for the baseline 
trait at V1. Genome-wide significance was set at p<5×10−8 
and an experiment-wide threshold was set at p<2.5×10−8, 
accounting for two drugs. Manhattan and quantile–quan-
tile plots were produced with R (version 4.0) [18], and 
regional association plots were generated in LocusZoom 
[19] using the linkage disequilibrium (LD) reference panel 
for the ancestry that had the highest allele frequency for 
each variant.

http://clinicaltrials.gov
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Fig. 1  Study schema. (a) We recruited 1000 individuals at risk of 
developing type 2 diabetes. (b) At V1, participants had their vital 
signs monitored, provided whole blood for DNA and underwent 
fasting measurements. Individuals with a fasting blood sugar 
>4.4 mmol/l received a dose of 5 mg of glipizide orally, followed 
by additional measurements. (c) After a 5 day wash-out period, 

participants received three doses of metformin of 500 mg. (d) At V2, 
participants returned for the final (fourth) dose of metformin and a 75 
mg OGTT. (e) We performed genome-wide genotyping, constructed 
phenotypes of drug response and performed a GWAS, in order to (f) 
identify genotypes associated with outcomes of drug response. MTF, 
metformin; SU, sulfonylurea
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In an exploratory analysis, we tested for the association 
of variants with the pre-defined secondary drug outcomes 
and assessed findings that reached both genome-wide sig-
nificance for at least one trait, and suggestive significance 
threshold of p<1×10−6 for another trait. For top variants 
of interest, we examined their association with glucose 
and insulin curves during the glipizide challenge and the 
OGTT following metformin. Multiple linear regression 
assessed for differences in outcomes by genotype groups, 
adjusted for similar covariates.

We also assessed the association between previously 
reported genome-wide significant loci for type 2 diabetes 
and quantitative glycaemic phenotypes and all available 
traits in SUGAR-MGH. We evaluated 429 genetic variants 
associated with type 2 diabetes [20, 21] and 375 genetic 
variants associated with glycaemic traits [22]. We used an 
 r2 threshold of 0.5 to prune variants based on LD, using the 
full 1000 Genomes as a reference panel and LDlink [23], 
resulting in 563 independent effective markers. Based on 
their higher prior probability for glycaemic associations, 
we did not demand genome-wide significance in these 
analyses. While we corrected for the number of variants, 
we did not correct for the number of traits in SUGAR-
MGH because they are highly correlated. The resultant 
threshold (p<8.9×10−5 [0.05/563]) was used to prioritise 
associations for which we proceeded with colocalisation 
analyses of the SUGAR-MGH trait and the relevant type 2 
diabetes/glycaemic trait in order to confirm the presence of 
shared genetic risk factors (ESM Methods) [24].

We generated weighted global extended polygenic 
scores (gePSs) for type 2 diabetes, fasting glucose, fast-
ing insulin and  HbA1c, based on summary statistics from 
published GWAS of type 2 diabetes and glycaemic traits 
[20–22]. To construct the gePS, we used PRS-CS using 
auto as a global shrinkage parameter [25]. We constructed 
five process-specific polygenic scores (pPSs) derived from 
physiologically driven clusters [26]. We tested these scores 
against the primary endpoints of metformin and glipizide 
response and set an experiment-wide significance thresh-
old of p<0.003 to account for multiple comparisons (two 
drugs × nine polygenic scores). We adjusted for the same 
covariates as in the primary GWAS.

Replication of metformin response variants in the Diabetes 
Prevention Program We attempted to replicate the genome-
wide significant variants associated with metformin response 
in the Diabetes Prevention Program (DPP), a multicentre 
randomised controlled trial that evaluated the impact of 
intensive lifestyle modification and pharmacologic inter-
vention on development of type 2 diabetes in high-risk indi-
viduals [27, 28]. A GWAS of metformin response, defined 
as diabetes incidence and change in quantitative traits (fast-
ing glucose, 2 h glucose on OGTT,  HbA1c, fasting insulin, 

insulin sensitivity index and weight), has been completed in 
the DPP [29]. The full study details of the GWAS completed 
in the DPP are described in the ESM Methods. For the rep-
lication of SUGAR-MGH findings, we tested the associa-
tion of our top metformin findings with the 1 year change 
(follow-up minus baseline) in fasting glucose and  HbA1c in 
the metformin treatment arm only. Multiple linear regres-
sion using an additive model was performed, adjusting for 
baseline trait, age, sex and ten ancestry PCs. In the published 
GWAS completed in the DPP, a sensitivity analysis showed 
that GWAS findings did not change with additional adjust-
ment for BMI, so it was not included in the model [29]. To 
account for multiple testing, we set a replication significance 
threshold based on two outcomes and the number of variants 
tested in replication.

Results

Participant characteristics Baseline demographics of the 
890 participants with complete GWAS data are summarised 
(ESM Table 2). Approximately 53% of participants were 
female, the mean age was 47 years and 37% of participants 
self-reported as non-white. The mean BMI was 30.2 kg/m2 
and mean fasting glucose was 5.14 mmol/l, consistent with 
a population at risk for requiring future treatment of type 2 
diabetes. The HOMA-B score at baseline was 91.3, compa-
rable to that observed in healthy individuals without type 
2 diabetes and normal fasting glucose [30, 31]. Of the 890 
participants with genetic data, 20 participants did not receive 
the glipizide challenge due to a low baseline fasting glucose 
and 298 terminated the challenge early for hypoglycaemia, 
in accordance with study protocol.

Association of genetic variation with primary outcomes of 
drug response We identified five genome-wide significant 
variants associated with primary endpoints of acute met-
formin and glipizide response, four of which met experi-
ment-wide significance of p<2.5×10−8 (Table 1). Three 
variants (rs149403252, rs111770298 and rs117207651) 
were associated with metformin response, as measured by 
fasting glucose at V2, adjusted for fasting glucose at V1; 
two variants (rs9954585 and rs150628520) were associated 
with glipizide response, as measured by the time to glucose 
trough. For each of the five variants, the allele counts by 
self-reported race/ethnicity are listed in ESM Table 3.

Among the variants associated with metformin response at 
genome-wide significance, rs149403252  (MAFAfr=0.0283, 
β=−1.3, p=1.9×10−9) is an African ancestry-specific variant 
located in chromosome 3 near ERC2 (ESM Fig. 1a). Carri-
ers of the T effect allele had a lower fasting glucose at V2, 
adjusted for baseline glucose, indicating that they had an 
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enhanced metformin response. This was particularly appar-
ent when examining the change in fasting glucose (ESM 
Fig. 1b), in which heterozygous individuals had a decrease 
of 1.1 mmol/l after four doses of metformin compared 
with a decrease of 0.12 mmol/l in non-carriers (β of differ-
ence=−0.94 mmol/l [p=1.1×10−6]). During the OGTT fol-
lowing metformin, heterozygous individuals had lower insu-
lin AUC (p=0.005) despite statistically similar glucose AUC. 
Another African ancestry-specific genetic variant influenc-
ing metformin response was rs111770298  (MAFAfr=0.0536, 
β=0.8 [p=2.4×10−8]), located in an intron of BABAM2 in 
chromosome 2 (Fig. 2). Carriers of the G allele had a reduced 
metformin response, as evidenced by a higher fasting glu-
cose at V2, adjusted for baseline glucose at V1. We calculated 
that whereas individuals homozygous for the A (common) 
allele experienced a 0.15 mmol/l decrease in fasting glucose 
after metformin, heterozygous individuals had a 0.29 mmol/l 
increase (β of difference=0.43 mmol/l [p=9.4×10−7]). Finally, 

rs117207651 near MPHOSPH6 was associated with a better 
response to metformin (ESM Fig. 2): whereas TT individuals 
experienced a 0.13 mmol/l decrease in fasting glucose after 
metformin, TC individuals had a greater decrease of 0.50 
mmol/l (β of difference=−0.50 mmol/l [p=1.8×10−4]).

We attempted validation of our top three variants asso-
ciated with metformin response in the DPP, a randomised 
controlled trial of lifestyle intervention or pharmacologic 
therapy (metformin) conducted in individuals with impaired 
glucose tolerance at high risk for developing type 2 diabetes. 
The outcomes examined were changes in fasting glucose and 
 HbA1c after 1 year of follow-up. We set a replication signifi-
cance threshold of p<0.008 (two outcomes × three variants). 
Results are summarised in ESM Table 4. rs111770298 was 
significantly associated with worse metformin response, 
where heterozygous carriers experienced a 0.08% increase in 
the 1 year change in  HbA1c after 1 year of metformin treat-
ment, compared with an increase of 0.01% in non-carriers 
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(p=3.3×10−3), thus confirming our findings in SUGAR-
MGH. For rs149403252 and rs117207651, we did not rep-
licate our findings in the DPP.

For the glipizide challenge, the strongest glipizide-associ-
ated variant was rs9954585, near TXNL1 in chromosome 18 
(ESM Fig. 3). Being a carrier of the T allele was associated 
with a shorter time to glucose trough (EAF=0.013, β=−1.5, 
p=7.0×10−9). In addition, rs150628520, a low-frequency vari-
ant near FAT1 in chromosome 4 (ESM Fig. 4a), was associated 
with increased time to glucose trough, consistent with a dimin-
ished glipizide response (EAF=0.009, β=1.7, p=9.8×10−9). In 
agreement with this, carriers of the G allele had a significantly 
decreased cumulative drop in glucose, measured by glucose 
area over the curve (AOC) (ESM Fig. 4b, p=0.004), as well as 
a decreased insulin AUC (ESM Fig. 4c, p=0.006).

Association of genetic variation with secondary outcomes 
of drug response Beyond the primary outcomes, we exam-
ined associations reaching genome-wide significance 
(p<5×10−8) for either the primary or secondary outcomes 
(ESM Table 1). We curated a list of variants that were addi-
tionally associated with at least one other secondary out-
come at a suggestive p<1×10−6 and in consistent direction 
of effect (e.g. both associations pointing toward enhanced 
metformin response). ESM Table 5 describes the resultant 
set of markers that met these criteria and were therefore 
considered to be likely true associations with metformin or 
glipizide response. Notably, two of the primary GWAS find-
ings (rs150628520 and rs111770298) were also associated 
with secondary outcomes (ESM Table 5).

Evaluation of known type 2 diabetes and glycaemic variation 
and polygenic scores in SUGAR‑MGH We next focused on 
assessing the pharmacological response to variants previ-
ously associated with type 2 diabetes and quantitative gly-
caemic traits. Within the associations meeting our screening 
threshold (p<8.9×10−5) for colocalisation analysis, we were 
able to confirm through colocalisation analyses that ten of 
them share the same genetic signal between a SUGAR-MGH 
outcome and type 2 diabetes/glycaemic traits with a poste-
rior probability (PP) of ≥75% (ESM Table 6). As an exam-
ple, we found that the type 2 diabetes-protective C allele of 
rs703972 near ZMIZ1 was associated with increased levels 
of active glucagon-like peptide 1 (GLP-1) (p=1.6×10−5), 
with high evidence of colocalisation (PP=90.3%, Fig. 3a–c).

When we evaluated the influence of polygenic scores on 
drug response, we confirmed our previously reported nomi-
nal association between a higher type 2 diabetes polygenic 
score and greater glucose AOC, representing a greater cumu-
lative drop in glucose following glipizide (p=0.02) [32]. 
In addition, we observed an association between the fast-
ing glucose gePS and the primary outcome for metformin 

response meeting experiment-wide significance (p=0.002): 
after adjusting for baseline glucose, individuals with higher 
fasting glucose gePS had a 0.03 mmol/l lower drop in fasting 
glucose after metformin per SD increase in polygenic score, 
consistent with a worse metformin response. In a subgroup 
analysis, this was found to be driven by individuals who 
began the study with a fasting glucose over 5 mmol/l, who 
experienced a mean drop of 0.07 mmol/l (p=0.04). No asso-
ciations between any of the pPSs and metformin or glipizide 
response met experiment-wide significance (ESM Table 7).

Discussion

SUGAR-MGH is a pharmacogenetic resource for character-
ising genetic influences on pharmacological perturbations 
relevant to type 2 diabetes. In prior work, SUGAR-MGH 
has contributed to the understanding of the influence of 
TCF7L2 and CYP2C9, as well as a restricted-to-significant 
(i.e. using only genome-wide significant variants) type 2 dia-
betes polygenic risk score, on drug response [5, 8, 32]. With 
the completion of genome-wide genotyping, we report new 
genetic associations with acute metformin and sulfonylurea 
response in an ancestrally diverse population at risk for type 2 
diabetes and naive to commonly prescribed glucose-lowering 
medications.

We identified three variants that were significantly asso-
ciated with acute response to metformin, of which two were 
African ancestry-specific variants. The strongest associa-
tion was between rs149403252, an intronic variant located 
in ERC2, and lower fasting glucose following metformin, 
but unfortunately this finding did not replicate. ERC2 
encodes a protein in the CAZ-associated structural protein 
(CAST) family, which has been implicated in the calcium-
dependent exocytosis of neurotransmitters [33]; one fam-
ily member is present in pancreatic beta cells and may be 
involved in the regulation of insulin secretion [34]. More 
robustly, rs111770298 was associated with both a reduced 
response to metformin in SUGAR-MGH, as measured by a 
higher fasting glucose after metformin, and a rise in  HbA1c 
in independent replication in the DPP. rs111770298 is an 
intronic variant located near BABAM2 and FOSL2, the latter 
of which has been shown to promote leptin gene expression 
in mouse adipocytes [35]. Rare coding and common vari-
ants in or near FOSL2 are associated with lower triglyceride 
levels [36]. In the Type 2 Diabetes Knowledge Portal [36], 
this variant has a nominal association with diastolic blood 
pressure. Fine-mapping analyses, phenome-wide associa-
tion analyses and functional experiments will be needed to 
confirm the implication of these loci in metformin response.

We uncovered several promising variants of interest 
for glipizide response. T allele carriers at rs9954585 have 
a shorter time to glucose trough, indicating a more robust 
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response to glipizide. G allele carriers at rs150628520 near 
FAT1 appear to have an attenuated response to glipizide, 
having not only an increased time to glucose trough but also 
a more gradual slope to glucose trough. We also note that the 
presence of concordant associations across multiple primary 
and secondary outcomes for glipizide response provides sup-
port for our genetic findings. However, it is unclear whether 
the observed differences by genotype are due to a decrease 
in glipizide action or impairment in glipizide absorption. 
To further elucidate the mechanisms responsible for these 
effects, future directions include quantifying glipizide drug 
levels, and comparing carriers and non-carriers at these loci.

We tried to characterise the biological mechanisms of 
known type 2 diabetes and glycaemic loci by leveraging the 
phenotypic outcomes constructed in this physiological study. 
We identified established genome-wide significant type 2 dia-
betes and glycaemic variation that met our screening criteria 
for association with highly correlated traits in SUGAR-MGH 
and proceeded with colocalisation analysis to confirm the 
presence of shared genetic risk factors. We demonstrated that 
the protective C allele of rs703972 near ZMIZ1 was associated 
with increased levels of active GLP-1. Interestingly, ZMIZ1 
has been previously reported to play a role in regulation of 

beta cell function, with expression of ZMIZ1 reducing insu-
lin secretion [37]. Thus, an augmented incretin response may 
explain how C allele carriers are able to mitigate their type 
2 diabetes risk. Incretins have been implicated in the patho-
physiology of type 2 diabetes; however, it is unknown whether 
the incretin effect is impaired due to a reduction in functional 
beta cell mass or due to a defect in incretin action leading 
to resistance [38]. Our findings provide support for altered 
incretin physiology in the pathogenesis of type 2 diabetes and 
shed additional insight on a potential mechanism underlying 
the effect of the ZMIZ1 variant. This example demonstrates 
that our research can be used to determine endophenotypes of 
already known genetic associations and can serve as a useful 
resource for characterisation of future associations.

Previously, we reported that a higher type 2 diabetes poly-
genic score of 65 variants was associated with several meas-
ures of glipizide response at nominal significance [32], but we 
did not identify any associations with phenotypes of metformin 
response. With the availability of genome-wide genotyping and 
access to full summary statistics from larger meta-analyses for 
type 2 diabetes and glycaemic traits, we expanded our analysis 
to incorporate large numbers of sub-significant variants across 
the genome. With a type 2 diabetes gePS, we confirmed the 
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previous association between a higher genetic burden for type 
2 diabetes and greater glucose AOC, indicating an enhanced 
response to glipizide at this early stage of dysglycaemia. This 
is consistent with the findings of Dennis et al in the A Diabetes 
Outcome Progression Trial (ADOPT), in which participants 
with a phenotypically defined severe insulin-deficient diabetes 
demonstrated a robust early response to sulfonylureas, which 
was attenuated as their beta cell function deteriorated over time 
[39]. Moreover, we found that individuals with a greater bur-
den of risk variants for higher fasting glucose, possibly repre-
senting a genetic susceptibility for lower beta cell function, had 
a diminished response to metformin. Our ability to detect this 
pharmacogenetic association was likely bolstered by the vast 
increase in the number of variants included in the polygenic 
score and may have clinical implications for the effectiveness 
of metformin as a first-line therapy in those genetically pre-
disposed to fasting dysglycaemia. While we hypothesised that 
physiologically derived clusters related to the drug’s mode 
of action may have an influence on the acute drug response 
(i.e. association between beta cell function clusters and glip-
izide response), we did not detect associations with primary 
outcomes of metformin or glipizide response, possibly due to 
lower statistical power of the pPSs, which comprise a smaller 
number of variants. Given the increasing availability of geno-
type information, future studies are needed to validate the util-
ity and predictive value of polygenic scores for drug response.

Our study is the first GWAS of acute metformin and glip-
izide response including participants at risk of type 2 diabetes 
from multiple ancestries. In contrast to existing type 2 diabetes 
pharmacogenetic GWAS performed in European populations 
[3, 4, 9], over a third of SUGAR-MGH participants were of 
non-European descent. The value of analysing cohorts that span 
multiple ancestries is exemplified by the identification of novel 
associations in genetic variants that are more prevalent in non-
European populations. Several of our genome-wide significant 
findings (rs149403252 near ERC2, rs9954585 near TXNL1 and 
rs111770298 near BABAM2/FOSL2) had minor allele frequen-
cies that were common to low frequency in African populations 
and rare in European populations. Associations near these genes 
have not previously been identified as related to type 2 diabetes 
risk or response to glucose-lowering medications, which may 
be due to the dearth of studies in non-European populations. 
Understanding the impact of such ancestry-specific variants 
may guide treatment decisions for type 2 diabetes in these popu-
lation subgroups in the future, but also provide drug targets suit-
able for all ancestries. One major barrier to translating ancestry-
specific variants to their function is the lack of ancestry-specific 
genetic and genomic data. For instance, the Genotype-Tissue 
Expression (GTEx) project largely contains individuals with 
European ancestry [40], limiting our ability to characterise the 
effects of genome-wide significant variants not present or at 
low frequency in Europeans on the transcriptome across human 
tissues. Similarly, the lack of phenome-wide association data 

on diverse ancestries hinders follow-up of identified variants. 
Expansion of existing datasets to include non-European popula-
tions will be valuable for linking pharmacogenetic associations 
to functional mechanisms.

Given the global dearth of pharmacogenomic GWAS, 
especially those conducted in non-European populations, 
one major challenge of this work was identifying a suitable 
replication venue. Due to the unique characteristics of this 
study examining acute drug response, no comparable replica-
tion venue was readily available. However, we sought replica-
tion in the DPP, a study of individuals with prediabetes who 
received longitudinal metformin exposure. We illustrated that 
the influence of rs111770298 on 1 year change in  HbA1c 
validated our findings for fasting glucose in SUGAR-MGH, 
with a consistent direction of effect on metformin response. 
However, we did not observe a differential impact of this 
same variant on 1 year change in fasting glucose in the DPP. 
One explanation is that the variant’s effect on fasting glucose 
might be more pronounced and better detected initially in 
the acute setting; perhaps in the DPP, the long-term effect is 
better captured by average blood glucose levels as measured 
by change in  HbA1c.

We also recognise that our study examined those at risk of 
type 2 diabetes, and it is unclear whether our findings would 
have the same magnitude of effect in people with overt or 
long-standing type 2 diabetes, as disease stage may affect 
the metabolic state of a person who carries the same genetic 
profile. For example, variants in drug transporter genes that 
influence response to metformin in healthy individuals [41] 
were not found to affect  HbA1c in people with type 2 diabetes 
[42]. Another limitation is that the study design did not incor-
porate a baseline OGTT, which limited our ability to assess 
the impact of metformin on a dynamic glucose challenge. 
This was due to the financial and time constraints of enroll-
ing participants for an additional OGTT. A final limitation is 
that our sample size was small for measurements of incretin 
levels, which restricted our ability to detect additional find-
ings relevant to incretin physiology.

In summary, we identified novel genetic variation in a 
multi-ethnic human drug perturbation study which requires 
validation in ancestry-specific cohorts but has the potential 
to influence the selection of glucose-lowering medications 
in specific populations. We demonstrated the utility of our 
pharmacogenetic resource for understanding the underlying 
mechanisms of known genetic variation for type 2 diabetes 
and glycaemic traits. Beyond the primary drug endpoints, 
we created a public resource to permit the organisation 
and sharing of genetic association results across a wide 
variety of traits in SUGAR-MGH, which can be used as 
a validation cohort for future pharmacogenetic discover-
ies by others as well as for functional characterisation of 
newly identified genes implicated in the pathogenesis of 
type 2 diabetes.
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ESM Methods 

Study Design of SUGAR-MGH 

SUGAR-MGH is an NIH-funded pharmacogenetic study in 1,000 adults at three Boston medical centers from 2008-

2015. Subjects were enrolled if they had never been on anti-diabetes medications; they could have a family history 

or personal history of diabetes that was lifestyle or diet-controlled. At Visit 1 (V1), a single dose of glipizide was 

administered in the fasting state with plasma glucose and insulin measured at regular intervals up to 240 minutes. 

After a washout period, participants received 500 mg of metformin twice daily for two days and, at Visit 2 (V2) a 

week later, a 75-g oral glucose tolerance test (OGTT) with glucose and insulin measurements. A subset had 

glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), proinsulin, and glucagon 

measured. 

Colocalization Methods  

The COLOC 4.0 R package [1] was used for the colocalization analysis. We used the coloc.abf method which 

implements a variation of the Approximate Bayes Factor computations [2]. The coloc.abf function was called with 

two R lists, one for the SUGAR-MGH and one for the T2D/glycemic trait GWAS: list(pvalues=…, N=…, MAF=…, 

snp=…, type="quant"), with a vector of p-values, N for the sample size, MAF for the minor allele frequency, and 

snp for the rsid of the variant. The colocalization was run over regions ranging from one million base pairs 

downstream to one million upstream from the lead SUGAR-MGH variant. We reported the posterior probabilities 

(PP) of colocalization. The colocalization plots were generated using the locuscompare R package v1.0.0 [3]. 

Replication of genome-wide significant variants associated with metformin response in the Diabetes 

Prevention Program (DPP) 

Description of participants and DPP study design 

The study design and baseline characteristics of the participants in the DPP have been previously published [4, 5]. A 

total of 3,819 individuals were randomized to intensive lifestyle modification (goal weight loss ≥7% and ≥150 

min/week of physical activity), standard lifestyle recommendations plus metformin (850 mg twice daily), standard 

lifestyle recommendations plus troglitazone (400 mg daily), or standard lifestyle recommendations plus placebo. 

The primary endpoint of the DPP was diabetes incidence, defined as a fasting glucose of ≥126 mg/dL (7.0 mmol/L) 

or a 2-hour glucose of ≥200 mg/dL (11.1 mmol/L) after OGTT and confirmed on a second test within 6 weeks.  

Institutional review board approval was obtained by each participating clinical center. For the genome-wide 

association study (GWAS) of metformin response completed in the DPP [6],  all participants included provided 

written informed consent for the main investigation and for genetic studies.  

Genome-wide genotyping and quality control 

DNA was extracted from peripheral blood leukocytes. A total of 3,227 samples underwent genotyping on the 

HumanCore Exome genome-wide array (Illumina, San Diego, CA). Single nucleotide polymorphisms were 

excluded with a call rate <95% or if they failed Hardy-Weinberg Equilibrium (HWE; p<1.0×10-8) within each ethnic 

group. Samples with discrepant sex, call rate <95%, inbreeding coefficient <-1, and identity-by-state as measured by 

pi-hat close to 1 were discarded. Since 9,730 SNPs and 3,222 samples were also genotyped on the Metabochip 

(Illumina, San Diego, CA), a concordance check was performed, excluding SNPs and samples with a concordance 

rate <95%. A total of 3,168 samples remained after all quality checks were completed. 

Imputation 

A two-stage imputation procedure was performed, which involved pre-phasing the genotypes into whole 

chromosome haplotypes and then performing imputation. The pre-phasing was done using SHAPEIT2 [7] and 

imputation utilized IMPUTE2 [8]. GWIMp-COMPSs, [9] which can incorporate the contribution of several 

reference panels, was employed using 1000 Genomes Phase3 haplotypes (October 2014) [10]. 

Statistical analyses 
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The metformin GWAS in the DPP examined both the primary outcome of diabetes incidence, as well as the one-

year change in quantitative traits relevant to metformin action, which included fasting glucose, 2-hour glucose after 

75-g OGTT, fasting insulin, insulin sensitivity index (ISI), hemoglobin A1c (HbA1c), and weight. 

For the quantitative trait analysis, a multiple linear regression model tested allelic associations with each quantitative 

outcome, assuming an additive model. One-year change in each quantitative outcome was defined as one-year minus 

baseline value. Non-normally distributed traits were natural log transformed. To minimize the influence of outliers, 

winsorization was performed (at percentiles of 0.5 and 99.5 for normally distributed traits; percentiles of 1 and 99 

for natural log transformed traits) [11]. Analyses were adjusted for age, sex, first 10 ancestry principal components, 

and the baseline trait. For each of the six outcomes, the impact of genetic variation was evaluated in the metformin 

arm only, and in a second model, with a gene-by-treatment interaction for the metformin and placebo arms. GWAS 

results in the DPP were filtered to a study-wide MAF>1% and imputation quality ≥0.7.  

As described in the main manuscript, for the replication of SUGAR-MGH findings, we limited our analysis to one-

year change in fasting glucose and HbA1c in the metformin arm only. 
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ESM Table 1. List of secondary outcomes of metformin and glipizide response in SUGAR-MGH and the drug 

response 

Glucose at 30 mins at V1 +/- adjustment for baseline glucose V1 (glipizide) 
Glucose at 60 mins at V1 +/- adjustment for baseline glucose V1 (glipizide) 
Glucose at 90 mins at V1 +/- adjustment for baseline glucose V1 (glipizide) 
Glucose at 120 mins at V1 +/- adjustment for baseline glucose V1 (glipizide) 
Glucose at 180 mins at V1 +/- adjustment for baseline glucose V1 (glipizide) 
Glucose at 240 mins at V1 +/- adjustment for baseline glucose V1 (glipizide) 
Glucose at 30 mins at V2 +/- adjustment for baseline glucose V2 (metformin) 
Glucose at 60 mins at V2 +/- adjustment for baseline glucose V2 (metformin) 
Glucose at 120 mins at V2 +/- adjustment for baseline glucose V2 (metformin) 

Area under the curve of insulin at V2 adjusted for fasting insulin at V2 (metformin) 

Fasting glucose at V2 minus fasting glucose at V1 +/- adjustment for baseline glucose V1 (metformin) 

Fasting insulin at V2 minus fasting insulin at V1 +/- adjustment for baseline insulin V1 (metformin) 

HOMA-IR at V2 minus HOMA-IR at V1 (metformin) 

HOMA-B at V2 minus HOMA-B at V1 (metformin) 

Insulin at 30 mins at V1 (glipizide) 

Insulin at 60 mins at V1 (glipizide) 

Insulin at 90 mins at V1 (glipizide) 

Insulin at 120 mins at V1 (glipizide) 

Insulin at 180 mins at V1 (glipizide) 

Insulin at 240 mins at V1 (glipizide) 

Fasting insulin at V2  (metformin) 

Insulin at 30 mins at V2 (metformin) 

Insulin at 60 mins at V2 (metformin) 

Insulin at 120 mins at V2 (metformin) 

Slope to glucose trough at V1 +/- adjustment for baseline glucose (glipizide) 

Slope to glucose recovery at V1 +/- adjustment for baseline glucose (glipizide) 

Slope to insulin peak at V1 +/- adjustment for baseline insulin V1 (glipizide) 

Time to reach peak insulin at V1 +/- adjustment for baseline insulin V1 (glipizide) 
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ESM Table 2. Demographic characteristics and baseline measurements of 890 participants with genome-wide 

genotyping in SUGAR-MGH. 

 All participants (n=890) 

Women [n (%)] 474 (53.3) 

Age (years)  47.1 ± 16.2 

BMI (kg/m2) (n=873)  30.2 ± 7.2 

Self-reported race/ethnicity [n (%)]  

     White, non-Hispanic 560 (62.9) 

     Black, non-Hispanic 190 (21.4) 

     Hispanic 63 (7.1) 

     Asian, non-Hispanic 53 (5.9) 

     Others 24 (2.7) 

Diagnosis of T2D [n (%)] 22 (2.8) 

Received full glipizide challenge 572 (64.3) 

Fasting glucose (mmol/L) 5.1 ± 0.9 

Fasting insulin (pmol/L) 41.9 (42.1) 

HOMA-B 91.3 ± 131.8 

Age, body mass index (BMI), fasting glucose, and homeostasis model assessment of β-cell function (HOMA-B) are 

mean ± SD. Fasting insulin is median (interquartile range). 
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ESM Table 3. Genotype counts by self-reported race/ethnicity of the five genome-wide significant variants (p<5×10-8) associated with primary endpoints of 

acute metformin or glipizide response in SUGAR-MGH. 

 rs149403252 rs111770298 rs117207651 rs9954585 rs150628520 
 

GG GT TT AA AG GG TT TC CC CC CT TT AA AG GG 

White, non-Hispanic 515 0 0 515 0 0 506 9 0 378 2 0 375 5 0 

Black, non-Hispanic 159 8 0 150 17 0 166 1 0 89 10 0 99 0 0 

Hispanic 57 1 0 56 2 0 58 0 0 34 1 0 34 1 0 

Asian, non-Hispanic 43 0 0 43 0 0 43 0 0 24 0 0 23 1 0 

Others 22 0 0 20 2 0 21 1 0 11 1 0 12 0 0 

For all imputed variants, fractional alleles were converted to hard calls for calculation of genotype counts.  
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ESM Table 4. Replication of genome-wide significant variants associated with metformin response in the DPP. 

NEA=Non-effect allele; EA=Effect allele; EAF=Effect allele frequency; AfrAm=African American; AsnPI= Asian Pacific Islander; AI=American Indian; 
aGRCh38 assembly. bThis is the effect allele frequency for the number of participants in the model (N) that was calculated based on imputation. cEffect allele 

frequency breakdown by self-reported race/ethnicity is for all 3,168 participants in the DPP with genome-wide genotyping, calculated based on imputation.  

rsid Chr Positiona 
Nearest 

Gene 
NEA EA EAFb AfrAmc AsnPIc Hispc AIc Whitec N Trait 

Beta  

(95% CI) 
p-value 

rs149403252 3 55883717 ERC2 G T 0.0082 0.0263 0.0001 0.0023 0.0001 0.0003 821 

Fasting 

glucose, 

mmol/L 

-0.17 

(-0.45, 0.10) 
0.22 

rs149403252 3 55883717 ERC2 G T 0.0082 0.0263 0.0001 0.0023 0.0001 0.0003 818 HbA1c, % 
0.04 

(-0.11, 0.19) 
0.61 

rs111770298 2 28307503 
BABAM2/ 

FOSL2 
A G 0.0145 0.0586 <0.0001 0.0028 <0.0001 0.0003 821 

Fasting 

glucose, 

mmol/L 

0.003 

(-0.20, 0.21) 
0.98 

rs111770298 2 28307503 
BABAM2/ 

FOSL2 
A G 0.0145 0.0586 <0.0001 0.0028 <0.0001 0.0003 818 HbA1c, % 

0.17 

(0.06, 0.29) 
3.31×10-3 

rs117207651 16 82250950 MPHOSPH6 T C 0.0124 0.0026 0.0001 0.0092 <0.0001 0.0149 821 

Fasting 

glucose, 

mmol/L 

0.11 

(-0.13, 0.36) 
0.37 

rs117207651 16 82250950 MPHOSPH6 T C 0.0124 0.0026 0.0001 0.0092 <0.0001 0.0149 818 HbA1c, % 
0.02 

(-0.11, 0.16) 
0.74 
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ESM Table 5. Genome-wide significant variants (p<5×10-8) associated with multiple drug response endpoints in SUGAR-MGH. 

rsid Chr Positiona Nearest  

gene 

NEA EA EAF AFRb AMRb EASb EURb SASb N Trait 

(drug) 

Betac p-value Additional traits 

rs150628520d 4 187296094 FAT1 A G 0.009 0.002 0.007 0.0002 0.011 0.002 550 Time to 

reach 

glucose 

trough at V1 

(glipizide) 

1.7 9.7×10-9 Slope to glucose trough 

at V1 (beta=-1.7, 

p=7.3×10-8) 

rs111406936 10 113583078 HABP2 A T 0.008 0.031  0.003 0 0.0002 0 776 Insulin at 60 

mins at V2 

(metformin) 

-1.5 6.4×10-9 AUC insulin at V2 

(beta=-1.4, p=7.2×10-7) 

rs149193557 3 98379904 OR5K3 A C 0.013 0.0598 0.008 0 0.0003 0 545 AOC 

glucose at 

V1 

(glipizide) 

-1.3 1.1×10-8 Glucose trough at V1 

(beta=-1.3, p=3.0×10-6) 

rs111770298d 2 28307503 BABAM2/ 

FOSL2 

A G 0.013 0.054 0.005 0 0.0001 0.0002 807 Fasting 

glucose at 

V2 adj. V1 

(metformin) 

0.7 2.4×10-8 Fasting glucose at V2-

fasting glucose at V1 

(beta=1.1, p=2.7×10-7) 

rs2749695 1 225964122 LEFTY1, 

SDE2 

T A 0.628 0.580 0.542 0.776 0.623 0.669 807 Insulin at 30 

mins at V1 

(glipizide) 

0.3 3.2×10-8 Insulin at 60 min at V1 

(beta=0.2, p=1.8×10-6) 

rs146209333 3 64193613 PRICKLE2 T C 0.012 0.002 0.005 0 0.014 0.003 830 Glucose at 

60 mins at 

V1 

(glipizide) 

-0.9 3.3×10-8 Slope to glucose trough 

at V1 (beta=1.2, 

p=9.9×10-8), Glucose 

trough at V1 (beta=-0.9, 

p=2.8×10-6) 

rs12062755 1 182077342 ZNF648 G A 0.113 0.124 0.139 0.280 0.122 0.227 794 Glucose at 

60 mins at 

V2 

(metformin) 

0.4 4.4×10-8 AUC glucose at V2 

(beta=0.42, p=5.7×10-8) 

NEA=Non-effect allele; EA=Effect allele; EAF=Effect allele frequency; AFR=African; AMR=Admixed American; EAS=East Asian; EUR=European; 

SAS=South Asian; V1=Visit 1, glipizide visit ; V2=Visit 2, metformin visit; AOC=area over the curve; AUC=area under the curve. aGRCh38 assembly. 
bAncestry-specific allele frequencies as reported by gnomAD 3.1.2 cBeta estimates are rank-inverse normalized. dVariant present in Table 1.  
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ESM Table 6. Known genome-wide significant T2D and glycemic variation that meet screening threshold (p<8.9×10-5) in SUGAR-MGH for subsequent 

colocalization analyses.  

rsid Chr Positiona 

Nearest 

gene NEA EA EAFb OR (95% CI) b 

T2D  

p-valueb 

 

SUGAR-MGH trait (drug) N Betac p-value PP result 

rs703972 10 79193069 ZMIZ1 G C 0.467 0.93 (0.92-0.94) 1.7×10-29   

Active GLP-1 at 30 min at V2 

(metformin) 143 0.5 1.6×10-5 90.3 

rs9828772 3 129614339 TMCC1 C G 0.102 0.94 (0.93-0.96) 4.2×10-8   

Fasting glucagon at V1 

(glipizide) 492 0.4 2.1×10-5 76.8 

rs6070625 20 58819573 GNAS C G 0.517 1.05 (1.04-1.06) 5.3×10-14   

Fasting glucose at V2 minus 

fasting glucose at V1 

(metformin) 805 0.2 2.9×10-5 96.6 

rs11688682 2 120590036 GLI2 G C 0.272 0.95 (0.94-0.97) 4.2×10-9   

Active GLP-1 at 5 min at V2 

(metformin) 144 0.6 3.1×10-5 70.9 

rs12048743 1 205145745 DSTYK C G 0.442 1.04 (1.03-1.05) 3.5×10-9   

Fasting glucose at V2 minus 

fasting glucose at V1 

(metformin) 805 -0.2 8.2×10-5 89.7 

rs7903146 10 112998590 TCF7L2 C T 0.294 1.37 (1.35-1.39) 6.0×10-447   

Total GLP-1 at 10 min at V2 

(metformin) 142 0.4 8.8×10-5 79.7 

               

rsid Chr Position 

Nearest 

gene NEA EA EAF* Beta (SE)* 

MAGIC 

p-value* MAGIC trait SUGAR-MGH trait N Beta p-value PP result 

rs8914 11 46677574 ATG13 G A 0.108 -0.040 (0.006) 4.1×10-13 Fasting glucose 

Fasting glucose at V1 (without 

drugs) 851 -0.3 6.8×10-6 1.9 

rs8914 11 46677574 ATG13 G A 0.108 -0.040 (0.006) 4.1×10-13 Fasting glucose 

Glucose at 30 min at V1 

(glipizide) 832 -0.3 2.3×10-5 1.7 

rs8914 11 46677574 ATG13 G A 0.108 -0.040 (0.006) 4.1×10-13 Fasting glucose 

Fasting glucose at V2 

(metformin) 807 -0.3 4.9×10-5 1.6 

rs2745353 6 127131790 RSPO3 C T 0.516 0.031 (0.004) 4.6×10-16 Fasting insulin Insulin peak at V1 (glipizide) 830 0.2 7.7×10-5 91.0 

rs2971669 7 44192179 GCK C T 0.202 0.083 (0.008) 3.8×10-28 2-hour glucose 

Fasting glucose at V2 

(metformin) 807 0.2 8.6×10-5 76.8 

rs7903146 10 112998590 TCF7L2 C T 0.275 0.047 (0.004) 2.0×10-35 Fasting glucose 

Total GLP-1 at 10 min at V2 

(metformin) 142 0.4 8.8×10-5 77.0 
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rs7903146 10 112998590 TCF7L2 C T 0.278 -0.027 (0.005) 1.2×10-9 Fasting insulin 

Total GLP-1 at 10 min at V2 

(metformin) 142 0.4 8.8×10-5 74.6 

rs7903146 10 112998590 TCF7L2 C T 0.281 0.043 (0.004) 1.0×10-22 HbA1c 

Total GLP-1 at 10 min at V2 

(metformin) 142 0.4 8.8×10-5 79.4 

rs7903146 10 112998590 TCF7L2 C T 0.259 0.070 (0.007) 2.8×10-26 2-hour glucose 

Total GLP-1 at 10 min at V2 

(metformin) 142 0.4 8.8×10-5 80.0 

NEA=Non-effect allele; EA=Effect allele; EAF=Effect allele frequency; PP=posterior probability; MAGIC=Meta-Analysis of Glucose and Insulin-related traits 

Consortium. aGRCh38 assembly. bDenote results from T2D GWAS and MAGIC. cBeta estimates are rank-inverse normalized. 
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gePS=global extended polygenic score; pPS=process-specific polygenic score 

ESM Table 7. Association of polygenic scores with the primary endpoints of metformin and glipizide response 

in SUGAR-MGH 

SUGAR-MGH Outcome Beta SD p-value Polygenic score tested Reference 

Fasting glucose at V2, adj. V1 (metformin) 0.091 0.029 0.0018 gePS for fasting glucose Chen et al. 2021 

Time to reach glucose trough (glipizide) -0.082 0.038 0.031 obesity cluster (pPS) Udler et al. 2018 

Glucose trough adj. baseline glucose (glipizide) 0.187 0.094 0.048 gePS for type 2 diabetes 

Mahajan et al. 2020; 

Vujkovic et al. 2020 

Fasting glucose at V2, adj. V1 (metformin) 0.1 0.057 0.076 gePS for type 2 diabetes 

Mahajan et al. 2020; 

Vujkovic et al. 2020 

Time to reach glucose trough (glipizide) 0.089 0.05 0.078 gePS for fasting glucose Chen et al. 2021 

Fasting glucose at V2, adj. V1 (metformin) 0.048 0.029 0.11 gePS for HbA1c Chen et al. 2021 

Peak insulin, adj. baseline insulin (glipizide) 0.045 0.03 0.14 obesity cluster (pPS) Udler et al. 2018 

Fasting glucose at V2, adj. V1 (metformin) -0.031 0.023 0.17 beta cell cluster (pPS) Udler et al. 2018 

Time to reach glucose trough (glipizide) 0.07 0.053 0.19 gePS for fasting insulin Chen et al. 2021 

Time to reach glucose trough (glipizide) 0.121 0.098 0.22 gePS for type 2 diabetes 

Mahajan et al. 2020; 

Vujkovic et al. 2020 

Peak insulin, adj. baseline insulin (glipizide) -0.039 0.032 0.22 liver/lipid cluster (pPS) Udler et al. 2018 

Fasting glucose at V2, adj. V1 (metformin) 0.035 0.03 0.25 gePS for fasting insulin Chen et al. 2021 

Time to reach glucose trough (glipizide) 0.058 0.051 0.26 gePS for HbA1c Chen et al. 2021 

Glucose trough adj. baseline glucose (glipizide) 0.034 0.037 0.37 liver/lipid cluster (pPS) Udler et al. 2018 

Glucose trough adj. baseline glucose (glipizide) 0.033 0.036 0.37 obesity cluster (pPS) Udler et al. 2018 

Peak insulin, adj. baseline insulin (glipizide) 0.036 0.041 0.38 gePS for HbA1c Chen et al. 2021 

Fasting glucose at V2, adj. V1 (metformin) -0.019 0.023 0.41 liver/lipid cluster (pPS) Udler et al. 2018 

Fasting glucose at V2, adj. V1 (metformin) 0.018 0.023 0.43 obesity cluster (pPS) Udler et al. 2018 

Peak insulin, adj. baseline insulin (glipizide) 0.035 0.043 0.43 gePS for fasting insulin Chen et al. 2021 

Glucose trough adj. baseline glucose (glipizide) 0.028 0.037 0.45 lipodystrophy cluster (pPS) Udler et al. 2018 

Fasting glucose at V2, adj. V1 (metformin) 0.015 0.024 0.53 proinsulin cluster (pPS) Udler et al. 2018 

Glucose trough adj. baseline glucose (glipizide) 0.029 0.05 0.57 gePS for fasting glucose Chen et al. 2021 

Peak insulin, adj. baseline insulin (glipizide) 0.015 0.032 0.63 lipodystrophy cluster (pPS) Udler et al. 2018 

Peak insulin, adj. baseline insulin (glipizide) -0.014 0.031 0.65 beta cell cluster (pPS) Udler et al. 2018 

Time to reach glucose trough (glipizide) 0.017 0.039 0.67 lipodystrophy cluster (pPS) Udler et al. 2018 

Glucose trough adj. baseline glucose (glipizide) 0.019 0.051 0.7 gePS for fasting insulin Chen et al. 2021 

Glucose trough adj. baseline glucose (glipizide) 0.011 0.037 0.77 beta cell cluster (pPS) Udler et al. 2018 

Glucose trough adj. baseline glucose (glipizide) -0.011 0.041 0.79 proinsulin cluster (pPS) Udler et al. 2018 

Time to reach glucose trough (glipizide) 0.009 0.039 0.82 liver/lipid cluster (pPS) Udler et al. 2018 

Peak insulin, adj. baseline insulin (glipizide) -0.008 0.034 0.82 proinsulin cluster (pPS) Udler et al. 2018 

Time to reach glucose trough (glipizide) -0.009 0.042 0.84 proinsulin cluster (pPS) Udler et al. 2018 

Peak insulin, adj. baseline insulin (glipizide) 0.007 0.041 0.87 gePS for fasting glucose Chen et al. 2021 

Peak insulin, adj. baseline insulin (glipizide) -0.013 0.079 0.87 gePS for type 2 diabetes 

Mahajan et al. 2020; 

Vujkovic et al. 2020 

Fasting glucose at V2, adj. V1 (metformin) -0.002 0.023 0.93 lipodystrophy cluster (pPS) Udler et al. 2018 

Glucose trough adj. baseline glucose (glipizide) 0.004 0.049 0.93 gePS for HbA1c Chen et al. 2021 

Time to reach glucose trough (glipizide) -0.001 0.039 0.97 beta cell cluster (pPS) Udler et al. 2018 
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a 

 
b 

 
ESM Fig. 1. (a) Regional association plot of rs149403252. (b) Box plot illustrating mean change in fasting glucose 

(Visit 2 minus Visit 1) by rs149403252 genotype.  
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ESM Fig 2. (a) Regional association plot of rs117207651. (b) Box plot illustrating mean change in fasting 

glucose (Visit 2 minus Visit 1) by rs117207651genotype. 
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a 

 
b c 

 
Time 0 30 60 90 120 180 240 

p-

value 

0.30 0.44 0.19 0.03 0.75 0.95 0.11 

 

 
Time 0 30 60 90 120 180 240 

p-

value 

0.43 0.44 0.03 0.14 0.86 0.32 0.11 

 

 

ESM Figure 3. (a) Regional association plot of rs9954585. (b) Change in plasma glucose by rs9954585 genotype 

at Visit 1 after glipizide administration. (c) Change in plasma insulin by rs9954585 genotype at Visit 1 after 

glipizide administration. 
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a 

 
b c 

 
Time 0 30 60 90 120 180 240 

p-

value 

0.48 0.61 0.16 7.8e-
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9.4e-
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Time 0 30 60 90 120 180 240 

p-

value 

0.28 0.26 0.25 0.007 0.015 0.94 0.15 

 

ESM Fig. 4. (a) Regional association plot of rs150628520. (b) Change in plasma glucose by rs150628520 genotype at 

Visit 1 after glipizide administration. (c) Change in plasma insulin by rs150628520 genotype at Visit 1 after glipizide 

administration. 
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