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Low levels of physical activity have a major effect on disease 
burden and it is estimated that more than 5 million deaths per 
year might be prevented by ensuring adequate levels1. Despite 

efforts to increase physical activity levels2, an estimated 28% of the 
world's population is insufficiently active, and the prevalence of 
physical inactivity in high-income countries rose from 31.6% in 
2001 to 36.8% in 2016 (ref. 3). Trends of decreasing physical activity 
levels over time coincide with increases in the time spent seden-
tary4, which may pose an independent risk for public health5,6.

Physical activity and sedentary behavior are affected by public 
policy and social support, as well as by cultural, environmental 
and individual factors7. Factors like socioeconomic status, built 
environment and media all influence physical activity at a pop-
ulation level7. In parallel, innate biological factors (for example, 
age, sex hormones, pre-existing medical conditions, epigenetics 
and genetics) also explain a moderate proportion of the interin-
dividual variability in physical activity and sedentary behavior. 
Heritability estimates (h2) range from 31% to 71% in large twin 
studies8,9. Identifying the genetic factors that influence daily 
physical activity will improve our understanding of this complex 
behavior, and may (1) facilitate unbiased causal inference; (2) 
help identify vulnerable subpopulations; and (3) fuel the design 
of tailored interventions to effectively promote physical activity. 
A mechanistic understanding of physical activity at a molecular 
level may even allow its beneficial effects to be attained through 
pharmacological intervention10.

Genome-wide association studies (GWAS) have identified 
thousands of loci associated with cardiometabolic risk factors and 
diseases11. However, similar efforts for physical activity have been 
sparse and initially had limited success. This likely reflects the com-
paratively small sample size of these efforts12, along with heteroge-
neous assessments of physical activity across studies. More recently, 
GWAS using data from UK Biobank identified nine loci associated 
with self-reported moderate and/or vigorous intensity physical 
activity or sports and exercise participation (n ≈ 377,000 individu-
als) and eight associated with accelerometry-assessed physical  

activity and sedentary behavior (n ≈ 91,000)13,14. Hence, on the 
assumption that physical activity is a highly polygenic trait, many 
common variants influencing physical activity undoubtedly remain 
to be identified.

Here, we combine data from up to 703,901 individuals (94.0% 
European, 2.1% African, 0.8% East Asian, 1.3% South Asian ances-
tries, and 1.9% Hispanic) from 51 studies in a multi-ancestry 
meta-analysis of GWAS for MVPA, LST, sedentary commuting and 
sedentary behavior at work. This yields 104 independent associa-
tion signals in 99 loci, implicating brain and muscle, among oth-
ers organs. Follow-up analyses improve our understanding of the 
molecular basis of leisure time physical activity and sedentary 
behavior, and their role in disease prevention.

Results
Genome-wide analyses yield 99 associated loci. In our primary 
meta-analysis of European ancestry men and women combined 
(Supplementary Tables 1, 2), we identify 91 loci that are associ-
ated (P < 5 × 10−9) with at least one of four self-reported traits: 
MVPA (n up to 606,820), LST (n up to 526,725), sedentary com-
muting (n up to 159,606) and sedentary behavior at work (n up to 
372,605) (Supplementary Table 3, Figs. 1 and 2, and Supplementary 
Fig. 1). The non-European ancestry meta-analyses do not provide 
new associations themselves and are only used in multi-ancestry 
meta-analyses. Multi-ancestry and sex-specific meta-analyses 
yield eight additional loci, resulting in a total of 104 independent 
association signals in 99 loci (Supplementary Tables 3 and 4). The 
vast majority of these—89 independent single nucleotide poly-
morphisms (SNPs) in 88 loci (35 not previously reported13,15)—are 
associated with LST, explaining 2.75% of its variance. We also iden-
tify 11 loci for MVPA (six not previously reported13,15,16, four that 
overlap with LST) and four loci for sedentary behavior at work (all 
previously reported13,15; Supplementary Table 3). No loci are identi-
fied for sedentary commuting. To increase statistical power for the 
discovery of new loci, we perform a multi-trait analysis of GWAS 
(MTAG) using summary statistics of MVPA and LST. This yields 
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13 additional loci: eight loci for MVPA and eight for LST, with three 
loci overlapping (Supplementary Table 5)17.

SNP-heritability estimates range from 8% for MVPA to 16% for 
LST (Supplementary Table 6 and Methods). Genetic correlations 
between the four traits range from −0.32 for sedentary behavior 
at work and sedentary commuting, to −0.49 for LST and MVPA  
(Fig. 1b). To ensure adequate statistical power in instrumental vari-
able and enrichment analyses, we focus on LST and MVPA from 
here onwards.

Genetic correlations of self-reported LST and MVPA with 
objective, accelerometry-assessed daily physical activity traits in 
UK Biobank range from 0.14 to 0.44 (Fig. 1b). Importantly, five 
of the eight loci previously identified for objectively assessed daily 
physical activity in UK Biobank data13,14 show directionally consis-
tent associations (P < 0.05) with self-reported LST and/or MVPA 
in our study (Supplementary Table 7). By contrast, 39 LST- and 4 
MVPA-associated loci observed here show directionally consis-
tent associations (P < 0.05) with at least one objectively assessed 
physical activity and/or sedentary trait (using accelerometry) in UK 
Biobank (Supplementary Table 8). In line with this, each additional 
LST-decreasing and MVPA-increasing allele in unweighted genetic 
predisposition scores of the 88 LST- and 11 MVPA-associated 
loci, respectively, are associated with higher objectively assessed 
daily physical activity levels in UK Biobank (P = 5 × 10−23 for LST; 
P = 2 × 10−3 for MVPA, Supplementary Table 8).

As external validation, we use the European ancestry sum-
mary statistics of LST and MVPA to construct polygenic scores 
(PGSs), and examine their associations with MVPA in 8,195 BioMe 
BioBank participants of European (n = 2,765), African (n = 2,224) 
and Hispanic (n = 3,206) ancestry. In general, a higher PGS for 
MVPA is associated with higher odds of engaging in more than 30 
min per week of MVPA, and a higher PGS for LST with lower odds 
of engaging in MVPA. Individuals at the highest decile of the PGS 

for LST are 26% less likely to spend more than 30 min per week 
on MVPA compared with individuals at deciles 4 to 6 (odds ratio 
(OR) [95% confidence intervals (CI)] = 0.74 [0.55–0.99]) (Fig. 3 
and Supplementary Table 9).

Shared genetic architecture. Using linkage disequilibrium (LD) 
score regression implemented in the LD-Hub18, we observe sig-
nificant (P < 4.6 × 10−4) genetic correlations of LST and MVPA with 
adiposity-related traits (r = −0.41 to −0.20), especially with body  
fat percentage (rg = 0.4 and −0.3, respectively; Fig. 4, Supplementary 
Fig. 2 and Supplementary Table 10). In line with moderate genetic cor-
relations, 11 of the 99 self-reported loci for physical activity and sed-
entary behavior have previously been associated with obesity-related 
traits19–25. In addition, PGSs for lower LST and higher MVPA are 
associated with lower BMI in up to 23,723 participants from the 
BioMe BioBank (Supplementary Table 9), and a phenome-wide asso-
ciation study (PheWAS) in 8,959 BioMe European ancestry samples 
shows a negative association between the PGS for MVPA and mor-
bid obesity (P = 1.1 × 10−5, Supplementary Fig. 3). Strikingly, genetic 
correlations with body fat percentage are similar for self-reported 
LST, MVPA (Fig. 4) and accelerometer-assessed physical activity 
traits13,14 (Supplementary Fig. 2).

Besides adiposity, less sedentary behavior and higher physical 
activity levels are also genetically correlated with a more favorable 
cardiometabolic status, including lower triglyceride, total choles-
terol, fasting glucose and fasting insulin levels, and lower odds of 
type 2 diabetes and coronary artery disease; as well as with better 
mental health outcomes, a lower risk of lung cancer and with lon-
gevity (Fig. 4 and Supplementary Fig. 2).

Causal inference. To assess directions of causality between sed-
entary behavior/physical activity and BMI, we next perform two- 
sample Mendelian randomization (MR) analyses using multiple  
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Fig. 1 | Overview of the four self-reported physical activity and sedentary traits and correlations with objectively assessed traits. a, An overview of 
the four self-reported physical activity and sedentary traits. b, Phenotypic (upper left) and genetic (lower right) correlation coefficients between the four 
self-reported physical activity and sedentary traits studied here and three accelerometer-assessed traits quantified in UK Biobank participants. AccMod, 
accelerometer-assessed proportion of time spent in moderate intensity physical activity; AccSed, accelerometer-assessed proportion of time spent 
sedentary; AccWalking, accelerometer-assessed proportion of time spent walking; SDC, sedentary commuting behavior; SDW, sedentary behavior at work.
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MR methods that utilize genome-wide full summary results 
or genome-wide significant loci (Supplementary Table 11 and 
Methods)26–30. Causal Analysis Using Summary Effect Estimates 
(CAUSE)26 as well as traditional MR methods consistently show that 
LST and BMI causally affect each other, with the causal effect (the 
per 1 s.d. unit increase in each trait) of higher LST on higher BMI 
being two- to threefold larger than the effect of BMI on LST (Fig. 5a, 
Table 1 and Supplementary Table 11). Results are similar for bidi-
rectional causal inference tests using body fat percentage instead of 
BMI (Table 2). However, CAUSE cannot distinguish a model of cau-
sality from horizontal pleiotropy for body fat percentage and LST 
(Table 2). CAUSE also illustrates a causal effect of higher LST on 
higher recalled adiposity and height in childhood (Table 2), sup-
porting our hypothesis that a genetic predisposition for higher LST 
later in life represents a lifelong predisposition that already influ-
ences adiposity through sedentary behavior early in life. We observe 
similar evidence for causal effects between MVPA and adiposity, 
with smaller effects when compared with LST.

We next investigate the causal effects of LST and MVPA on 
common diseases and risk factors, with and without adjusting for 
BMI (Supplementary Tables 12 and 13). In univariate analyses, we 
observe effects of lower LST on higher high-density lipoprotein 
cholesterol levels, higher parental age at death, and on lower odds of 
type 2 diabetes, attention deficit hyperactivity disorder and depres-
sion. The CAUSE model only supports evidence for a causal effect 
of LST on attention deficit hyperactivity disorder and parental age at 

death. Importantly, multivariable MR analyses show that all protec-
tive causal effects of lower LST are either mediated or confounded 
by BMI.

Directions of causal effects are consistent across LST and MVPA, 
but only reach significance for MVPA on parental age at death when 
using the CAUSE model. As for LST, multivariable MR results sug-
gest that the protective causal effects of higher MVPA are either 
mediated or confounded by BMI, but results should be interpreted 
with caution for MVPA because of weak instrument bias (condi-
tional F statistics <10)31 (Fig. 5b and Supplementary Table 13).

Gene expression in skeletal muscle following training. Although 
behavior is mainly influenced by signals from the brain, in the case 
of physical activity, characteristics of skeletal muscle can play a 
facilitating or restricting role32. Therefore, we next examine whether 
genes in LST- and MVPA-associated loci are enriched for altered 
messenger RNA expression in skeletal muscle following an acute 
bout of exercise or a period of training or inactivity33 (Methods). 
A mild enrichment for transcripts with an altered expression in 
skeletal muscle after resistance training is observed for genes near-
est to lead SNPs in LST-associated loci (P = 0.02) (Extended Data 
Figs. 1 and 2, and Supplementary Table 14). Of the ten genes driv-
ing the enrichment, PDE10A may play a critical role in regulating 
cyclic AMP and cyclic GMP levels in the striatum, a brain region 
that harbors the central reward system and is important for physical 
activity regulation34, and in regulating striatum output35; ILF3 and 
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Fig. 2 | Main results of GWas and downstream gene prioritization for Lst and MVPa. a, Circular Manhattan plot summarizing the results from European 
ancestry meta-analyses for LST and MVPA. Outer track, LST; inner track, MVPA. Genome-wide significant variants (P < 5 × 10−9) are highlighted in orange 
for loci associated with MVPA and in blue for loci associated with LST. b, Dendrogram showing the 101 independent association signals in LST- and 
MVPA-associated loci from European ancestry or multi-ancestry meta-analyses. Moving outwards from the center are: (1) chromosome; (2) lead SNP 
identifiers, in orange for loci associated with MVPA, in blue for loci associated with LST; (3) the most promising gene(s) prioritized in the locus (closest 
genes are highlighted by filled circles); and (4) the approach(es) by which the gene was prioritized, that is, DEPICT gene prioritization (Dg) or tissue 
enrichment (Dt); SMR of eQTL signals in blood (Sbl), brain (Sbr) or skeletal muscle (Ssm); credible variants identified by FINEMAP that (i) are coding and 
likely to have a detrimental effect on protein function (Fcadd) or (ii) show evidence of three-dimensional interactions with the candidate gene in central 
nervous system cell types (Fcrt); activity-by-contact (ABC) in 26 relevant tissues and cell types; a contribution to enrichment for altered expression in 
skeletal muscle following a resistance training intervention (RTsm); and/or proximity to an association signal for spontaneous running speed (Ms), time 
run (Mt) or distance run (Md) in a GWAS of 100 inbred mouse strains.
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NECTIN2—near APOE—influence the host response to viral infec-
tions36,37; EXOC4 plays a role in insulin-stimulated glucose uptake in 
skeletal muscle38; and IMMP2L influences the transport of proteins 
across the inner mitochondrial membrane39 (Supplementary Note).

Visual information processing and the reward system. To fur-
ther improve the understanding of the biological factors that influ-
ence sedentary behavior and physical activity, we perform a tissue 
enrichment analysis using DEPICT40. LST- and MVPA-associated 
loci (P < 1 × 10−5) are most significantly enriched for genes 
expressed in the retina, visual cortex, occipital lobe and cerebral 
cortex. This suggests that: (1) possibly subtle differences in the abil-
ity to receive, integrate and process visual information influence 
the likelihood to engage in MVPA; (2) MVPA alters the expression 
of genes that play a role in visual processes in these tissues; and/or 
(3) MVPA can slow age-related perceptual and cognitive decline41. 
The LST-associated loci yield similar tissue enrichment results, 
with retina having the lowest P value for enrichment. Interestingly, 
enrichment for genes expressed in retina was also observed in the 
High Runner mouse model42. Areas related to the reward system 
(for example, the hippocampus and limbic system) and to memory 
and navigation (for example, the entorhinal cortex, parahippocam-
pal gyrus, temporal lobe and limbic system) are also enriched in 
both LST- and MVPA-associated loci (Extended Data Fig. 3 and 
Supplementary Table 15).

We next use CELLECT43 to identify enriched cell types using 
single-cell RNA sequencing data from the Tabula Muris and mouse 
brain projects44. In Tabula Muris data, we observe enrichment in 
nonmyeloid neurons for MVPA and LST, and of nonmyeloid oligo-
dendrocyte precursor cells for MVPA, possibly highlighting a role 
for signal transduction (Extended Data Fig. 4 and Supplementary 
Table 16). In mouse brain data, we identify enrichment for 13 and 
45 cell types from 3 and 12 distinct brain regions for MVPA and 
LST, respectively, including enrichment in dopaminergic neurons 
(Extended Data Fig. 4 and Supplementary Table 16); a key feature of 
physical activity regulation in mice45.

Candidate gene prioritization. To explore mechanisms by which 
the identified loci may influence LST and MVPA, we next pinpoint 
genes in GWAS-identified loci: (1) contributing to tissue enrich-
ment or identified by DEPICT’s gene prioritization algorithm 
(Supplementary Tables 15 and 17); (2) whose expression in brain, 
blood and/or skeletal muscle is anticipated to mediate the association 
between locus and outcome based on Summary-based MR46 (SMR; 
Supplementary Table 18); (3) harboring credible variants with a 
high posterior probability of being causal (>0.80)47 and a predicted 
deleterious effect on protein function (Supplementary Table 19)48;  
(4) showing chromatin–chromatin interactions with credible vari-
ants in central nervous system cell types (such genes may be fur-
ther from lead SNPs, Supplementary Table 19); (5) that—across 
26 tissues and cell types—are activated by contact with enhanc-
ers presumably affected by causal variants flagged by GWAS hits49 

(Supplementary Tables 20–22); (6) associated with physical activity 
in GWAS in humans and mice and located <100 kb from the lead 
variant in humans or mice (Supplementary Note, Supplementary 
Fig. 4 and Supplementary Tables 23 and 24); and (7) driving enrich-
ment of altered expression in skeletal muscle following resistance 
exercise training (Supplementary Table 14). Twelve (14%) of the 
LST-associated loci harbor a variant with a high (>80%) poste-
rior probability of being causal, whereas such variants were not 
identified among the 11 MVPA-associated loci (Supplementary 
Table 19). Integrating results across approaches yields 268 candi-
date genes in 70 LST-associated loci and 39 candidate genes in 8 
MVPA-associated loci. Forty-six candidate genes are prioritized 
by multiple approaches (42 for LST and 6 for MVPA; 2 overlap) 
and point to endocytosis (CNIH2, RAB1B, KLC2, PACS1, REPS1, 
DNM3, EXOC4), locomotion (CADM2, KLC2) and myopathy 
(MLF2, HERC1, KLC2, SIL1) as relevant pathways (Supplementary 
Tables 25 and 26, and Supplementary Note). Seven clusters of pro-
tein–protein interactions are predicted, involving 17 of the 46 genes 
(Extended Data Fig. 5). In vivo perturbation in model systems is 
required to confirm or refute a role in sedentary behavior and phys-
ical activity.

Enrichment of previously reported candidate genes. Candidate 
gene studies in humans have aimed to identify and characterize 
the role of genes in exercise (physical activity behavior) and fitness 
(physical activity ability) for decades. We next examine whether 
variants in genes that have been linked to or associated with exercise 
and fitness show evidence of associations with self-reported LST and 
MVPA12,50–54. Of the 58 previously described candidate genes (13 for 
exercise; 45 for fitness), 56 (13 for exercise and 43 for fitness) har-
bor variants with P < 0.05 for associations with LST and/or MVPA 
(Pbinomial = 2.1 × 10−70; Supplementary Fig. 5 and Supplementary 
Table 27). Associations reach traditional genome-wide significance 
(P < 5 × 10−8) for variants in three genes: APOE55, PPARD56 and 
ACTN3 (ref. 57) (Methods).

The SNP in APOE with the lowest P value for association with 
LST is rs429358, for which the C allele associated with lower LST 
was previously associated with higher self-reported MVPA13 and 
forms part of the Ɛ4 risk allele for Alzheimer’s disease (Discussion). 
The SNP with the lowest P value for association with LST in the 
locus is rs6857 (D′ = 0.90; r2 = 0.78 with rs429358), in the 3′ untrans-
lated region of NECTIN2. Neither rs429358 (P = 0.16) nor rs6857 
(P = 0.18) is associated with MVPA in this study.

The C allele in rs1625595, ~300 kb upstream of ACTN3, is asso-
ciated with higher MVPA (P = 1.9 × 10−11) as well as with higher 
ACTN3 expression in skeletal muscle (GTEx, P = 6.6 × 10−5). 
Alpha-actinin-3 (ACTN3) forms a structural component of the 
muscle’s Z-disc that is exclusively expressed in type IIA and IIX 
muscle fibers58. rs1815739, a common ACTN3 variant that intro-
duces a premature stop codon, p.Arg577Ter, also known as 
p.Arg620Ter, has been extensively studied in the context of exer-
cise performance57. Although we observe little evidence for a role 

Table 1 | Bidirectional MR results for Lst and MVPa with BMi or body fat percentage using significant loci only

exposure Outcome Beta s.e. P value exposure Outcome Beta s.e. P value

LST Body fat % 0.16 0.07 0.016 LST BMI 0.40 0.04 8.4 × 10−14

Body fat % LST 0.12 0.03 0.005 BMI LST 0.16 0.01 1.4 × 10−74

MVPA Body fat % −0.21 0.17 0.22 MVPA BMI −0.25 0.04 0.002

Body fat % MVPA −0.001 0.036 0.97 BMI MVPA −0.10 0.01 5.8 × 10−12

We use MR-PRESSO with outliers removed for all pairs of traits except for the causal effect estimation between body fat percentage (body fat %) and MVPA because no outliers were detected by 
MR-PRESSO. For body fat percentage → MVPA, we reported the causal estimates using an inverse variance-weighted test; for MVPA → body fat percentage, we reported the weighted median method 
because these two methods were selected by the machine learning framework (Methods) to be the most appropriate approaches for each analysis, respectively. P < 0.0125 indicates significant effects.
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of rs1815739 in leisure time sedentary behavior or physical activity 
(PLST = 0.017, PMVPA = 0.17), the intronic ACTN3 variants rs679228 
(PLST = 4.3 × 10−8) and rs2275998 (PMVPA = 1.8 × 10−7) do show evi-
dence of such associations. Of these, rs2275998—located 646 bp 
downstream of p.Arg577Ter—is in full LD (r2 = 1.0) with the mis-
sense variant rs2229456 (p.Glu635Ala), which likely affects protein 
function (Combined Annotation Dependent Deletion (CADD) 
score for the derived, minor, p.635Ala variant =28.6). Each C 
allele in rs2229456 is associated with less LST (P = 1.4 × 10−4) and 
higher odds of engaging in MVPA (P = 8.3 × 10−7). Of note, given 
its downstream location from p.Arg577Ter, a potentially causal 
effect of rs2229456 on physical activity requires absence of the 
protein-truncating p.Arg577Ter variant in rs1815739. Haplotype 
analyses support this (Supplementary Table 28).

Greater ACTN3 flexibility with p.635Ala. Given the striking 
finding that MVPA and LST are associated with the ACTN3 mis-
sense variant rs2229456, but not with the ACTN3-truncating vari-
ant rs1815739, we next examine whether rs2229456 (p.Glu635Ala 

variant) has functional consequences for ACTN3’s mechanistic 
properties at the molecular level. We add ACTN2 to this com-
parison because it likely compensates for the loss of ACTN3 in the 
presence of the truncating p.Arg577Ter variant59. The results of 
computer-based (steered) molecular dynamics (MD) simulations 
and umbrella sampling (see Methods and Supplementary Note for 
more details) show that the ancestral p.Glu635 variant facilitates 
salt-bridge and hydrogen-bonding interactions at residue 635 with 
surrounding residues (for example, R638 and Q639; Fig. 6a,b and 
Supplementary Fig. 6) via its glutamate side chain. Such interac-
tions are not formed in the presence of the ACTN3 p.635Ala prod-
uct. They are also less likely to be formed in ACTN2, because of a 
kink that is present at exactly this location in ACTN2 (Fig. 6c and 
Supplementary Fig. 6). Moreover, p.635Ala and ACTN2 show dis-
tinctly different behavior from p.Glu635, with a greater magnitude 
of root mean squared fluctuations (r.m.s.f.) in the middle section 
of the spectrin repeats under no-load conditions (Fig. 6d), suggest-
ing a more flexible structural region. When placed under simulated 
compressive loads that are likely experienced in vivo, p.635Ala 
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shows a more linear force versus distance relationship, with greater 
variance in the potential of mean force (Fig. 6e and Supplementary  
Fig. 6). Taken together, these results indicate that the ACTN3 
p.635Ala dimer—associated with higher MVPA—exhibits similar 
flexibility to ACTN2 and greater flexibility than the p.Glu635 dimer.

Maximal force and fiber power lower with ACTN3 p.635Ala. We 
next examine whether a higher predicted ACTN3 dimer flexibility 
in the presence of p.635Ala has functional consequences in isolated 
human skeletal muscle fibers. To this end, we compare functional 
readouts in 298 isolated type I and IIA fibers from vastus lateralis 
biopsies obtained from eight healthy, young, untrained male partici-
pants before and after an eccentric exercise bout60,61. Results from a 
15,000 iteration Markov chain Monte Carlo model show that stable 
maximal force—with fibers submerged in activating solution—and 
fiber power during isotonic load clamps are similar in 32 ± 7 fibers 
(mean ± s.d.) from three p.Arg577 homozygous, p.Glu635Ala het-
erozygous individuals compared with 39 ± 6 fibers from four indi-
viduals homozygous for the p.577Ter variant; and lower in both 

groups when compared with 46 fibers from an individual that is 
homozygous for both the p.Arg577 and p.Glu635 variants (Fig. 6f 
and Methods). Associations are most striking after an eccentric 
exercise intervention and are, as expected, more pronounced in 
type IIA than in type I fibers (Supplementary Fig. 7). Taken together, 
these results suggest that a more flexible ACTN dimer with lower 
peak performance (ACTN3 p.635Ala or ACTN2) may be less sus-
ceptible to exercise-induced muscle damage than the ancestral 
ACTN3 p.Glu635, thereby facilitating a more active lifestyle.

Discussion
By doubling the sample size compared with earlier GWAS, we 
identify 104 independent association signals in 99 loci, including 
42 newly identified loci, for self-reported traits reflecting MVPA 
and sedentary behavior during leisure time. Around half of these 
also show evidence of directionally consistent associations with 
objectively assessed physical activity traits. Genetic correlations 
and two-sample MR analyses show that lower LST results in lower 
adiposity. Protective causal effects of higher MVPA and lower 
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LST—acting through or confounded by BMI—are observed for lon-
gevity. Tissue and cell-type enrichment analyses suggest a role for 
visual information processing and the reward system in MVPA and 
LST, including enrichment for dopaminergic neurons. Loci associ-
ated with LST are enriched for genes whose expression in skeletal 
muscle is altered by resistance training. Forty-six candidate genes 
are prioritized by more than one approach and point to pathways 
related to endocytosis, locomotion and myopathy. Finally, results 
from MD simulations, umbrella sampling and single fiber experi-
ments suggest that a missense variant (rs2229456 encoding ACTN3 
p.Glu635Ala) likely increases MVPA, at least in part by reducing 
susceptibility to exercise-induced muscle damage.

Recent MR studies reported causal protective effects of 
self-reported and objectively assessed physical activity on breast and 
colorectal cancer62,63. One study concluded that a 1 s.d. increase in 
self-reported MVPA was associated with lower odds of colorectal 
cancer (OR = 0.56), with BMI only mediating 2% of the protective 
effect63. Our results—on lung cancer rather than colorectal cancer—
show that instrumental variables of MVPA in multivariable MR are 
weak, and results should be interpreted with caution. Furthermore, 
a causal effect of objectively assessed, but not self-reported physi-
cal activity (MVPA) on depression has been reported64. Our MR 
results for LST on depression show that although the physical activ-
ity trait matters, the self-reported nature of it seems inconsequen-
tial. According to an earlier study, TV viewing has an attenuated 
effect but still causes coronary artery disease when adjusting for 
BMI15. The discrepancy with our results—suggesting mediation 
or confounding by BMI—highlights the importance of including 
physical activity, as well as BMI-associated variants in multivari-
able MR analysis, to prevent loss of precision and potentially even  
biased estimates31.

It is of interest that a proxy of rs429358, part of the established 
APOE Ɛ4 risk allele for Alzheimer’s disease, is associated with 
lower LST. Klimentidis et al. previously showed that the associa-
tion of rs429358 with MVPA was stronger in those reporting a 
family history of Alzheimer’s disease, and among older individu-
als13. Based on the direction of the association, it was hypothesized 
that individuals at higher risk of developing Alzheimer’s disease 
may adopt a healthy lifestyle to mitigate their risk, especially later 
in life13. However, our MR analyses show no evidence of a causal 
role of MVPA or LST in Alzheimer’s disease, and lower average 
physical activity levels in individuals with a first-degree family his-
tory of Alzheimer’s disease or dementia13 suggest other explana-
tions are more likely, although a role for survival bias cannot be 
ruled out13. For example, APOE Ɛ4 carriers have a greater increase 
in aerobic capacity following exercise training65, which may rein-
force a physically active lifestyle independently of Alzheimer’s risk. 
Furthermore, several studies have investigated the moderating role 
of the APOE Ɛ4 allele in the relationship between physical activity 

and Alzheimer prevention66. Although more studies are needed to 
resolve inconsistencies in the literature, Ɛ4 carriers seem to benefit 
more from physical activity in terms of reducing the risk of demen-
tia and brain pathology66.

To investigate the molecular basis for the association of ACTN3 
with MVPA, we compare the ACTN3 p.Glu635 and p.635Ala vari-
ants (rs2229456) with each other and with ACTN2—as a func-
tional proxy for ACTN3 p.577Ter—using MD simulations and 
single fiber experiments. Previous studies using normal mode 
analysis of alpha-actinin show that several of the natural fre-
quencies have bending flexibility near residue 635. This is inter-
esting because ACTN3’s residue 635—the 356th residue of the 
spectrin repeat region (Fig. 6)—lies outside the linkers between the 
α-helices of the spectrin repeats, where most flexibility is expected 
and observed67. The absence of salt-bridge and hydrogen-bonding 
interactions between position 635 (628 in ACTN2) and surround-
ing residues—due to either the presence of the alanine substitution 
at ACTN3’s residue 635, or a kink in the α-helix at ACTN2’s resi-
due 628—increases the flexibility of the dimer under a compres-
sive load, with far less work required to deform the homodimer 
beyond a compressive distance of 1.2 nm. The p.635Ala substitu-
tion may reduce the stiffness of the muscle fiber while undergoing 
elastic deformation during exercise to a level that is comparable 
with ACTN2. Although at the expense of the maximal force that 
single fibers can generate, this may reduce exercise-induced micro-
trauma caused by Z-disc rupture or streaming1, alleviating delayed 
onset muscle soreness2 and risk of injuries3, enabling a more active 
lifestyle. Our results suggest it would be interesting to revisit the 
plethora of data on p.Arg577Ter, and differentiate between effects 
of the p.Arg577Ter and p.Glu635Ala variants.

In conclusion, our results shed light on genetic variants and 
molecular mechanisms that influence physical activity and sed-
entary behavior in daily life. As would be expected for complex 
behaviors that involve both motivation and physical ability, these 
mechanisms occur in multiple organs and organ systems. In addi-
tion, our causal inference supports the important public health mes-
sage that a physically active lifestyle mitigates the risk of multiple 
diseases, in major part through or confounded by an effect on BMI.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41588-022-01165-1.

Received: 30 November 2021; Accepted: 18 July 2022;  
Published: xx xx xxxx

Table 2 | Bidirectional MR results for Lst and MVPa during leisure time with BMi or body fat percentage using genome-wide 
summary results (cause method)

exposure Outcome Gammaa 95% ci P valueb exposure Outcome Gammaa 95% ci P valueb

LST Body fat % 0.18 0.13 to 0.24 1.8 × 10−3 LST BMI 0.31 0.28 to 0.35 6.7 × 10−28

Body fat % LST 0.12 0.04 to 0.18 0.14 BMI LST 0.18 0.16 to 0.19 1.1 × 10−14

MVPA Body fat % −0.12 −0.20 to −0.04 0.07 MVPA BMI −0.14 −0.20 to −0.07 6.0 x 10−3

Body fat % MVPA −0.03 −0.09 to 0.02 0.53 BMI MVPA −0.09 −0.11 to −0.06 7.4 x 10−3

LST Comparative height at age 10 0.03 0.01 to 0.04 0.04 LST Comparative body 
size at age 10

0.02 0.01 to 0.03 0.04

aPosterior median of gamma, which can be taken as a point estimate of the causal effect. This estimate tends to be shrunk slightly toward zero compared with other methods. bThe P value for comparing the 
causal model with the sharing model. P < 0.05 indicates that posteriors estimated under the causal model predict the data significantly better than posteriors estimated under the sharing model.
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Methods
Each study (Supplementary Table 2) obtained informed consent from participants 
and approval from the appropriate institutional review boards or committees.

Samples and study design. We conducted a large meta-analysis for physical 
activity traits, including results from up to 703,901 individuals (including nearly 
half-a-million from the UK Biobank) to identify genetic loci associated with 
physical activity and sedentary behavior across different ancestries. We first 
examined genome-wide, ancestry- and sex-stratified associations in 51 studies 
with questionnaire-based data on: (1) MVPA; (2) LST; (3) sedentary commuting 
behavior; and/or (4) sedentary behavior at work, using study-specific, tailored 
analysis plans (Supplementary Table 2, see Supplementary Note for rationale). 
Next, we performed ancestry-specific, inverse variance-weighted fixed-effects 
meta-analyses of summary statistics for each of the four self-reported traits  
(Fig. 1a), including data from up to 703,901 individuals consisting of European 
(94.0%), African (2.1%), East Asian (0.8%) and South Asian (1.3%) ancestries; as 
well as Hispanics (1.9%) (Supplementary Table 1). Our primary meta-analyses were 
restricted to 661,399 European ancestry participants. Secondary meta-analyses 
were also conducted for: (1) all ancestries (European + other ancestries), (2) 
European ancestry men, (3) European ancestry women, and (4) each non-European 
ancestry separately. Details of participating studies are described in Supplementary 
Tables 1 and 2. Although modest genomic inflation68 was observed (lambda 
1.2–1.4) (Supplementary Fig. 1), LD score regression analyses indicated this reflects 
true polygenic architecture rather than cryptic population structure69.

Self-reported physical activity and sedentary behavior traits. The self-reported 
outcomes in this study are domain- and intensity-specific physical activity 
and sedentary traits that, unlike accelerometry-based outcomes, are subject to 
misclassification and bias by recall and awareness of the beneficial effects of 
physical activity, among others. Furthermore, different studies used different 
questionnaires to capture physical activity, and so we defined cohort-specific 
traits that make optimal use of the available data, while striving for consistency 
across studies (Supplementary Table 2). As a result, and based on the zero-inflated 
negative binomial nature of the distribution of MVPA in most studies, we had 
to analyze MVPA as a dichotomous outcome, which had a negative impact on 
statistical power. Descriptive information of these four outcomes is reported by 
study in Supplementary Table 1.

Genotyping, imputation and quality control. Detailed information about the 
genotyping platform used, and quality control measures applied within each study 
are presented in Supplementary Table 2. Quality control following study level 
analyses was conducted using standard procedures70.

GWAS and meta-analyses. GWAS were performed within each study in a sex- 
and ancestry-specific manner. Additive genetic models accounting for family 
relatedness (where appropriate) were adjusted for age, age-squared, principal 
components reflecting population structure and additional study-specific 
covariates as presented in Supplementary Table 2. Analyses were limited 
to genotyped and imputed variants with minor allele frequency >0.1% in 
UK Biobank, and minor allele count >3 in other studies. Study-, sex- and 
ancestry-specific GWAS results were meta-analyzed using the fixed-effects, inverse 
variance-weighted method implemented in METAL71, for 19.1 to 22.5 million 
SNPs per trait. Because we did not include a replication stage and given the high 
SNP density, we applied a stricter than usual Bonferroni correction and considered 
associations with P < 5 × 10−9 statistically significant72.

To identify genome-wide significant loci, we defined a distance criterion 
of ±1 Mb surrounding each genome-wide significant peak (P < 5 × 10−9). We 
extracted previously reported genome-wide significant associations within 1 Mb 
of any index variants we identified from the NHGRI-EBI GWAS Catalog11 and 
PhenoScanner V2 (ref. 73). A locus is considered previously reported if any variant 
we extracted at that locus was in LD (r2 > 0.1) with a lead variant that has been 
associated with objectively assessed or self-reported physical activity and sedentary 
traits previously. To identify physical activity- and sedentary behavior-associated 
loci that were previously associated with obesity-related traits, we performed a look 
up for each lead variant (and their proxies with LD r2 > 0.2) in the GWAS catalog 
and PhenoScanner V2.

SNP-based heritability estimation. To estimate the heritability explained 
by genotyped SNPs for each physical activity and sedentary trait, we used 
BOLT-REML variance components analysis74, a Monte Carlo average information 
restricted maximum likelihood algorithm implemented in the BOLT-LMM v.2.3.3 
software. As in most GWAS for complex traits, the SNP heritability (up to 16%) 
was lower than the heritability estimates from twin studies (31%–71%)8,9, likely at 
least in part due to the absence of rare variants in GWAS75.

Although we performed a multi-ancestry meta-analysis, data from relatively 
few individuals of non-European ancestries were available to us, and our functional 
follow-up analyses were conducted based on the European ancestry results. Studies 
with data from more individuals of non-European ancestry will no doubt further 
increase the understanding of physical activity etiology.

Joint and conditional analyses. To identify additional independent signals in 
associated loci, we performed approximate joint and conditional SNP association 
analyses in each locus, using GCTA76. Any lead SNPs identified in known 
long-range high-LD regions77 were treated as a single large locus in the GCTA 
analysis. We used unrelated European ancestry participants from the UK Biobank 
as the reference sample to acquire conditional P values for association.

MTAG. MTAG results were calculated using the European ancestry meta-analysis 
results of LST and MVPA, using standard settings17. Because MTAG's estimates 
are biased away from zero when SNPs are null for one trait but non-null for other 
traits, we applied it to only the two outcomes that were most strongly genetically 
correlated: MVPA and LST (absolute value of genetic correlation 0.49).

PheWAS with physical activity PGSs. To assess the out-of-sample predictive 
power of the variants associated with self-reported sedentary behavior and physical 
activity, we constructed two PGSs—for LST and for MVPA—in up to 23,723 
Mount Sinai BioMe BioBank participants, using summary statistics of the primary 
European ancestry meta-analyses and PRSice software78. We subsequently assessed 
the association of MVPA and BMI with the PGSs in individuals of European 
and African ancestry, as well as in Hispanic participants, within the BioMe 
BioBank. Among the 2,765 European ancestry individuals with physical activity 
measurements and genotypes, the PGSs were calculated on common variants 
(minor allele frequency >1%) using P value thresholds from 5 × 10−8 to 1 (all 
variants) in the LST and MVPA GWAS, and clumping parameters of r2 < 0.5 over a 
250-kb window. Logistic regression models were used to examine the associations 
between MVPA (defined as at least 30 min per week of MVPA yes/no in BioMe) 
and the PGSs in European ancestry participants of BioMe. In each analysis, we 
estimated the variance in MVPA explained by the PGS, adjusting for age, sex and 
the top ten principal components for population structure. For both LST and 
MVPA, the P value threshold resulting in the best performing PGS was defined 
based on the highest R2 increase upon adding the PGS to the regression model. To 
examine the generalizability of the two PGSs, we next examined their associations 
with MVPA in 3,206 Hispanic individuals and 2,224 African ancestry participants 
of BioMe. We then tested each PGS for classification performance and examined 
whether the generated PGS was associated with any other trait by performing a 
PheWAS. Briefly, International Classification of Diseases 9 and 10 codes from 
electronic health records were mapped to phecodes using the PheWAS package79. 
Among 8,959 BioMe European ancestry participants, the 1,039 disease outcomes 
with at least ten cases were analyzed. We used logistic regression to separately 
model each phecode as a function of the two PGSs, adjusting for age, age-squared, 
sex and the top ten principal components. Interpretation of results was restricted 
to outcomes with more than ten cases. Multiple testing thresholds for statistical 
significance were set to P < 4.8 × 10−5 (0.05/1,039).

Genetic correlations. To explore a possibly shared genetic architecture, we next 
estimated genetic correlations of the four self-reported traits examined in this study 
and five accelerometry-assessed physical activity traits assessed in UK Biobank14 
with relevant complex traits and diseases based on established associations at the 
trait level using LD score regression implemented in the LD-Hub web resource18. 
To define significance, we applied a Bonferroni correction for the 108 selected 
phenotypes available on LD-Hub (P < 4.6 × 10−4). Supplementary Table 10 shows 
the complete set of pairwise genetic correlations of the four self-reported physical 
activity traits with relevant complex traits and diseases. Next, we prioritized traits 
and diseases showing evidence of genetic overlap (associated with at least one 
of the physical activity traits). These can be divided into six categories: lifestyle 
traits, anthropometric traits, psychiatric diseases, other diseases (cardiometabolic 
diseases and cancer), biomarkers and others (Fig. 4). Using objectively assessed 
physical activity traits (accelerometry) instead of self-reported traits yielded similar 
results (Supplementary Fig. 2).

Two-sample MR. We performed MR analyses to disentangle the causality between 
LST and MVPA, on the one hand, and BMI, on the other hand. We further 
investigated the causal effects of LST and MVPA on common diseases and risk 
factors, while considering BMI through multivariable MR. For multivariable MR, we 
used BMI (exposure 2) summary statistics based on UK Biobank data, and summary 
statistics for disease outcomes and other relevant traits based on data from the 
largest publicly available GWAS without data from UK Biobank participants on the 
MR-Base platform and OpenGWAS database80,81. This way, we aimed to minimize 
bias due to sample overlap in the two-sample MR analysis82. The source of each 
of the instruments is presented in Supplementary Table 12. Genetic instrumental 
variables for each of the traits and diseases consisted of genome-wide significant 
(P < 5 × 10−8) index SNPs. Index SNPs were LD clumped (r2 > 0.001 within a 10-Mb 
window) to remove any correlated variants. In the multivariable MR that evaluates 
the independent effects of each risk factor, the genetic instrumental variables 
from two risk factors were combined. For both LST and MVPA, independent loci 
associated with physical activity or BMI were used as instrumental variables.

We followed several steps to evaluate potential causality. Because MR results 
can be severely biased if instrumental SNPs show horizontal pleiotropy and violate 
the instrumental variable assumptions28, we prioritized methods that are robust 
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to horizontal pleiotropy when calculating causal estimates. We did not use the 
MR-Egger intercept test to identify the presence of potential pleiotropy, because 
the MR-Egger intercept parameter estimate is positively biased when the NO 
Measurement Error assumption is violated, as indicated by lower values of I2

GX in 
our two-sample MR setting83. Instead, we applied MR-PRESSO (pleiotropy residual 
sum and outlier)27, which removes pleiotropy by identifying and discarding 
influential outlier predictors from the standard inverse variance-weighted test28. 
For analyses with evidence of no distortion due to pleiotropy (MR-PRESSO 
Global test P > 0.05), we considered other robust methods, for instance fixed- and 
random-effect inverse variance-weighted, weighted- or simple- median and mode 
methods. We also conducted Steiger filtering to remove variants likely influenced 
by reverse causation and used Cook’s distance filtering to remove outlying 
heterogeneous variants as deemed necessary. To select the most appropriate 
approach, we implemented a machine learning framework30. Finally, we performed 
a leave-one-out analysis to identify potential outliers among the variants included 
in the instrumental variables tested. We set the multiple testing significance 
threshold for MR analyses with disease outcomes at 1.9 × 10−3, that is, Bonferroni 
correction for 13 disease outcomes and 2 types of risk factors: physical activity or 
sedentary behavior and adiposity (0.05/(13 × 2)).

We also applied the recently published Bayesian-based MR method CAUSE, 
which accounts for both correlated and uncorrelated pleiotropy26, in evaluating 
bidirectional causal effects between physical activity and adiposity. Compared with 
the other two-sample MR methods, CAUSE calculates the posterior probabilities 
of the causal effect and the shared effect, and tests whether the causal model 
fits the data better than the sharing model. That is, it examines whether the 
association between the traits is more likely to be explained by causality than 
horizontal pleiotropy. In addition, CAUSE improves the power of MR analysis by 
using full genome-wide summary results (LD pruned at r2 < 0.1 with P < 1 × 10−3, 
as recommended by the CAUSE authors). In addition, we took advantage of the 
robustness of the CAUSE method—which allows overlapping GWAS samples—to 
test the assumption that a genetic predisposition for LST assessed later in life 
reflects a lifetime liability. Using the summary statistics of SNPs for childhood 
adiposity (comparative body size at age 10) and height (comparative height at age 
10) in UK Biobank84, we examined bidirectional causal effects between LST and 
these two recalled childhood traits.

Enrichment for genes with altered expression in skeletal muscle after an 
intervention. A high degree of physical fitness and a strong adaptive response to 
exercise interventions facilitate a physically active lifestyle. To identify plausible 
candidate genes in GWAS-identified loci, we examined enrichment for transcripts 
whose expression in skeletal muscle was changed after an acute bout of aerobic 
exercise, aerobic training, an acute bout of resistance exercise, resistance training 
and inactivity33. We excluded individuals with pre-existing conditions such as 
chronic kidney disease, chronic obstructive pulmonary disease, frailty, metabolic 
syndromes and obesity. We also excluded athletes because in this subgroup, 
transcripts with differential expression in response to (in)activity interventions are 
likely not representative for the general population85. Enrichment was examined 
for genes nearest to, or within 1 Mb of lead variants for LST- and MVPA-associated 
loci. We used false discovery rate <0.01 as the threshold for altered expression after 
intervention. A sensitivity analysis with a series of different false discovery rate 
cut-offs (0.001 to 0.5) showed that results were robust.

Gene, tissue and cell-type prioritization. We used DEPICT40 to identify enriched 
gene sets and tissues, as well as to prioritize candidate genes in the identified loci, 
using variants with P < 1 × 10−5 in the primary meta-analysis of European ancestry 
men and women combined as input. We also used CELLECT43 to identify enriched 
cell types for physical activity, by combining MVPA and LST GWAS summary 
statistics with single-cell RNA sequencing data. We sought to further refine the set 
of prioritized candidate genes using SMR and HEIDI tests46. Briefly, this approach 
integrates summary-level data from GWAS and expression quantitative trait loci 
(eQTL) studies to test whether a transcript and phenotype are likely associated 
because of a shared causal variant (pleiotropy). We considered genes candidates 
if they had a Bonferroni-corrected PSMR < 1.02 × 10−5 and showed no evidence of 
heterogeneity (PHEIDI > 0.05), as in earlier studies46. Based on tissue enrichment 
results from DEPICT, the SMR analyses were performed using brain eQTL 
information obtained from GTEx-brain (n = 72)86,87, CommonMind Consortium 
(n = 467)88, ROSMAP (n = 494)89, and Brain-eMeta (n = 1,194)87; blood eQTL 
summary information obtained from the eQTLGen Consortium90, which is based 
on peripheral blood samples from 31,684 individuals; and skeletal muscle eQTL 
information from the GTEx project (n = 803)91.

To identify variants in GWAS-identified loci with a high posterior 
probability of being causal, we used LST and MVPA summary statistics as input 
for FINEMAP47. We used default parameters and selected a maximum of ten 
putative causal variants per locus. The output variants identified as credible were 
mapped to genes using tissue-specific HiC chromatin conformation capture 
data92. We integrated all HiC data in the brain (dorsolateral prefrontal cortex, 
hippocampus, neural progenitor cell, and adult and fetal cortex) available 
on FUMA v.1.3.5, using the same approach. Genes in GWAS-identified loci 
containing FINEMAP-identified credible coding variants with a CADD score 

>12.33 were also prioritized. Finally, we used data from 26 of the 131 available 
tissues and cell types deemed relevant for sedentary behavior and physical activity 
(Supplementary Table 20) to identify genes that are contacted by enhancers 
affected by causal variants flagged by GWAS lead SNPs, using the recently 
described activity-by-contact model49.

Enrichment for previously reported candidate genes. We next conducted a 
literature review of previously reported genes with evidence of a role in exercise 
(physical activity behavior) and fitness (physical activity ability) and identified 
58 such candidate genes (13 for exercise; 45 for fitness)12,50–53. For each gene, we 
identified all variants within the gene, examined their associations with LST 
and MVPA in our meta-analysis of European ancestry individuals and, for each 
gene–trait combination, retained the summary statistics for the variant with the 
lowest P value for association. Variants in three genes reached the traditional 
threshold for genome-wide significance (PPARD, APOE and ACTN3). Based on 
LD and predicted effects on protein function, rs2229456 in ACTN3 (encoding 
p.Glu635Ala) may have a causal effect.

MD simulation for p.Glu635Ala. Because no structure for human ACTN3 
has yet been experimentally determined, we constructed a homology model 
of the p.Glu635 variant monomeric filament using the fully annotated protein 
(UniProt ID Q08043) using Phyre2 (ref. 93), with the p.635Ala variant mutated in 
silico. Residue 635 of ACTN3 resides in the 356th residue of the spectrin repeat 
region and corresponds with residue 628 in ACTN2 (see the Supplementary 
Methods for more information). For each variant, the spectrin repeats of the 
ACTN3 monomer were aligned with the crystal structure of the rod domain of 
alpha-actinin (PDB ID 1HCI), to give the dimeric form of ACTN3. MD system 
preparation and simulation was conducted with GROMACS 2020.1 (ref. 94) and 
using mdanalysis v.2.0. The MD topology was created with GROMACS pdb2gmx 
using the ACTN2 and ACTN3 dimer models and parameterized with the 
CHARMM36 all-atom force field95. The ACTN2 and ACTN3 dimers were placed 
in a rectangular simulation box with a 1.0-nm buffer between the protein and 
the box extent, with periodic boundary conditions in all three spatial axes. The 
system was solvated with TIP3P water molecules and using GROMACS genion, 
random solvent molecules were replaced with K+ and Cl− to a concentration of 
150 mM with additional K+ ions added to provide an electrostatically neutral 
system. Energy minimization was accomplished using the steepest descent 
algorithm. To equilibrate the system, two 100-ps simulations were conducted 
using a constant temperature ensemble (NVT, that is, a constant number 
of particles [N], volume [V] and temperature [T]) at 310 K via a Berendsen 
thermostat, followed by a constant pressure ensemble (NPT, that is, a constant 
number of particles [N], pressure [P] and temperature [T]) at 1 bar with a 
Parinello–Rahman barostat. MD simulation parameters were set in accordance 
with the recommendations for the CHARMM36 force field in GROMACS. A 
short production run of 1 ns without position restraints was followed by a full 
simulation of 150 ns with weak position restraints on the ABD of chain B to 
prevent self-interaction across the periodic boundaries.

Steered MD and umbrella sampling for p.Glu635Ala. We next compared the 
properties of ACTN2 and of ACTN3 p.635Ala and p.Glu635 when placed under 
the simulated compressive loads that are likely experienced in vivo. The final frame 
of the 1-ns MD production run was used as the starting topology for steered MD 
simulations using fully relaxed dimers. Steered MD simulations were run for 2 ns 
with a pulling rate of 0.005 nm ps−1 and a harmonic potential of 50 kJ mol−1 nm−2. 
Center-of-mass pull groups were defined as the ABD of each respective monomer, 
with a weak position restraint placed on the Cα atom of threonine 52 (ACTN3) or 
threonine 45 (ACTN2)—a centrally located residue in the core of the ABD—on 
one ABD, enabling full rotational freedom of each ABD during the course of the 
steered MD simulations. The pulling vector was oriented along the axis on which 
the spectrin repeats were initially aligned. Suitable frames from each steered MD 
simulation were selected that differed by no more than 0.2 nm from 0 to −5.5 nm 
(a contraction of the dimer by 5.5 nm or ~18%) and were used as the starting 
topology for a series of 10-ns umbrella sampling simulations. Analysis of the 
umbrella sampling simulations was conducted using g_wham, to yield the potential 
of mean force versus reaction coordinate for each variant.

Single skeletal muscle fiber functional characteristics in relation to 
p.Glu635Ala. Single muscle fibers from eight nonathletic young men in which 
contractile and morphological properties were previously characterized in 
vastus lateralis biopsies obtained before and after an eccentric exercise bout60,61 
were genotyped for rs2229456. A hierarchical linear mixed effects model was 
constructed for each fiber type and time point using rstanarm96 to test the genotype 
fixed effect, with muscle fibers nested within each of the eight individuals as 
random factors for each contractile and morphological variable. Genotypes at 
p.Arg577Ter and p.Glu635Ala were clustered into three groups: RR-AA (n = 1 
individual, 46 fibers, reference group); RR-AC (n = 3 individuals, 32 ± 5 fibers); 
and XX-AA (n = 4 individuals, 39 ± 6 fibers). Using weakly informative priors, the 
posterior distribution was estimated with Markov chain Monte Carlo sampling 
(20,000 samples total with 5,000 sample burn-in). We calculated 90% credible 
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intervals of the posterior density and distribution-free overlapping indices97 to 
compare single fiber properties between genotypes.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
European and multi-ancestry meta-analyses summary statistics for the 
genome-wide association study are available through the NHGRI-EBI GWAS 
Catalog (https://www.ebi.ac.uk/gwas/downloads/summary-statistics, GCP ID: 
GCP000358). UK Biobank individual-level data can be obtained through a data 
access application available at https://www.ukbiobank.ac.uk/. In this study we 
made use of data made available by: MetaMex https://www.metamex.eu/; Tabula 
Muris https://www.czbiohub.org/tabula-muris/; Open GWAS https://gwas.mrcieu.
ac.uk/; MR Base https://www.mrbase.org/; GTEx Consortium https://gtexportal.
org/home/; eQTLGen Consortium https://www.eqtlgen.org/; CommonMind 
Consortium https://www.synapse.org/#!Synapse:syn2759792/wiki/69613; 
Brain zQTLServe http://mostafavilab.stat.ubc.ca/xqtl/; MetaBrain https://www.
metabrain.nl/.

code availability
We made use of publicly available software and tools such as METAL (https://
genome.sph.umich.edu/wiki/METAL), GCTA (https://yanglab.westlake.edu.cn/
software/gcta/), LD score regression (https://github.com/bulik/ldsc), SMR (https://
cnsgenomics.com/software/smr/) and PLINK (www.cog-genomics.org/plink/).
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Extended Data Fig. 1 | Lst-associated loci are enriched for genes with altered expression in skeletal muscle following resistance training. Fold-change 
plot in log scale for the ratio between: (1) the proportion of genes in physical activity-associated loci that showed an altered expression in skeletal muscle 
(FDR < 0.01) across five categories: inactivity, acute bout of resistance exercise, acute bout of aerobic exercise, resistance training, or aerobic training; 
and (2) the proportion of all genes that showed an altered expression following such (in)activity in the MetaMex database (PMID: 31980607). Tested loci 
were MVPA or LST-associated loci. In a given set of loci, we either considered only the genes nearest to the lead SNP, or all genes within 1 Mb of the lead 
SNP. Only loci harboring at least five genes with altered gene expression levels after intervention were included in this figure. A one-sided Fisher exact test 
was used to calculate the P-value for enrichment.
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Extended Data Fig. 2 | a sensitivity analysis shows the analysis of altered gene expression following resistance training is robust to FDR threshold. We 
examined the effect of different FDR thresholds on Fisher’s exact test results for the enrichment analysis of alteration in gene expression in skeletal muscle 
following resistance training. Red square, genes within 1 Mb of the LST lead SNP; green circle, genes within 1 Mb of the MVPA lead SNP; blue triangle, 
nearest gene LST lead SNP; purple diamond, nearest gene MVPA lead SNP. The horizonal dotted line indicates nominal significance level (P < 0.05), and 
the vertical dashed line indicates the FDR threshold that was used. FDR thresholds explored range from 0.001 to 0.5.
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Extended Data Fig. 3 | DePict-derived tissue enrichment of MVPa and Lst. a, MVPA. b, LST. SNPs with P < 1 x 10−5 for association in the European 
ancestry GWAS of men and women combined were used as input. The dashed line indicates the FDR corrected significance threshold (FDR < 0.05).
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Extended Data Fig. 4 | cell type prioritization using ceLLect for MVPa and Lst. a, Prioritization of 115 Tabula Muris cell types across 19 tissues identified 
two cell types from the brain as significantly associated (stratified linkage disequilibrium score regression) with MVPA (left) and LST (right), namely 
oligodendrocyte precursor cells and neurons (shown in black; Bonferroni-corrected significance threshold, P < 0.05/115). b, Prioritization of 265 mouse 
nervous system cell types identified 13 and 45 cell types from 12 distinct brain regions as significantly associated (stratified linkage disequilibrium score 
regression) with MVPA and LST, respectively (highlighted; Bonferroni-corrected significance threshold, P < 0.05/265.
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Extended Data Fig. 5 | Protein-protein interactions involving 17 of the 46 candidate genes in GWas-identified loci prioritized by at least two 
approaches. Protein-protein interactions were visualized using String. LONRF2 and CHST10 were prioritized in loci associated with MVPA; the remaining 
genes were prioritized in loci associated with LST.
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SUPPLEMENTARY RESULTS 

Physical activity loci under selection 

As much higher physical activity levels were on average required to ascertain sufficient nutrition 

in times of hunting and gathering and pre-mechanical farming as compared with today’s 

Westernized societies1, a higher capacity to be physically active may have been selected for. To 

explore this, we examine if MVPA and LST association signals overlap with regions identified in 

three genome-wide selection screens2-4. Here, we show that 22 genes located <100kb of lead 

SNPs in three MVPA and/or LST-associated loci are located in three of 412 regions under 

selection in the past 50,000 years2 (Supp Table 29). The protein-coding genes nearest the lead 

SNPs (<10kb) – DNM3, MST1R and FOXP1 – are also prioritized by other approaches (Supp 

Tables 25-26) and play a role in cell signaling and wound healing, amongst others (Supp Box 

1). We next identify genes located <10kb of 15 loci under selection in the past 10,000 years – 

based on results from an ancient DNA scan3 – and <100kb of physical activity association 

signals. This yields one additional gene (GRM5) that harbors an intronic GWAS lead SNP for 

LST (rs1391954, Supp Table 29). GRM5 encodes a metabotropic glutamate receptor that 

activates phospholipase C5; another key player in signal transduction6, inflammation and wound 

healing7, amongst other processes. No lead SNPs for LST or MVPA are located within 1Mb of 

five loci under very recent selection4. In summary, we show that a modest number of loci (n=4) 

selected for in the past 10,000-50,000 years are associated with leisure time physical activity 

and sedentary behavior today. 

Overlap between mouse and human loci 

Many of the biological factors influencing sedentary behavior and physical activity are likely 

shared across species8. Identifying such loci may help prioritize candidate genes, and shed light 

on relevant mechanisms. To this end, we compare our findings with loci identified in a GWAS 

for spontaneous physical activity in 100 inbred mouse strains, performed using the Hybrid 
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Mouse Diversity Panel (HMDP)9 (Supp Table 23). Nine genes in two LST-associated loci are 

also located within ±1 Mbp of two lead SNPs for distance run and average running speed in 

mice (P<4.1×10−6) (Supp Table 24). Of the eight genes that overlap across humans and mice in 

one of these two loci, TESC – highly expressed in the striatum – harbors the intronic lead SNP 

rs2173650 in humans (Supp Box 1). In the mouse however, a gene without an established 

orthologue in humans – the lncRNA 4930413E15Rik expressed in olfactory and reproductive 

tissues – ranks 65th out of 16,378 genes (0.4th percentile), indicating it is likely causal for high 

voluntary wheel running behavior in mice selectively bred for 61 generations10. Using single cell 

RNA-sequencing data from GTEx11, we show that in humans, a sequence 1.4 Mb from 

rs2173650 with high conservation to the mouse 4930413E15Rik is expressed in several 

reproductive tissues (Supp Figure 4). Sex hormones are firmly established to influence physical 

activity regulation in animal models12, while vomeronasal chemosensory receptors were recently 

proposed to play a role in voluntary exercise behavior13. Unfortunately, no information on gene 

expression in the olfactory system is available in GTEx. 

Molecular dynamics simulation for p.Glu635Ala 

Computer-based molecular dynamics (MD) simulations for alpha actinin 3 show that the 

ancestral p.Glu635 variant (A allele) product facilitates salt bridge and hydrogen bonding 

interactions at residue 635 with surrounding residues (e.g., p.Arg638 and p.Gln639, Figure 6b) 

via its glutamate side chain. Such interactions are not formed with the p.635Ala substitution 

variant and have a different pattern of interaction in ACTN2. Root mean square fluctuations 

were performed on the residues of spectrin repeats of each monomer chain using gmx rmsf. 

Root mean square fluctuations of each amino acid residue, i.e., their average displacement over 

the simulation compared with the starting structure, were calculated with both variants and with 

ACTN2, with ACTN2 as well as ACTN3 variant p.635Ala – but not ACTN3 variant p.Glu635 – 

showing higher fluctuations in the monomer with the restrained actin-binding domain (Figure 
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6d, Chain B, orange and green traces). Root mean square fluctuations peaks in these interface 

regions are around 0.8 nm for ACTN2 and the ACTN3 p.635Ala variant, while the ACTN3 

p.Glu635 variant fluctuations are approximately 0.6 nm (Figure 6d). In the presence of 

p.635Ala, moderately higher root mean square fluctuations values were observed in the middle 

section of the spectrin repeats – over the residue range of 410-540 – though p.Glu635 showed 

a more pronounced peak near residue 440 (Figure 6d). Overall, ACTN2 and ACTN3 p.635Ala 

showed a similar behavior that is distinctly different from p.Glu635, with a greater magnitude of 

root mean square fluctuations under no-load conditions, suggesting a more flexible structural 

region in the presence of ACTN2 or the ACTN3 p.635Ala variant product (C allele), associated 

with higher MVPA. 

Steered molecular dynamics and Umbrella sampling for p.Glu635Ala 

When a compressive force was applied between the center of mass of the two actin-binding 

domains, the force required to compress the two actin-binding domains by 0.6 nm was lower for 

both ACTN3 p.635Ala and ACTN2 compared with ACTN3 p.Glu635 (50, 45 and 74 kJ mol-1 nm-

1, respectively). Furthermore, the force-to-distance relationship to a compressive distance of -

1.2 nm – where the two respective forces converge (67 kJ mol-1 nm-1) – was notably more linear 

for both ACTN3 p.635Ala and ACTN2 than for ACTN3 p.Glu635 (Supp Figure 6). Greater 

variability is also seen for ACTN2 and ACTN3 p.635Ala in the force versus distance relationship 

among triplicate steered molecular dynamics simulations. To explore these features further, we 

used umbrella sampling to examine the change in potential of mean force (free energy surface) 

over the reaction coordinate corresponding to the compression of the ACTN3 dimer. 

Umbrella sampling of ACTN2 and the ACTN3 dimer variants showed that the initial 

compression of the two ACTN3 variants and ACTN2 from a relaxed state to a compression of 

1.2 nm was similar, requiring energy input of approximately 4.6 kJ mol-1. Beyond this distance of 

1.2 nm ACTN3 p.Glu635Ala diverged from ACTN3 p.635Ala and ACTN2 in its response to 
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compression (Figure 6e). ACTN3 p.635Ala required 2.8 kJ mol-1 to compress the dimer from -

1.2 to -2.3 nm, while ACTN3 p.Glu635 required ~6.5 kJ mol-1 from -1.2 to -2.3 nm, ACTN2 

having reached its peak of 7.5 kJ mol-1 at a compression of -2.3 nm (Figure 6e). Interestingly, 

bootstrap estimation of the error of the potential of mean force showed greater variance for 

p.635Ala, in line with and strengthening the root mean square fluctuations and steered 

molecular dynamics simulations results. Taken together, these results indicate that the ACTN3 

p.635Ala dimer - associated with higher MVPA – exhibits greater flexibility than the p.Glu635 

dimer. 
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SUPPLEMENTARY DISCUSSION 

Results in post-GWAS analyses were most robust for LST, as a result of a markedly larger 

number of loci showing associations with LST as compared with the other three outcomes. 

There are at least five reasons for identifying most loci for LST. First, the SNP heritability was 

approximately twice as high for LST as for the other outcomes. Secondly, LST is the only 

outcome that was recorded in a homogenous manner across all studies. For the other three 

outcomes, the exact questions and response options used to capture the underlying latent 

variable differed across studies. For those outcomes, we summarized data from all available, 

relevant questions in each study into the most informative outcome that was still comparable 

across studies. The more heterogeneous nature in which the other three outcomes were 

captured negatively affects the statistical power to identify associated loci. Furthermore, while 

LST was normally distributed and could be analyzed as a continuous outcome, the other three 

traits were analyzed as dichotomous outcomes, resulting in a lower statistical power. In addition, 

due to the negative binomial distribution of MVPA – with an inflation of zeros – we used the 

median of 20 mins/week as a threshold to distinguish between “active” and inactive individuals. 

While this threshold is statistically sound, it essentially distinguishes between individuals that 

partake in some MVPA vs. those that do not. This likely negatively affected the likelihood of 

identifying loci that are truly relevant for participation in MVPA. Finally, the sample size for LST 

was much larger than for sedentary commuting behavior and sedentary behavior at work. 

Aiming to improve the understanding of the molecular basis of physical activity, we 

perform a range of largely complementary approaches to identify candidate genes through 

which the association signals are anticipated to act. Strikingly, of the 268 and 39 genes 

prioritized across 70 LST- and eight MVPA-associated loci, only 22 genes are prioritized by >1 

approach when using traditional cut-offs within each approach. This illustrates the complexity of 

in silico gene prioritization for complex behaviors, especially when proof-of-concept genes are 

sparse and a gold standard approach for prioritization is nonexistent. When combining results 
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from multiple approaches, applying more lenient criteria in individual approaches is justifiable. 

First, because the odds that a gene with an FDR of (e.g.) 0.20 in two methodologically 

independent approaches represents a false positive is low (i.e. 0.04); and secondly because 

sensitivity is more important than specificity when using in silico gene prioritization results to 

guide the selection of genes for downstream genetic perturbation studies in high throughput 

model systems. Applying more lenient criteria in the individual gene prioritization approaches 

increased the number of genes prioritized by >1 approach from 22 to 46 (Supp Tables 25-26). 
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SUPPLEMENTARY METHODS 

Self-reported physical activity and sedentary behavior – rationale for trait definitions 

When initiating this effort in 2011 (i.e. pre-UK Biobank), we first explored what physical activity-

related questions were available in the first ~20 cohort studies that agreed to participate. This 

served several purposes: 1) to identify common ground; 2) to explore the distributions of the 

available outcomes; and 3) to assess how traits could (or should) be analyzed to maximize the 

statistical power to identify relevant loci. Since we were interested in identifying genetic factors 

that are relevant for daily physical activity levels, we aimed to capture all moderate-to-vigorous 

intensity physical activity (MVPA) during leisure time, rather than limiting ourselves to just sports 

and exercise participation. Since the median time spent on all MVPA during leisure time in the 

first ~20 cohort studies was merely ~20 mins per week (with a zero-inflated negative binomial 

distribution), we decided against further dissecting this trait into MPA and VPA separately. 

Leisure screen time was the only outcome that we could analyze in a continuous manner, 

thanks to the uniform and continuous manner in which it had been acquired in all studies, and 

thanks to its normal distribution. For commuting behavior and physical activity at work, the 

distributions were such that contrasting the most active individuals with the remainder of the 

population would have resulted in a much lower statistical power than instead contrasting the 

least active individuals with the remainder of the population. Since then, it has been shown that: 

1) among regular commuters, those exclusively commuting by car had an 11% higher risk of 

cardiovascular events, and a 30% higher risk of fatal cardiovascular events compared with 

individuals with a more active mode of commuting, during a mean follow-up of seven years14; 

and 2) more sitting at work is associated with higher mortality during follow-up in primary 

industry, i.e. non-office professions15. Taken together, these results suggest that identifying 

genetic factors associated with the outcomes as defined in our study had the potential to yield 

clinically meaningful and possibly actionable insights. 
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Besides trait definitions varying across studies, the average age per cohort ranged from 

early adulthood to old-age (17-74 years old). The power to detect genetic factors that influence 

physical activity was thus likely compromised by misclassification of physically active and 

inactive individuals, and heterogeneity by the inclusion of older age groups in the meta-analysis, 

as the heritability of physical activity decreases with increasing age16. However, such factors 

could have resulted in type II – but not type I – errors in the meta-analysis. Despite these 

limitations, a large sample size helped us identify 42 previously unreported loci for self-reported 

physical activity and sedentary behavior. Genetic correlations with objectively assessed physical 

activity traits were modest and five of eight previously reported loci for objectively assessed 

physical activity show evidence of association with self-reported physical activity and sedentary 

behavior. Hence, despite the well-known limitations of self-reported physical activity, focusing 

on domain and intensity specific physical activity traits in a large study sample helped increase 

the understanding of the genetic etiology of this complex behavior in a manner that is not 

currently possible using objectively assessed physical activity. 

GWAS and meta-analyses – additional analyses 

Several analyses were performed at the discovery stage for which we decided not to report 

associations. First, for all outcomes, we examined genome-wide associations with and without 

adjusting for BMI. To avoid drawing conclusions that are driven by collider bias17, we did not use 

the BMI-adjusted associations. Secondly, to further explore potential linear associations with 

MVPA, we used zero-inflated negative binomial regression and modeled MVPA as a continuous 

outcome (mins/week). Associations were examined using the same covariates as in the main 

genome-wide analyses amongst 371,244 unrelated UK Biobank participants of European 

ancestry, for variants with P<1×10-5 for association with the dichotomous MVPA outcome in the 

European ancestry meta-analysis. The approach yielded similar results and are therefore not 

shown. Finally, gene-based analyses aggregating rare (MAF<1%) functional variants as 
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annotated by Ensembl’s variant effect predictor (VEP)18 were conducted in UK Biobank 

European ancestry participants. Gene-based Burden and SKAT tests were performed using a 

mixed model approach in the GENESIS package19. Genes identified using these approaches 

were also flagged by the single variant analysis and hence, the results are not shown. 

Mouse experiments 

Females from 100 genetically distinct strains from the Hybrid Mouse Diversity Panel (HMDP)20 

were purchased from Jackson Laboratories (University of Tennessee Health Science Center). 

They arrived at UCLA at 5 to 8 weeks of age and were housed 1-4 weeks until wheel testing. All 

mice were ~3 months old at the start of the experimental protocol, and were randomized into 

two groups: 1) sedentary or no exercise; and 2) exercise trained. Strains used and sample size 

per group are shown in Supp Table 23. Trained animals were housed unaccompanied on a 

standard 12-hour light dark cycle (6AM to 6PM local time). They were fed on a standard 

laboratory chow diet (8604, Teklad) with ad libitum access to food and water for the entire 

duration of the experiment. Mice were given full-time access to a running wheel for ~30 days. 

Wheel revolutions were tallied every 15 sec using VitalView® Activity Software (Starr Life 

Sciences Corp, Oakmont, Pennsylvania, United States). Daily running distances were 

calculated by converting wheel revolutions into distance using wheel circumference (35.9 cm). 

Average running speed was calculated by averaging all non-zero-wheel revolutions and 

normalizing on a per sec basis. Percent time running was calculated by dividing all 15 sec bouts 

a wheel revolution was recorded to the total number of intervals. Additional information on 

GWAS performed using the Hybrid Mouse Diversity Panel (HMDP) is described elsewhere9. All 

studies were approved by the Institutional Animal Care and Use Committee (IACUC) and the 

Animal Research Committee (ARC # 1992-169-83e) at the University of California, Los Angeles 

(UCLA). 
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In a selection study for high voluntary wheel-running behavior10, the mouse lncRNA 

4930413E15Rik was considered to show a strong indication of consensus in a locus that was 

associated with daily distance run and average voluntary running speed in a GWAS in 100 

mouse strains, as well as with LST in humans. The mouse gene 4930413E15Rik is located on 

chr 5, spanning the coordinates 118,952,339 - 118,961,261 (mm10 assembly). To investigate 

the corresponding region in the human genome, a lift-over to hg19 was performed in the UCSC 

genome browser, resulting in the coordinates chr 12: 116,087,265 – 116,097,521. The region on 

chr 12 contains no established gene models, but was further investigated in the GTEx IGV 

browser11 to study expression that might be present at low levels in specific human tissues. 

Molecular dynamics simulations for the ACTN3 p.Glu635Ala variant 

Alpha-actinin is a structural member of vertebrate muscle Z-discs, and primarily functions to 

cross-link neighboring actin filaments of opposite polarity from adjacent sarcomeres. This 

binding can occur over a range of angles from 60 to 120°, creating a tetragonal lattice with a 

lattice spacing of 19 to 25 nm21-23. In addition to its interaction with actin, alpha-actinin binds and 

anchors titin to the Z-disc24. The alpha-actinin homodimer is formed from two antiparallel 

subunits composed of an N-terminal actin-binding domain and a C-terminal calmodulin 

homology domain (CAM), separated by four spectrin-like repeats. Each repeat consists of a 

triple α-helix coiled-coil (Figure 6A). Alpha-actinin 3 (ACTN3) at 901 amino acids in length is 

one of four isoforms of alpha -actinin and is exclusively found in human type-II (also known as 

fast-twitch) skeletal muscle fibers. The naturally occurring truncating mutation R557X in ACTN3 

has a potential impact on injury risk during exercise, increased muscle-damage following 

eccentric training and increased flexibility for 557X homozygotes, who are generally presumed 

to have ACTN2 incorporated in their type II muscle fibers to compensate for the functional loss 

of ACTN325,26. 
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Steered molecular dynamics and Umbrella sampling for p.Glu635Ala 

We compared the properties of ACTN2 and of the ACTN3 p.635Ala and p.Glu635 variants when 

placed under the simulated compressive loads that are likely experienced in vivo. The final 

frame of the 1 ns molecular dynamics production run was used as the starting topology for 

steered molecular dynamics simulations using fully relaxed dimers. Steered molecular dynamics 

simulations were run for 2 ns with a pulling rate of 0.005 nm ps-1 and a harmonic potential of 50 

kJ mol-1 nm-2. Centre of mass pull groups were defined as the actin-binding domain of each 

respective monomer, with a weak position restraint placed on the Cα atom of threonine-52 

(ACTN3) or threonine-45 (ACTN2) – a centrally located residue in the core of the actin-binding 

domain – on one actin-binding domain, enabling full rotational freedom of each actin-binding 

domain during the course of the steered molecular dynamics simulations. The pulling vector 

was oriented along the axis on which the spectrin repeats were initially aligned. Suitable frames 

from each steered molecular dynamics simulation were selected that differed by no more than 

0.2 nm from 0 to -5.5 nm (a contraction of the dimer by 5.5 nm or ~18%) and were used as the 

starting topology for a series of 10 ns umbrella sampling simulations. Analysis of the umbrella 

sampling simulations was conducted using g_wham, to yield the potential of mean force versus 

reaction coordinate for each variant. 

 When a compressive force was applied between the center of mass of the two actin-

binding domains, the force required to compress the two actin-binding domains by 0.6 nm was 

lower for both ACTN3 p.635Ala and ACTN2 compared with ACTN3 p.Glu635 (50, 45 and 74 kJ 

mol-1 nm-1, respectively). Furthermore, the force-to-distance relationship to a compressive 

distance of -1.2 nm – where the two respective forces converge (67 kJ mol-1 nm-1) – was notably 

more linear for both ACTN3 p.635Ala and ACTN2 than for ACTN3 p.Glu635 (Supp Figure 6). 

Greater variability is also seen for ACTN2 and ACTN3 p.635Ala in the force versus distance 

relationship among triplicate steered molecular dynamics simulations. To explore these features 

further, we used umbrella sampling to examine the change in potential of mean force (free 
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energy surface) over the reaction coordinate corresponding to the compression of the ACTN3 

dimer. 

Umbrella sampling of ACTN2 and the ACTN3 dimer variants showed that the initial compression 

of the two ACTN3 variants and ACTN2 from a relaxed state to a compression of 1.2 nm was 

similar, requiring energy input of approximately 4.6 kJ mol-1. Beyond this distance of 1.2 nm, 

ACTN3 p.Glu635 diverged from ACTN3 p.635Ala and ACTN2 in its response to compression 

(Figure 6E). ACTN3 p.635Ala required 2.8 kJ mol-1 to compress the dimer from -1.2 to -2.3 nm, 

while ACTN3 p.Glu635 required ~6.5 kJ mol-1 from -1.2 to -2.3 nm, ACTN2 having reached its 

peak of 7.5 kJ mol-1 at a compression of -2.3 nm (Figure 6E). Interestingly, bootstrap estimation 

of the error of the potential of mean force showed greater variance for p.635Ala, in line with and 

strengthening the root mean square fluctuations and steered molecular dynamics simulations 

results. Taken together, these results indicate that the ACTN3 p.635Ala dimer - associated with 

higher MVPA – exhibits greater flexibility than the p.Glu635 dimer. 
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SUPPLEMENTARY FIGURES 

Supplementary Figure 1 – Quantile-quantile plots for the primary GWAS of self-reported 

physical activity and sedentary traits (page 15) 

Supplementary Figure 2 – Significant genetic correlations for accelerometer-assessed 

physical activity with 108 other traits and diseases in 91,105 UK Biobank participants (page 16) 

Supplementary Figure 3 – Manhattan plot of PheWAS for polygenic score of MVPA shows 

association with morbid obesity in European ancestry individuals in the BioMe Biobank (page 
17) 

Supplementary Figure 4 – RNA-seq data from GTEx displaying expression levels in the region 

chr12: 116,087,265 - 116,097,521 across several human tissues (page 18) 

Supplementary Figure 5 – QQ plots of 28,390 variants shows enrichment for association with 

MVPA and LST in 56 previously reported physical activity- or exercise-related genes (page 19) 

Supplementary Figure 6 – Steered Molecular Dynamics (SMD) and hydrogen Bond Analysis 

(HBA) of ACTN3 p.Glu635, ACTN3 p.635Ala and ACTN2 from a homology structure shows a 

divergence in behavior under compressive force (page 20) 

Supplementary Figure 7 – Single muscle fiber experiments show a higher maximal stable 

force and fiber power in p.Glu635 compared with p.635Ala (page 21-22). 
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       MVPA LDSC intercept=1.01         LST LDSC intercept=1.02             SDC LDSC intercept=1.00            SDW LDSC 
intercept=1.00  

 
      Trans-ethnic MVPA                     Trans-ethnic LST                           Trans-ethnic SDC                          Trans-ethnic SDW 

 
 
Supplementary Figure 1: Quantile-quantile plots for the primary GWAS of self-reported 
physical activity and sedentary traits. Moderate-to-vigorous intensity physical activity during 

leisure time (MVPA); leisure screen time (LST); sedentary behavior at work (SDW); and 

sedentary commuting behavior (SDC) in individuals of European ancestry only (top) as well as 

from the multi-ancestry meta-analysis (bottom). The estimated LD Score intercept for the 

primary GWAS is indicated for the former. 
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Supplementary Figure 2: Genetic correlations of accelerometer-assessed physical 
activity with other traits and diseases in 91,105 UK Biobank participants. We computed 

genetic correlations of four objectively assessed physical activity traits with 108 other traits and 

diseases using LD score regression, and show results for traits and diseases with at least one 

genetic correlation of P< 4.6×10−4 with an objectively assessed physical activity trait. 

 



17 

 
 
Supplementary Figure 3: Manhattan plot of PheWAS for polygenic score of MVPA shows 
association with morbid obesity in European ancestry individuals (N=8,959) in the BioMe 
Biobank. MVPA: moderate-to-vigorous intensity physical activity during leisure time, PheWAS: 

phenome-wide association study. 
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Supplementary Figure 4: RNA-seq data from GTEx displaying expression levels in the 
region chr12: 116,087,265 - 116,097,521 across several human tissues. Top: the region 

surrounding and including a poly-A signal is conserved across the mouse lncRNA 

4930413E15Rik-encoding sequence and a locus on the human Chr 12 that is associated with 

leisure screen time; Middle: the human region on Chr 12 corresponding with an exonic 

sequence from the mouse 4930413E15Rik contains regulatory elements; Bottom: the human 

transcript is most highly expressed across the five highlighted tissues. In other tissues in the 

GTEx data collection, including whole blood (bottom), the region shows little or no evidence of 

expression. Chromosomal coordinates shown are from human genome built GRCh38. 
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Supplementary Figure 5: QQ plots of 31,673 variants show enrichment for association 
with MVPA and LST in 58 previously reported exercise (i.e. physical activity (PA) 
behavior) and fitness (i.e. physical activity ability) genes. 8,345 variants within 13 physical 

activity behavior genes, 23,328 variants within 45 PA ability genes. MVPA: moderate-to-

vigorous intensity physical activity during leisure time; LST: leisure screen time. 
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Supplementary Figure 6. Steered Molecular Dynamics (SMD) and Hydrogen Bond 
Analysis (HBA) of ACTN3 p.Glu635, ACTN3 p.635Ala and ACTN2 from a homology 
structure shows a divergence in behavior under compressive force. a) SMD (replicates 

shown in transparency) of ACTN3 p.Glu635 (blue, 3 replicates), ACTN3 p.635Ala (orange, 3 

replicates) and ACTN2 (green, 6 replicates), showing, left to right: the pulling center-of-mass 

(COM) distance between actin binding domains versus time; the pull force versus time; and the 

pull force versus pulling COM. b) HBA of interactions between the glutamate of: ACTN2 residue 

p.Glu628 (top row); ACTN3 residue p.Glu635 (bottom row) and neighboring residues within the 

relaxed 150 ns MD simulation (left column) and three SMD replicates (rightmost three columns). 

Interacting residues are indicated on the y-axis with the suffix '_sc' denoting side chain 

interactions, '_bb' backbone interactions and without suffix are total interactions. ACTN2 

p.Glu628's side chain interacts with p.Arg631 in the relaxed dimer (top left), but this interaction 

tends to break upon application of force in SMD simulations (top right). ACTN3 p.Glu635's side 

chain interacts with p.Arg638 in the relaxed dimer and to a lesser extent with p.Gln639 (bottom 

left), though as increased force is applied in SMD simulations, the interaction with p.Arg638 is 

generally sustained for a longer period than that seen in ACTN2, and the interaction with 

p.Gln639 tends to become more extensive under compression, which is not seen in ACTN2 

(and p.Gln632). 
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Supplementary Figure 7. Single muscle fiber experiments show a higher maximal stable 
force and fiber power in p.Glu635 compared with p.635Ala. Muscle biopsies from eight 

healthy young men (four Arg/Arg and four Ter/Ter at p.Arg577Ter) obtained before (pre) and 

after (post) an eccentric exercise bout were used to isolate single fibers, which were then 

functionally characterized. Of the four Arg/Arg carriers, one was heterozygous at p.Glu635Ala 

(46 fibers) and three were homozygous for the p.Glu635 variant (32±5 fibers). All four Ter/Ter 

carriers were homozygous for the p.Glu635 variant (39±6 fibers). Posterior distributions from 

15,000 iteration Markov chain Monte Carlo models are shown separately for type I and type IIA 

fibers pre and post eccentric intervention. 

 

  



23 

SUPPLEMENTARY BOX 1 

A Brief description of candidate genes prioritized by at least two approaches using information 

from Genecards, NCBI and Uniprot. 

For MVPA and LST 
 
CHST10 (chr 2, flagged by the intronic LINC01104 variants rs4303732 (LST) and rs1160545 
(MVPA) 
Prioritized by: Activity by contact in adipose tissue, coronary artery, ovary; SMR brain (lenient) 
Carbohydrate sulfotransferase 10 participates in the biosynthesis of human natural killer-1 
(HNK-1) carbohydrate structure, which is involved in neurodevelopment and synaptic plasticity 
of the hippocampus. 
 
MST1R (chr 3, flagged by the intronic MST1R variant rs7615206 for MVPA and LST) 
Prioritized by: SMR skeletal muscle; activity by contact in skeletal muscle and fetal thymus; 
altered expression in skeletal muscle following resistance training (lenient) 
Also: in a locus under selection in the past 50,000 years2 
Macrophage Stimulating 1 Receptor is a cell surface receptor for macrophage-stimulating 
protein (MSP) that has tyrosine kinase activity. It is expressed at the protein level on the ciliated 
epithelia of the mucociliary transport apparatus of the lung27, and together with MSP plays a role 
in host defense. MST1R regulates physiological processes that include cell survival, migration 
and differentiation. Ligand binding at the cell surface induces autophosphorylation of RON28, 
which activates the wound healing response by promoting epithelial cell migration, proliferation 
and survival at the wound site29,30. Following activation, MST1R interacts with PIK3R1, PLCG1 
or the adapter GAB1. Recruitment of these downstream effectors by RON leads to the 
activation of several signaling cascades including the RAS-ERK, PI3 kinase-AKT, or 
PLCgamma-PKC. MST1R also plays a role in the innate immune response by regulating the 
migration and phagocytic activity of macrophages. 
 
 
For MVPA 
 
LONRF2 (chr 2, flagged by the intronic LINC01104 variants rs4303732 (LST) and rs1160545 
(MVPA) 
Prioritized by: Activity by contact in coronary artery and ovary; SMR blood (lenient) for MVPA. 
Only prioritized by Activity by contact in coronary artery and ovary for LST 
LON peptidase N-terminal domain and ring finger 2 is predicted to enable metal ion binding 
activity. 
 
AKAP10 (chr 17, flagged by rs385301 downstream of AKAP10 
Prioritized by: Activity by contact in pancreas, adipose tissue, coronary artery, cardiac ventricle, 
skeletal muscle, ovary, derived neuronal progenitor cultured cells; SMR skeletal muscle 
(lenient); DEPICT gene prioritization (lenient). 
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Encoded by a gene in a locus previously identified for physical activity31, alpha-kinase anchoring 
protein 10 is known to confine regulatory subunits of protein kinase A to discrete regions of 
mitochondria32. Animal studies have shown evidence for a role of the protein encoded by 
AKAP10 in heart rhythm regulation33, but skeletal muscle phenotypes were not reported 
previously in knockout models. However, A-kinase anchoring proteins (AKAPs) partially restrict 
cAMP-PKA signaling, especially in highly structured cell types like skeletal myofibers34. cAMP 
signaling participates in muscle development and regeneration mediated by muscle precursor 
cells35. 
 
SPECC1 (chr 17, flagged by rs385301 downstream of AKAP10 
Prioritized by: Activity by contact in coronary artery and cardiac ventricle; DEPICT gene 
prioritization (lenient). 
Sperm antigen with calponin homology and coiled-coil domains 1 belongs to the cytospin-A 
family and is highly expressed in testis. 
 
 
For LST 
 
KDM4A (chr 1, flagged by the intronic KDM4A variant rs71658797) 
Prioritized by: Activity by contact in pancreas, skeletal muscle, adipose tissue, thymus, ovary, 
derived neuronal progenitor cultured cells, bipolar neuron from iPSC; and DEPICT gene 
prioritization (lenient) 
Lysine Demethylase 4A is a nuclear protein that functions as a trimethylation-specific histone 
demethylase and as a transcriptional repressor. It is crucial for muscle differentiation and 
promotes transcriptional activation of MYOG36, which in turn is essential for the development of 
functional embryonic skeletal muscle. 
 
AK5 (chr 1, flagged by the intronic AK5 variant rs3791033) 
Prioritized by: DEPICT tissue and gene prioritization; SMR brain (lenient) 
Adenylate Kinase 5 is a cytosolic protein that is exclusively expressed in the brain. It plays a 
role in regulating the adenine nucleotide composition in a cell by catalyzing the reversible 
transfer of the terminal phosphate group between nucleoside triphosphates and 
monophosphates37. 
 
DNM3 (chr 1, flagged by the intronic DNM3 variant rs6685030) 
Prioritized by: Activity by contact in neuronal progenitors, adrenal gland and skeletal muscle; 
SMR blood (lenient) 
Dynamins represent a subfamily of GTP-binding proteins, which are associated with 
microtubules and bind actin and other cytoskeletal proteins. DNM3 plays a role in the 
development of megakaryocytes and vesicle-mediated transport and endocytosis. 
 
LRPPRC (chr 2, flagged by the indel rs145255225 (a.k.a. rs34908368)) 
Prioritized by: SMR brain (lenient); altered expression in skeletal muscle following resistance 
training (lenient). 
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This gene encodes a Leucine-rich pentatricopeptide repeat containing protein. Mutations in 
LRPPRC cause a monogenic mitochondrial disease (Leigh syndrome French Canadian Type) 
that involves severe muscle and movement problems38. In addition to the altered expression in 
skeletal muscle following resistance training we observed, LRPPRC is also up-regulated by 
exposure to environmental enrichment that is a complex combination of physical, cognitive, and 
social stimuli in striatum, which may improve locomotor performance39. 
 
SCN2A (chr 2, flagged by the SCN2A missense variant rs114590429) 
Prioritized by: DEPICT gene prioritization; running speed, distance and time run in mice (lenient)  
SCN2A encodes Sodium Voltage-Gated Channel Alpha Subunit 2, which mediates the voltage-
dependent sodium ion permeability of excitable membranes. Mutations in this gene have been 
associated with seizure disorders, autism spectrum disorder and general cognitive ability40. 
Scn2a haploinsufficient mice display a spectrum of phenotypes affecting anxiety, sociability, 
memory flexibility that commonly observed in models of schizophrenia and autism spectrum 
disorder41. 
 
RNF123 (chr 3, flagged by the intronic MST1R variant rs7615206) 
Prioritized by: SMR brain; DEPICT gene prioritization (lenient) for LST. Only prioritized by SMR 
brain (lenient) for MVPA 
The RNF123 gene encodes E3 ubiquitin-protein ligase, a motif present in a variety of 
functionally distinct proteins and known to be involved in protein-protein and protein-DNA 
interactions. It promotes the ubiquitination and proteasome-mediated degradation of CDKN1B, 
which is the cyclin-dependent kinase inhibitor at the G0-G1 transition of the cell cycle by the 
ubiquitin-proteasome pathway 42,43. It also functions as a novel inhibitor of innate antiviral 
signaling, independently of its E3 ligase activity44. This gene is more highly expressed in 
skeletal muscle than in other tissues. Recent studies involving UK Biobank samples also 
associated the locus with musculoskeletal pain45,46. 
 
SEMA3F (chr 3, flagged by the intronic MST1R variant rs7615206; group 2 LST locus) 
Prioritized by: SMR brain; Activity by contact in pancreas, adipose tissue, hepatocytes, bipolar 
neuron from iPSC. Not prioritized for MVPA 
Semaforin 3F – encoded by SEMA3F - is involved in axon guidance during neuronal 
development. This gene is expressed in endothelial cells where it induces apoptosis, inhibits cell 
proliferation and survival, and acts as an anti-tumorigenic agent. 
 
FOXP1 (chr 3, flagged by the intronic SAMMSON variant rs76267866) 
Prioritized by: DEPICT gene prioritization; Activity by contact in adipose tissue, adrenal gland, 
skeletal muscle, myotube, astrocyte 
Forkhead Box P1 acts as a tumor suppressor and is involved in regulation of cardiac muscle cell 
proliferation and columnar organization of spinal motor neurons. It also plays a role in B-cell 
development and promotes the formation of the lateral motor neuron column (LMC) and the 
preganglionic motor column (PGC) and is required for appropriate motor axon projections. 
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CADM2 (chr 3; flagged by the intronic CADM2 variants rs1691471 (MVPA) and rs1375561 
(LST) 
Prioritized by: DEPICT tissue enrichment; DEPICT gene prioritization (nominal); SMR skeletal 
muscle. Only prioritized by altered expression in skeletal muscle following resistance training 
(lenient) for LST. 
CADM2 (also known as SynCAM2, Igsf4d, and Nectin-like molecule 3) encodes the synaptic 
cell adhesion molecule 2. SNPs in the locus have been associated with a series of 
psychological traits, such as educational attainment47; self-reported physical activity31; risk-
taking behaviour48; alcohol consumption49; substance use and risk-taking50; and obesity51. In 
addition to lower adiposity, lower systemic glucose levels, and better insulin sensitivity, Cadm2-
knockout mice exhibited more locomotor activity, higher energy expenditure, and higher core 
body temperature, suggesting cadm2 is a potent regulator of systemic energy homeostasis52. 
While CADM2 is predominantly expressed in the brain, the top SMR SNP for MVPA in skeletal 
muscle (rs382210) is in LD with the lead MVPA GWAS SNP rs1691471 (r2=0.29, D’=0.95), it is 
independent of the previously identified BMI-associated SNP rs13078960 (r2=0.03, D’=0.48)51). 
This suggests that while CADM2 likely influences other complex traits through the brain, it 
possibly influences PA locally through skeletal muscle. 
 
HTR1F (chr 3, flagged by the intronic HTR1F variant rs17025214) 
Prioritized by: DEPICT gene prioritization; Activity by contact in thyroid 
5-Hydroxytryptamine receptor 1F is primarily located in the hippocampus, cortex and dorsal 
raphe nucleus and enables G protein-coupled serotonin receptor activity and serotonin binding 
activity. It also functions as a receptor for various alkaloids and psychoactive substances. 
 
APC (chr 5, flagged by the intronic APC variant rs396321) 
Prioritized by: DEPICT gene prioritization and tissue enrichment; Activity by contact in skeletal 
muscle 
APC regulator of Wnt signaling pathway acts as an antagonist of the Wnt signaling pathway. It 
is also involved in cell migration and adhesion, transcriptional activation and apoptosis. It is a 
tumor suppressor. 
 
REEP5 (chr 5, flagged by the intronic APC variant rs396321) 
Prioritized by: DEPICT gene prioritization; SMR skeletal muscle (lenient) 
Receptor Accessory Protein 5 (REEP5) expression is muscle-specific, with the highest protein 
expression in the mouse ventricles and skeletal muscle. In vitro and in vivo experiments have 
demonstrated that the protein encoded by REEP5 plays a critical role in sarco/endoplasmic 
reticulum organization and function, as well as in normal heart function and development53.  
 
SIL1 (chr 5, flagged by the intronic SIL1 indel rs752485316) 
Prioritized by: SMR brain; Activity by contact in adrenal gland, cardiac ventricle and ovary; 
altered expression in skeletal muscle following resistance training (lenient) 
SIL1 (SIL1 Nucleotide Exchange Factor) encodes a resident endoplasmic reticulum (ER), N-
linked glycoprotein with an N-terminal ER targeting sequence, 2 putative N-glycosylation sites, 
and a C-terminal ER retention signal. Mutations in this gene have been associated with 
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Marinesco-Sjogren syndrome, which is clinically characterized by progressive myopathy and 
other tissue pathologies. Experimental characterization in mice reveals a disruption in ER 
homeostasis upon SIL1 loss, leading to loss of skeletal muscle mass, strength and function54. 
 
SOBP (chr 6, flagged by the intronic PDSS2 variant rs78394231) 
Prioritized by: DEPICT gene prioritization (lenient); Activity by contact in adrenal gland, bipolar 
neuron from iPSC, skeletal muscle, cardiac ventricle, ovary, thryoid 
Sine oculis binding protein homolog is involved in development of the cochlea and has been 
linked to intellectual disability. 
 
REPS1 (chr 6, flagged by the intronic REPS1 deletion rs200307517) 
Prioritized by: SMR brain (lenient); altered expression in skeletal muscle following resistance 
training (lenient) 
REPS1 (RALBP1 Associated Eps Domain Containing 1) encodes a signaling adaptor protein 
with two EH domains that interacts with proteins that participate in signaling, endocytosis and 
cytoskeletal changes. 
 
PDE10A (chr 6; flagged by the intronic PDE10A SNP rs58541850) 
Prioritized by: altered expression in skeletal muscle following resistance training; DEPICT gene 
prioritization 
Phosphodiesterase 10A plays a role in signal transduction by regulating the intracellular 
concentration of cyclic nucleotides. The protein can hydrolyze cAMP and cGMP, and may play a 
critical role in regulating cAMP and cGMP levels in the striatum55, a region of the brain 
contributing to the control of movement and cognition. cAMP and cGMP both mediate the 
effects of dopamine D1 and D2 receptors on the activity of medium-sized spiny neurons56. 
Pharmacological inhibition of PDE10A increases cAMP and cGMP levels; and increases striatal 
output57. 
 
IMMP2L (chr 7; flagged by the intronic IMMPL2 SNP rs2529484) 
Prioritized by: altered expression in skeletal muscle following resistance training; SMR skeletal 
muscle (lenient); Activity by contact in coronary artery and liver; 
Inner Mitochondrial Membrane Peptidase Subunit 2 resides in the mitochondria and is required 
for the catalytic activity of the mitochondrial inner membrane peptidase (IMP) complex. It 
catalyzes the removal of transit peptides required to transport proteins from the mitochondrial 
matrix, across the inner membrane, to the intermembrane space58. 
 
EXOC4 (chr 7; flagged by the intronic lead SNP rs13235840 in EXOC4 and LOC101928861) 
Prioritized by: altered expression in skeletal muscle following resistance training; DEPICT gene 
prioritization;  
Exocyst Complex Component 4 is part of the highly conserved exocyst complex that is essential 
for targeting exocytic vesicles to specific docking sites on the plasma membrane. Exocyst 
Complex Component 4 participates in GLUT4 translocation and docking to the plasma 
membrane59, and is essential for insulin-stimulated glucose uptake in skeletal muscle59. 
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MKRN1 (chr 7; flagged by the intronic MKRN1 lead SNP rs17621391) 
Prioritized by: DEPICT gene prioritization (lenient); Activity by contact in pancreas, adrenal 
gland, bipolar neuron from iPSC, skeletal muscle, hepatocyte, ovary, thymus 
Makorin ring finger protein 1 is thought to regulate RNA polymerase II-catalyzed transcription. It 
keeps cells alive by suppressing p53/TP53 under normal conditions, but stimulates apoptosis by 
repressing CDKN1A under stress. 
 
BLK (chr 8, flagged by the intronic XKR6 variant rs7821826) 
Prioritized by: DEPICT tissue enrichment; SMR blood (lenient) 
BLK Proto-Oncogene, Src Family Tyrosine Kinase is a nonreceptor tyrosine-kinase of the Src 
family of proto-oncogenes that are typically involved in cell proliferation and differentiation. 
Mutations at the BLK locus have been linked to Maturity-onset diabetes of the young (MODY) 
and β-cell dysfunction60. In pancreatic islets, it acts as a modulator of beta-cells function through 
the up-regulation of PDX1 and NKX6-1 and consequent stimulation of insulin secretion in 
response to glucose 60. 
 
PACS1 (chr 11, flagged by the intronic PACS1 variant rs4483592) 
Prioritized by: SMR brain; DEPICT gene prioritization 
Phosphofurin Acidic Cluster Sorting Protein 1 is involved in the trans-Golgi-membrane traffic61. 
A de novo mutation in PACS1 was recently shown to cause defective migration of cranial-
neural-crest cells and resulted in an intellectual disability syndrome and global developmental 
delay62. 
 
KLC2 (chr 11, flagged by the intronic PACS1 variant rs4483592) 
Prioritized by: SMR blood and skeletal muscle; DEPICT gene prioritization and tissue 
enrichment; Activity by contact in derived neural progenitors, adipose tissue, cardiac ventricle, 
hepatocytes and fetal thymus 
KCL2 encodes Kinesin Light Chain 2, a light chain of kinesin and molecular motor responsible 
for moving vesicles and organelles along microtubules. Defects in this gene cause the rare, 
autosomal recessive mendelian disorder Spastic Paraplegia, Optic Atropy, and Neuropathy 
(SPOAN) Syndrome63. This syndrome is characterized by an early-onset, progressive weakness 
and spasticity of the legs. Zebrafish embryos with morpholino-mediated downregulation of klc2 
had a dose-dependent, shortened, twisted tail and were unable to swim. A similar motor 
phenotype was observed in zebrafish embryos upon upregulation of klc264. 
 
RAB1B (chr11, flagged by the intronic PACS1 variant rs4483592) 
Prioritized by: DEPICT gene prioritization (lenient); Activity by contact in skeletal muscle, 
mytube, thymus 
RAB1B member RAS oncogene Family functions in the early secretory pathway and is essential 
for vesicle transport between the endoplasmic reticulum and Golgi65. 
 
CNIH2 (chr11, flagged by the intronic PACS1 variant rs4483592) 
Prioritized by: DEPICT gene prioritization; Activity by contact in bipolar neuron from iPSC, 
thymus, hepatocyte 
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Cornichon family AMPA receptor auxiliary protein 2 mediates fast synaptic neurotransmission in 
the CNS and plays a role in assembly of hippocampal AMPA receptor complexes, thus 
modulating receptor gating and pharmacology.   
 
TMEM151A (chr11, flagged by the intronic PACS1 variant rs4483592) 
Prioritized by: DEPICT gene prioritization; Activity by contact in bipolar neuron from iPSC, 
pancreas, hepatocyte 
Transmembrane protein 151A is predicted to be an integral component of membranes. 
 
MLF2 (chr12, flagged by rs3759344 upstream of MLF2) 
Prioritized by: DEPICT gene prioritization (lenient); Activity by contact in derived neuronal 
progenitor cultured cells, pancreas, adipose tissue, adrenal gland, astrocyte, bipolar neuron 
from iPSC, cardiac muscle, coronary artery, skeletal muscle, cardiac ventricle, hepatocyte, 
myotube, ovary, thymus 
Myeloid leukemia factor 2 is a membrane protein that is predicted to be involved in the 
regulation of transcription. Diseases associated with this gene include fatal infantile hypertonic 
myofibrillar myopathy 
 
PTMS (chr12, flagged by rs3759344 upstream of MLF2) 
Prioritized by: DEPICT tissue enrichment; Activity by contact in adrenal gland, astrocyte, 
pancreas, adipose tissue, cardiac muscle, skeletal muscle, hepatocyte, liver, myotube, thyroid 
Parathymosin is predicted to be a nuclear protein that is involved in DNA replication and may 
mediate immune function. 
 
COPS7A (chr12, flagged by rs3759344 upstream of MLF2) 
Prioritized by: DEPICT gene prioritization (lenient); Activity by contact in cardiac muscle, liver 
COP9 signalosome subunit 7A is a component of the COP9 signalosome complex that plays a 
role in various cellular and developmental processes. 
 
MMAB (chr 12, flagged by the intronic MYO1H variant rs7969719) 
Prioritized by: DEPICT tissue prioritization; SMR skeletal muscle (lenient) 
MMAB (Metabolism Of Cobalamin Associated B) encodes a protein that catalyzes the final step 
in the conversion of vitamin B(12) into adenosylcobalamin (AdoCbl), a vitamin B12-containing 
coenzyme for methylmalonyl-CoA mutase. GWAS has reported variants in this gene to be 
associated with Apolipoprotein A1, HDL, and BMI, amongst others66-68. 
 
TESC (chr 12; flagged by the intronic TESC lead SNP rs2173650) 
Prioritized by: SMR brain; association with daily running distance and average voluntary running 
speed in mice 
Tescalcin, also known as Calcineurin B Homologous Protein 3 is highly expressed in the 
striatum69, which harbours the central reward system and which represents a major site of 
physical activity regulation70-72. TESC encodes a Ca2+- and Mg2+ -binding protein that is 
essential for extracellular signal-regulated kinase (ERK) cascade activation, which in turn is 
critical for normal cell differentiation73, as well as for the motivating effects of reward-associated 
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stimuli along with other important roles related to learning, reinforcing and addiction in the 
striatum74. 
 
FBXO21 (chr 12, flagged by the intronic TESC lead SNP rs2173650) 
Prioritized by: SMR brain (lenient); spontaneous running speed and distance in mice 
FBXO21 encodes F-Box Protein 21, a member of the F-box protein family, fbxs, 
 containing either different protein-protein interaction modules or no recognizable motifs. It is 
anticipated to play a role in the innate immune function. 
 
ARL6IP4 (chr 12, flagged by the intronic PITPNM2 indel rs541140319 (aka rs59131741)) 
Prioritized by: SMR blood; spontaneous running speed in mice (lenient) 
ADP Ribosylation Factor Like GTPase 6 Interacting Protein 4 is involved in modulating 
alternative pre-mRNA splicing with either 5' distal site activation or preferential use of 3' 
proximal site. 
 
OGFOD2 (chr 12, flagged by the intronic PITPNM2 indel rs541140319 (aka rs59131741)) 
Prioritized by: SMR brain and blood; spontaneous running speed in mice (lenient) 
Gene Ontology annotations related to OGFOD2 (2-Oxoglutarate And Iron Dependent 
Oxygenase Domain Containing 2) include iron ion binding and oxidoreductase activity, acting on 
paired donors, with incorporation or reduction of molecular oxygen, using 2-oxoglutarate as a 
donor, and incorporation of one atom each of oxygen into both donors. 
 
CCDC92 (chr12, flagged by the intronic PITPNM2 indel rs541140319 (aka rs59131741)) 
Prioritized by: SMR brain (lenient); SMR skeletal muscle (lenient); spontaneous running speed 
in mice (lenient) 
CCDC92 is a coiled coil domain protein which interacts with proteins in the centriole/ciliary 
interface75. The CCDC92 locus has been associated with higher insulin, higher triglyceride, and 
lower HDL-cholesterol levels. Further experimental studies showed that knockout of CCDC92 
resulted in less lipid accumulation in a mouse model. These results suggested a role for 
CCDC92 in adipocyte differentiation76. 
 
FARP1 (chr 13; flagged by the intronic FARP1 lead SNP rs9513416) 
Prioritized by: altered expression in skeletal muscle following resistance training; DEPICT gene 
prioritization 
FARP1 encodes FERM, ARH/RhoGEF And Pleckstrin Domain Protein 1, which promotes 
dendritic growth in neurons. 
 
HERC1 (chr 15, flagged by the intronic HERC1 variant rs12324720) 
Prioritized by: DEPICT gene prioritization; altered expression in skeletal muscle following 
resistance training (lenient) 
HECT And RLD Domain Containing E3 Ubiquitin Protein Ligase Family Member 1 encodes a 
protein that stimulates guanine nucleotide exchange on ARF1 and Rab proteins and may be 
involved in membrane transport processes via some guanine nucleotide exchange factor (GEF) 
activity and its ability to bind clathrin. HERC1 is involved in the ubiquitin-proteasome system, for 
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which the role in cachexia and sarcopenia is well-described77. An Intronic HERC1 variant was 
associated with heel bone mineral density in UK BioBank data78. 
 
CBX4 (chr 17, flagged by the CBX8 3’ UTR variant rs73420302) 
Prioritized by: DEPICT gene prioritization; Activity by contact in pancreas 
Chromobox 4 is involved in the negative regulation of transcription by RNA polymerase II. 
 
CELF4 (chr 18, flagged by the intronic SNP rs12962050) 
Prioritized by: DEPICT tissue enrichment and gene prioritization; Activity by contact in skeletal 
muscle, pancreas, adrenal gland, bipolar neuron from iPSC, coronary artery, hepatocyte 
CUGBP Elav-like family member 4 belongs to a protein family that regulates pre-mRNA 
alternative splicing. It specifically activates exon 5 inclusion of cardiac isoforms of troponin 2 
(TNNT2) during heart remodeling and the juvenile to adult transition79. 
 
YWHAB (chr 20, flagged by the intronic YWHAB indel rs139900206 (a.k.a. rs3838037)) 
Prioritized by: Finemapp & CADD score; Activity by contact in white adipose tissue; SMR brain 
(lenient); altered expression in skeletal muscle following resistance training (lenient) 
YWHAB (Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein Beta, 
also known as 14-3-3 protein) encodes an adapter protein that is implicated in the regulation of 
a large spectrum of both general and specialized signaling pathways and plays a role in the cell 
cycle80. Previous proteomic analyses showed expression of YWHAB is upregulated in rat dorsal 
hippocampus following consumption of a diet high in fat and refined sugar81, as well as in 
plasma after exercise82. 
 
STK4 (chr 20, flagged by the intronic YWHAB indel rs139900206 (a.k.a. rs3838037)) 
Prioritized by: SMR brain (lenient); Activity by contact in white adipose tissue 
Serine/Threonine kinase 4 is a cytoplasmic, stress-activated kinase that can phosphorylate 
myelin basic protein and undergoes autophosphorylation. Following caspase-cleavage it enters 
the nucleus and induces chromatin condensation, followed by internucleosomal DNA 
fragmentation. The phosphorylation that is catalyzed by this protein has been associated with 
apoptosis. 
 
ZBTB46 (chr 20, flagged by the intronic ZBTB46 variant rs6010651) 
Prioritized by: altered expression in skeletal muscle following resistance training; Activity by 
contact in bipolar neuron from iPSC; SMR blood (lenient) 
Gene Ontology (GO) annotations for ZBTB46 (Zinc Finger And BTB Domain Containing 46) 
include nucleic acid binding. ZBTB46 functions as a transcriptional repressor for PRDM1 that 
mediates a transcriptional program in various immune tissue-resident lymphocyte T cell types. 
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Heart & Stroke Foundation of Ontario as well as additional grants from the Population Health 
Research Institute internal funds.  

Fenland 
The Fenland Study (10.22025/2017.10.101.00001) is funded by the Medical Research Council 
(MC_UU_12015/1). We are grateful to all the volunteers and to the General Practitioners and 
practice staff for assistance with recruitment. We thank the Fenland Study Investigators, 
Fenland Study Co-ordination team and the Epidemiology Field, Data and Laboratory teams. We 
further acknowledge support for genomics from the Medical Research Council (MC_PC_13046). 

FHS 
The Framingham Heart Study is funded by 75N92019D00031 

FUSION 
Support for FUSION was provided by NIH grants R01-DK062370 (to M.B.) and intramural 
project number 1Z01-HG000024 (to F.S.C.). Genome-wide genotyping was conducted by the 
Johns Hopkins University Genetic Resources Core Facility SNP Center at the Center for 
Inherited Disease Research (CIDR), with support from CIDR NIH contract no. N01-HG-65403. 

GENOA 
Genetic Epidemiology Network of Arteriosclerosis (GENOA) was supported by the National 
Institutes of Health grant numbers HL054457, HL054464, HL054481, HL087660, and HL119443 
from the National Heart, Lung, and Blood Institute. Genotyping was performed at the Mayo 
Clinic by Stephan T. Turner, MD, Mariza de Andrade PhD, Julie Cunningham, PhD. We thank 
Eric Boerwinkle, PhD and Megan L. Grove from the Human Genetics Center and Institute of 
Molecular Medicine and Division of Epidemiology, University of Texas Health Science Center, 
Houston, Texas, USA for their help with genotyping. We would also like to thank the families 
that participated in the GENOA study. 

GEOS/BWYSS 
GEOS/BWYSS was supported by the Department of Veterans Affairs Biomedical Laboratory 
Research and Development Service, the Centers for Disease Control and Prevention, and the 
National Institutes of Health (Grants: R01 NS45012 and R01 NS105150). 



36 

GOOD 
The GOOD study was funded by the Swedish Research Council, the Swedish state under the 
agreement between the Swedish government and the county councils, the ALF-agreement, the 
Lundberg Foundation, the Torsten Söderberg Foundation, the Novo Nordisk Foundation and the 
Knut and Alice Wallenberg Foundation. 

GOYA  
The GOYA study was conducted as part of the activities of the Danish Obesity Research 
Center(DanORC,www.danorc.dk) and the MRC centerfor Causal Analyses in Translational 
Epidemiology (MRC CAiTE). 

GRAPHIC 
The GRAPHIC Study was funded by the British Heart Foundation (RG/200004). 

HANDLS 
The Healthy Aging in Neighborhoods of Diversity across the Life Span study is supported by the 
National Institute on Aging Intramural Research Program, NIH Project number AG000513.  We 
thank the HANDLS participants for agreeing to donate samples for the study.  We also 
recognize the HANDLS medical staff for their careful evaluation of study participants. 

HCHS/SOL 
The authors thank the staff and participants of HCHS/SOL for their important contributions. 
Investigators website - http://www.cscc.unc.edu/hchs/ The Hispanic Community Health 
Study/Study of Latinos is a collaborative study supported by contracts from the National Heart, 
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(Z01HG200362). 

Inchianti / BLSA 
The InCHIANTI study baseline (1998-2000) was supported as a "targeted project" 
(ICS110.1/RF97.71) by the Italian Ministry of Health and in part by the U.S. National Institute on 
Aging (Contracts: 263 MD 9164 and 263 MD 821336). 
The study protocol for both studies were reviewed and approved by the Internal Review Board 
of the National Institute for Environmental Health Sciences (NIEHS) and all participants 
provided written informed consent. 
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Grant no. 50621, 54231. 

NHS (Nurse Health Study)  
The HPFS and NHS are funded by the National Institute of Deafness and Other Communication 
Disorders (R03 DC013373 to M.C.C). The NHS (UM1 CA186107) and HPFS (U01 CA167552) 
are additionally supported by the National Cancer Institute. We thank all participants of the NHS 
and HPFS for their continued contributions to research. 
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nurses in Orkney, the administrative team in Edinburgh and the people of Orkney. 
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Excellence (PRONEX), the Brazilian National Research Council (CNPq), and the Brazilian 
Ministry of Health supported previous phases of the study. 
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of Science and Technology (DECIT, Ministry of Health) and National Fund for Scientific and 
Technological Development (FNDCT, Ministry of Science and Technology), Funding of Studies 
and Projects (FINEP, Ministry of Science and Technology, Brazil), Coordination of Improvement 
of Higher Education Personnel (CAPES, Ministry of Education, Brazil). 
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Council of Canada and the Canadian Institutes for Health Research. This work was supported 
by a team grant from the Canadian Institutes for Health Research (FRCN-CCT-83028) 

QIMR 
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from the Aged Study were drawn from the Australian National Health and Medical Research 
Council (NHMRC) Twin Registry. This work was partly supported by a donation from Mr George 
Landers, and benefited from funding from NHMRC to Ian B. Hickie (931215-Project Grant, and 
953208-Program Grant) and Nicholas G. Martin (941177). We thank Fran Boyle and Len 
Roberts for their work in constructing the questionnaire, Olivia Zheng for administering the mail-
out, John Pearson for data management and Nirmala Pandeya for data cleaning. The AL1 study 
was carried out in co-operation with the Australian Twin Registry, and was supported in part by 
grants from NIAA (USA) AA07535, AA013320, AA013326, and NHMRC 941177, 951023, 
950998, 981339, 241916 and 941944. We are extremely grateful to all the twins who took part 
in these studies. 
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SHIP is part of the Community Medicine Research net of the University of Greifswald, Germany, 
which is funded by the Federal Ministry of Education and Research (grants no. 01ZZ9603, 
01ZZ0103, and 01ZZ0403), the Ministry of Cultural Affairs as well as the Social Ministry of the 
Federal State of Mecklenburg-West Pomerania, and the network ‘Greifswald Approach to 
Individualized Medicine (GANI_MED)’ funded by the Federal Ministry of Education and 
Research (grant 03IS2061A). Genome-wide data have been supported by the Federal Ministry 
of Education and Research (grant no. 03ZIK012) and a joint grant from Siemens Healthineers, 
Erlangen, Germany and the Federal State of Mecklenburg- West Pomerania. The University of 
Greifswald is a member of the Caché Campus program of the InterSystems GmbH. 

Singapore Chinese Health Study (SCHS) 
The Singapore Chinese Health Study is supported by the National Institutes of Health, USA 
(RO1 CA144034 and UM1 CA182876), the nested case-control study of myocardial infarction 
by the Singapore National Medical Research Council (NMRC 1270/2010) and genotyping by the 
HUJ-CREATE Programme of the National Research Foundation, Singapore (Project Number 
370062002). 

SP2 
The Singapore Prospective Study Program (SP2) was funded through grants from the 
Biomedical Research Council of Singapore (BMRC) and the National Medical Research Council 
of Singapore (NMRC). Genome Institute of Singapore provided services for genotyping. 

STR / Twingene 
The Swedish Twin Registry is managed by Karolinska Institutet and receives funding through 
the Swedish Research Council under the grant no 2017-00641. 

TRAILS 
TRAILS (TRacking Adolescents’ Individual Lives Survey) is a collaborative project involving 
various departments of the University Medical Center and University of Groningen, the 
University of Utrecht, the Radboud Medical Center Nijmegen, and the Parnassia Group, all in 
the Netherlands. TRAILS has been financially supported by various grants from the Netherlands 
Organization for Scientific Research NWO (Medical Research Council program grant GB-MW 
940-38-011; ZonMW Brainpower grant 100-001-004; ZonMw Risk Behavior and Dependence 
grants 60-60600-97-118; ZonMw Culture and Health grant 261-98-710; Social Sciences Council 
medium-sized investment grants GB-MaGW 480-01-006 and GB-MaGW 480-07-001; Social 
Sciences Council project grants GB-MaGW 452-04-314 and GB-MaGW 452-06-004; NWO 
large-sized investment grant 175.010.2003.005; NWO Longitudinal Survey and Panel Funding 
481-08-013 and 481-11-001; NWO Vici 016.130.002 and 453-16-007/2735; NWO Gravitation 
024.001.003), the Dutch Ministry of Justice (WODC), the European Science Foundation 
(EuroSTRESS project FP-006), the European Research Council (ERC-2017-STG-757364 en 
ERC-CoG-2015-681466), Biobanking and Biomolecular Resources Research Infrastructure 
BBMRI-NL (CP 32), the Gratama foundation, the Jan Dekker foundation, the participating 
universities, and Accare Centre for Child and Adolescent Psychiatry. Statistical analyses were 
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supported by the Netherlands Scientific Organization (NWO 480-05-003) along with a 
supplement from the Dutch Brain Foundation. We are grateful to everyone who participated in 
this research or worked on this project to make it possible. 
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TwinsUK is funded by the Wellcome Trust, Medical Research Council, European Union, the 
National Institute for Health Research (NIHR)-funded BioResource, Clinical Research Facility 
and Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust in 
partnership with King’s College London. 
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Institute for Antroplogical Research in Zagreb and the Croatian Institute for Public Health. We 
would like to acknowledge the invaluable contributions of the recruitment team in Korcula, the 
administrative teams in Croatia and Edinburgh and the participants. The SNP genotyping was 
performed in the core genotyping laboratory of the Wellcome Trust Clinical Research Facility at 
the Western General Hospital, Edinburgh, Scotland. The study was funded by the Medical 
Research Council UK, the European Union framework program 6 EUROSPAN project (contract 
no. LSHG-CT-2006-018947), the Croatian National Centre of Research Excellence in 
Personalized Healthcare grant (number KK.01.1.1.01.0010), and the Centre of Competence in 
Molecular Diagnostics (KK.01.2.2.03.0006). 

WGHS 
The WGHS is funded by grants from the NHLBI (HL043851 and HL080467) and NCI 
(CA047988 and UM1CA182913), with funding for genotyping provided by Amgen. 

WHI 
WHI: The WHI program is funded by the National Heart, Lung, and Blood Institute, National 
Institutes of Health, U.S. Department of Health and Human Services through contracts 
75N92021D00001, 75N92021D00002, 75N92021D00003, 75N92021D00004, 
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41071 (Skidi); the Social Insurance Institution of Finland; Competitive State Research Financing 
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