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Genetic loci and prioritization of genes for kidney function decline derived 
from a meta-analysis of 62 longitudinal genome-wide association 
studies.  

Gorski et al., 2022

Visual Abstract by Iris M. Heid and Mathias Gorski

CONCLUSION: We provide a large-data resource, genetic loci and prioritized
genes for kidney function decline, which help inform drug development for
disease progression. Results reveal important insights into the age-dependency
of kidney function genetics.
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[QUERY TO AUTHOR: title and abstract rewritten by Editorial Office – not subject to change] 
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ABSTRACT 

Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-
decline can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci 
from genome-wide association studies (GWAS) for eGFR help explain population cross 
section variability. Since the contribution of these or other loci to eGFR-decline remains 
largely unknown, we derived GWAS for annual eGFR-decline and meta-analyzed 62 
longitudinal studies with eGFR assessed twice over time in all 343,339 individuals and in 
high-risk groups. We also explored different covariate adjustment. Twelve genome-wide 
significant independent variants for eGFR-decline unadjusted or adjusted for eGFR-baseline 
(11 novel, one known for this phenotype), including nine variants robustly associated across 
models were identified. All loci for eGFR-decline were known for cross-sectional eGFR and 
thus distinguished a subgroup of eGFR loci. Seven of the nine variants showed variant-by-
age interaction on eGFR cross section (further about 350,000 individuals), which linked 
genetic associations for eGFR-decline with age-dependency of genetic cross-section 
associations. Clinically important were two to four-fold greater genetic effects on eGFR-
decline in high-risk subgroups. Five variants associated also with chronic kidney disease 
progression mapped to genes with functional in-silico evidence (UMOD, SPATA7, GALNTL5, 
TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk 
odds ratios of 1.35 for kidney failure (95% confidence intervals 1.03-1.77) and 1.27 for acute 
kidney injury (95% confidence intervals 1.08-1.50) in over 2000 cases each, with matched 
controls). Thus, we provide a large data resource, genetic loci, and prioritized genes for 
kidney function decline, which help inform drug development pipelines revealing important 
insights into the age-dependency of kidney function genetics. 
 
KEYWORDS: acute kidney injury, diabetes, chronic kidney disease, gene expression 
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INTRODUCTION 

Glomerular filtration rate (GFR) is accepted as best overall index of kidney function1. A 

GFR<60 mL/min/1.73m2 defines chronic kidney disease (CKD)2, which affects about 10% of 

adults3. A decline in GFR over time is characteristic for CKD-progression, which can lead to 

kidney failure4 requiring dialysis or kidney transplantation with a high risk of premature 

mortality5. In population studies on kidney function, estimated GFR (eGFR) is usually derived 

from serum creatinine6 and annual eGFR-decline as the difference between two such 

assessments divided by the years between these assessments. Decline in eGFR is age-

related, with a physiological loss of ~1 mL/min/1.73m2 per year2 generally and 3 

mL/min/1.73m2 per year in the presence of diabetes mellitus (DM), a major risk factor for CKD-

progression7,8. Therapeutic options to decelerate kidney function decline are limited. In addition 

to pharmacological inhibitors of the RAAS-system9, the recent introduction SGLT2 inhibitors 

show promising reno-protective effects10,11. An understanding of the mechanisms of kidney 

function decline and the developing of new therapeutic options is thus of high clinical and public 

health relevance7,12.  

Genes underneath genome-wide association study (GWAS) loci for diseases and 

biomarkers help identify new therapies13. Open access GWAS summary statistics from large 

sample sizes are a highly queried resource, also for causal inference studies14. Hundreds of 

loci and genes are identified by cross-sectional GWAS for eGFR, i.e. GWAS for eGFR based 

on a single serum creatinine measurement15–18, which help explain population variability. 

However, the mechanisms underlying a genetic variant association with lower but stable eGFR 

over time might not always be disease-relevant. GWAS on parameters more directly linked to 

disease progression are thought to better inform drug development19. 

Current evidence from GWAS on annual eGFR-decline is limited, owed to substantial 

logistics in conducting longitudinal studies and thus small sample sizes. Only one variant, in 

the UMOD-PDILT locus, has been identified at genome-wide significance20 (n~60,000). With 

an estimated heritability of 38% for annual eGFR-decline20, comparable to 33%-39% estimated 

for cross-sectional eGFR in general populations21,22, much more can be expected in larger 

sample sizes. Further three loci were genome-wide significant in an extreme phenotype 

approach, comparing individuals with large eGFR-decline or steep drop into CKD with 

respective controls23. While these are important binary clinical endpoints, methodological 

literature supports the use of regression methods on undichotomized variables24.  

The limited availability of longitudinal GWAS is not only an issue for kidney function 

decline, but also generally: e.g. change in lung function (n=27,24925), glucose (n=13,80726), or 

blood pressure (n=33,72027); consequently, locus findings on biomarker change are few and 

often unstable14. A challenge beyond power is limited experience in longitudinal GWAS with 

regard to covariate adjustment: clinical trials for disease-related biomarker change require 
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control for differences in baseline levels between therapy groups28. However, covariate 

adjustment in GWAS requires a careful choice29: it can reveal important mediator effects (e.g. 

DM adjusted for BMI30), alter the phenotype (e.g. waist-to-hip ratio “unexpected” by body-

mass-index29,31), yield artefacts from heritable covariates (collider bias29) or non-sense 

association (e.g. sex adjusted for height32). The impact of covariate adjustment on longitudinal 

GWAS on eGFR-decline, and biomarker change generally, is not well explored.  

We thus aimed to identify genetic loci associated with annual eGFR-decline and CKD-

progression (defined as eGFR-decline among individuals with CKD at baseline) and to 

prioritize genes that may inform drug development for slowing down eGFR-decline and CKD-

progression. We also aimed to fill the gap of large-data genome-wide SNP summary statistics 

for annual eGFR-decline and CKD-progression, to help future meta-analyses and Mendelian 

randomization studies. Finally, we wanted to understand the impact of different covariate 

adjustment and whether a SNP associated with eGFR-decline showed an age-dependent 

association on eGFR cross-sectionally (i.e. SNP-by-age interaction on eGFR cross-

sectionally). By this, we aimed to contribute to a better understanding of the interpretation of 

genetic findings for eGFR-decline and other progression traits.  

To achieve these aims, we (i) increased sample size for GWAS on annual eGFR-

decline to >340,000 individuals based on the CKDGen consortium33 and UK Biobank34, (ii) 

applied a suite of covariate adjustment models, (iii) analyzed SNP-by-age interaction on eGFR 

cross-sectionally in >350,000 individuals independent of the GWAS on decline, and (v) 

conducted genetic risk score (GRS) analyses for acute kidney injury (AKI) and end-stage-

kidney disease (ESKD).  

 

METHODS 

We conducted GWAS meta-analysis based on study-specific summary statistics. Each study 

utilized data on two measurements of serum creatinine over time and genome-wide SNP-

information imputed to 1000 Genomes35 phase 1 or phase 3, the Haplotype Reference 

Consortium36 v1.1 or similar (Table S1&S2). Serum creatinine measured at baseline and 

follow-up were used to estimate eGFR at baseline and follow-up, respectively, according to 

the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation6. Annual eGFR-

decline was defined as “-(eGFR at follow-up - eGFR at baseline) / number of years of follow-

up”. GWAS analyses were conducted separately by ancestry (if applicable), where ancestry 

was defined by genetic principal components or participants’ self-report. GWAS were based 

on linear regression with different covariate adjustment conducted overall and focused on 

individuals with DM or CKD at baseline.  

Study-specific genome-wide summary statistics and detailed phenotype information 

were transferred to the meta-analysis center. For each SNP, summary statistics were pooled 
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and genomic control corrected. Significant genetic variants were identified and respective 

locus regions selected.  

Additionally, we investigated identified SNPs for SNP-by-age interaction on cross-

sectional eGFR (based on creatinine or cystatin C, eGFRcrea, eGFRcys) using UK Biobank 

data that was independent of the SNP identification step (excluding the individuals in the 

decline GWAS). We computed the GRS and its association on eGFR-decline in the HUNT 

study via linear regression and provided odds ratios (OR) for GRS association in case-control 

studies on AKI and ESKD via logistic regression.  

Detailed methods are provided in the Supplementary Methods.  

   

RESULTS 

Overview across studies and models for GWAS 

This GWAS meta-analysis included 343,339 individuals from 62 studies (Supplementary 

Table S1&S3, Supplementary Figure S1, Methods) and 12,403,901 analyzable SNPs. Most 

studies were population-based (76%) and of European ancestry (74%). Study-specific median 

annual eGFR-decline was independent of sample size and follow-up length (Supplementary 

Figure S2A&S2B) and the median across studies was 1.32 mL/min/1.73m² per year; follow-

up length was 1-21 years (median [25th, 75th] = 5 years [4,7]); median age ranged from 33 to 

77 years (Supplementary Figure S2C).  

All analyses were adjusted for age-, sex, and study-specific covariates, which is not 

mentioned further from here on (stable across different modes of age-adjustment, 

Supplementary Figure S3). We had five GWAS results for eGFR-decline (Methods): (i) 

“unadjusted”, (ii) “DM-adjusted”, (iii) “adjusted for eGFR-baseline”, (iv) restricted to individuals 

with DM at baseline (unadjusted), and (v) restricted to individuals with CKD at baseline 

(unadjusted).  

 

Similarities and differences across different model adjustments 

There is, to date, no standard conduct for GWAS on eGFR-decline with regard to covariate 

adjustment. We explored the impact of two potentially important covariates additional to age 

and sex: (i) DM, as an important risk factors for eGFR-decline and potential mediator, and (ii) 

eGFR at baseline, as adjustment for baseline levels in analyses of change over time has noted 

pros (larger effects, better detectability) and cons (biased effects)37,38.  

With regard to DM-adjustment, this model was computed in all studies (n=343,339; 62 

studies) and compared to unadjusted results for a subset of studies of varying scope 

(n=103,970). DM-adjusted SNP-associations on eGFR-decline were precisely the same as 

unadjusted, in terms of beta-estimates and standard errors (Supplementary Figure S4A, 

Supplementary Note S1). We therefore did not distinguish these two models further.  
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In contrast, adjustment for eGFR-baseline altered SNP-associations on eGFR-decline 

(Supplementary Figure S4B). Therefore, results from both eGFR-decline unadjusted and 

adjusted for eGFR-baseline were evaluated in the following. GWAS summary statistics for 

eGFR-decline adjusted for eGFR-baseline were formula-derived from GWAS summary 

statistics for unadjusted eGFR-decline and for eGFR-baseline together with study-specific 

phenotypic information (Supplementary Note S2). In a subset of studies (n=103,970), we 

validated that the formula-approach worked very well in our setting (Supplementary Note S3, 

Supplementary Figure S4C&D). Meta-analysis yielded GWAS results for eGFR-decline 

adjusted for eGFR-baseline for 320,737 individuals (50 studies, Supplementary Figure S1).  

 

Twelve variants identified for eGFR-decline unadjusted or adjusted for eGFR-baseline 

First, our genome-wide screen for eGFR-decline unadjusted for eGFR-baseline (n=343,339) 

identified two genome-wide significant independent variants near UMOD-PDILT 

(𝑃𝐷𝐸𝐶𝐿𝐼𝑁𝐸<5x10-8; Figure 1A, Table 1A): rs34882080, highly correlated with rs12917707 

identified previously for this phenotype (r²=1.00)20, and rs77924615, known for altering UMOD 

expression and urine uromodulin15 and genome-wide significant for eGFR-decline for the first 

time.  

Second, we evaluated the 263 additional lead variants known for cross-sectional eGFR 

GWAS15 for association with baseline-unadjusted eGFR-decline (candidate approach); we had 

a prior hypothesis that cross-sectionally known variants might also show association with 

eGFR-decline. We identified two additional variants for eGFR-decline near PRKAG2 and 

SPATA7, both new loci for this phenotype, at Bonferroni-corrected significance 

(𝑃𝐷𝐸𝐶𝐿𝐼𝑁𝐸<0.05/263=1.90x10-4; Table 1A).  

Third, our genome-wide screen for eGFR-decline adjusted for eGFR-baseline 

(n=320,737) identified 12 independent variants across 11 loci (𝑃𝐷𝐸𝐶𝐿𝐼𝑁𝐸_𝑎𝑑𝑗_𝐵𝐿<5x10-8, 

Figure 1B), including the four variants already identified by the baseline-unadjusted analyses 

(directly or via high correlation, r²≥0.9). The 8 variants additionally identified pointed to novel 

loci for this phenotype. Of these, 5 variants also showed directionally consistent, significant 

association for eGFR-decline unadjusted for eGFR-baseline (Bonferroni-corrected, 

𝑃𝐷𝐸𝐶𝐿𝐼𝑁𝐸<0.05/12=4.17x10-3; near FGF5, OVOL1, TPPP, C15ORF54, and ACVR2B; 

Table 1B), but 3 variants did not (𝑃𝐷𝐸𝐶𝐿𝐼𝑁𝐸 from 0.156 to 0.710; near GATM, CPS1, 

SHROOM3, Table 1C).  

Overall, we found 12 variants across 11 loci with genome-wide significant association 

for eGFR-decline unadjusted and/or adjusted for eGFR-baseline (𝑃𝐷𝐸𝐶𝐿𝐼𝑁𝐸 or 

𝑃𝐷𝐸𝐶𝐿𝐼𝑁𝐸_𝑎𝑑𝑗_𝐵𝐿<5x10-8). All but one variant/locus were novel for this phenotype. All resided in 

loci known for eGFR cross-sectional GWAS22, but none was associated with DM-status 

(Supplementary Table S4).  
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The 12 variants’ associations showed no between-ancestry heterogeneity, stable 

statistics in various sensitivity analyses, and no impact by DM-adjustment (Supplementary 

Table S5&S6). Meta-analysis restricted to African American (n=9,038) did not identify 

associations for published APOL1 risk variants39, but two other suggestive variants 

(Supplementary Table S7).  

The 12 variants included 9 variants with non-zero effects on eGFR-decline unadjusted 

for eGFR-baseline (i.e. Bonferroni-corrected significant, i.e. 𝑃𝐷𝐸𝐶𝐿𝐼𝑁𝐸<4.17x10-3).  

 

SNP-effects for eGFR-decline were larger when baseline-adjusted than baseline-

unadjusted  

Several interesting aspects emerged when comparing genetic effect sizes of the 12 identified 

variants across models. First, we observed consistently larger effects for eGFR-decline 

baseline-adjusted than baseline-unadjusted (Figure 2A), also when restricting to studies 

where the baseline-adjusted model was directly computed (inserted small panel, Figure 2A). 

This, together with the smaller standard errors (Supplementary Figure S4B), explained the 

larger yield of genome-wide significant loci in the baseline-adjusted GWAS.  

Second, we contrasted effect sizes for eGFR-decline unadjusted for eGFR-baseline with those 

for cross-sectional eGFR15 (Figure 2B). Three variants showed relatively extreme cross-

sectional effects and no effect on decline (near GATM, SHROOM3, CPS1). For the other 9 

variants, the faster-decline allele was always the cross-sectional eGFR-lowering allele 

(Spearman correlation coefficient=-0.32). A similar more schematic presentation (Figure 2C) 

illustrates the mathematical relationship between baseline-adjusted and baseline-unadjusted 

effect sizes (Supplementary Note S4). This yields a corollary on the directionality of baseline-

adjusted effect sizes: when the faster-decline allele (i.e. 𝛽̂𝐷𝐸𝐶𝐿𝐼𝑁𝐸 > 0) coincides with the 

baseline eGFR-lowering allele (i.e. 𝛽̂𝐵𝐿 < 0), then the baseline-adjusted eGFR-decline effect 

size is larger than baseline-unadjusted (i.e. 𝛽̂𝐷𝐸𝐶𝐿𝐼𝑁𝐸_𝑎𝑑𝑗_𝐵𝐿 > 𝛽̂𝐷𝐸𝐶𝐿𝐼𝑁𝐸) – in theory. Our data 

confirmed this empirically (Figure 2A). The larger genetic effect sizes for eGFR-decline 

adjusted for eGFR-baseline are thus a direct consequence of the phenotypic and genetic 

correlation between eGFR-decline and eGFR-baseline. The genetic effect for eGFR-decline 

unadjusted for eGFR-baseline provides the relevant effect size for further use and to 

distinguish between a “genuine association with eGFR-decline” (9 variants) and a pure “collider 

bias” effect (3 variants).  

 

Four genes with compelling biological in-silico evidence mapped to novel eGFR-

decline loci 

All 11 identified loci for eGFR-decline coincided with loci detected for cross-sectional eGFR: 

among the 12 identified variants, 11 variants were genome-wide significant for cross-sectional 
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eGFR15 and the variant near TPPP showed P=7.63x10-6 cross-sectionally with genome-wide 

significant variants nearby (Supplementary Figure S5A-C, Supplementary Note S5). 

The 8 loci with genuine association for eGFR-decline included the well-known UMOD-

PDILT locus. Biological evidence at the other seven loci was summarized using the Gene 

PrioritiSation tool18 generated from GWAS data on cross-sectional eGFR including evidence 

for SNP-modulated gene expression (eQTL, false-discovery-rate < 0.05): four lead variants or 

highly correlated proxies were eQTLs in tubule-interstitial kidney tissue with upregulating 

effects for SPATA7 and GALNTL5 (in PRKAG2 locus, kidney-tissue specific), a 

downregulating effect for FGF5 (kidney-tissue specific), and an upregulating effect for TPPP 

using NEPTUNE40. This supported these four genes in novel loci for eGFR-decline as kidney-

tissue relevant and potentially causal genes for the association signals. 

 

SNPs for eGFR-decline showed SNP-by-age interaction on cross-sectional eGFR  

In the absence of birth cohort effects, we hypothesized that a SNP associated with eGFR-

decline might also show an age-dependent association on cross-sectional eGFR, which is 

SNP-by-age interaction on cross-sectional eGFR. Of note, the age-effect on eGFR should 

reflect the age-effect on filtration rate, not on creatinine metabolism, within limits of uncertainty 

of the CKD-EPI formula6. To empirically assess this hypothesis, we tested the identified 12 

SNPs for SNP-by-age interaction on cross-sectional eGFRcrea or eGFRcys in UK Biobank 

data, which was independent from and similarly-sized as the decline GWAS (n=351,462 or 

351,601 for eGFRcrea or eGFRcys, respectively; Methods). For 8 of the 12 SNPs, we found 

SNP-by-age interaction for eGFRcrea and/or eGFRcys at Bonferroni-corrected significance 

(𝑃𝑆𝑁𝑃𝑥𝑎𝑔𝑒<0.05/12=4.17x10-3, Table 2). Interaction effect sizes were similar between 

eGFRcrea and eGFRcys (Figure 3A), except for the SNP near GATM.  

The age-dependency of all SNP-effects and main age-effects were approximately 

linear (Supplementary Figure S6, Supplementary Note S6). The SNP-by-age interaction 

effect size can also be interpreted as the genetically modified age-effect on eGFR. This effect 

was large: e.g., 5 unfavorable alleles decreased eGFRcys by -0.136 mL/min/1.73m2 per year, 

which was ~10% of the overall age-effect on eGFRcys (-1.024 mL/min/1.73m2per year, 

Supplementary Note S6). SNP-by-age interaction effects on eGFRcys were highly correlated 

with SNP-effects on eGFR-decline (both in units of mL/min/1.73m2 per allele and year: “per 

year of age-difference between individuals” and “per year of person’s aging”, respectively; 

Figure 3B).  

 There was a noteworthy pattern with regard to presence and direction of SNP-by-age 

interaction: (i) among the 9 variants with genuine association for eGFR-decline, 7 variants 

showed significant SNP-by-age interaction on cross-sectional eGFRcys (Table 2A&B). All 

interaction effects were negative, i.e. the cross-sectional SNP-effect became larger (in 
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absolute value) with older age. (ii) Among the three SNPs without genuine association for 

eGFR-decline, two showed no SNP-by-age interaction; the third (near GATM) showed SNP-

by-age interaction, but only for eGFRcrea and with positive direction (𝛽̂𝑆𝑁𝑃𝑥𝑎𝑔𝑒=+0.138, 

𝑃𝑆𝑁𝑃𝑥𝑎𝑔𝑒=9.71x10-5). Thus, the GATM SNP-effect on cross-sectional eGFRcrea gets smaller 

(in absolute value) by higher age. This might be explained by GATM being the rate-limiting 

enzyme in creatine synthesis in muscle, age-related loss of muscle mass, and thus decreased 

creatinine production with increasing age - in line with the lack of interaction with eGFRcys, 

which is unrelated to muscle mass.  

 

A concept of three classes of SNPs for cross-sectional eGFR distinguished by their 

eGFR-decline association 

Our results suggested that SNPs for eGFR-decline were found among SNPs associated with 

eGFR cross-sectionally. This motivated the idea of, in theory, three classes of SNP-

associations on cross-sectional eGFR (intercept) distinguished their eGFR-decline association 

unadjusted for eGFR-baseline (slope; Figure 4): no association with slope (class I), 

association of the eGFR-baseline lowering allele with flatter slope (class II), or association of 

the eGFR-baseline lowering allele with steeper slope (class III).  

In our data, we found (i) three of the 12 SNPs as class I, in line with the lack of SNP-

by-age interaction on eGFR cross-sectionally (judged for eGFRcys). (ii) No variant was class 

II, consistent with the lack of positive SNP-by-age interaction on eGFRcys. (iii) The 9 variants 

with genuine eGFR-decline association were class III, and 7 of these showed negative SNP-

by-age interaction on eGFR. Thus, our data supported two classes of genetic effects on eGFR: 

no association with slope or steeper slope for the eGFR-lowering allele.  

 

Larger SNP-effects for eGFR-decline were observed in high-risk subgroups 

Individuals with DM and/or CKD (defined as eGFR<60 mL/min/1.73m²) are at higher risk for 

CKD-progression and kidney failure, prompting us to quantify SNP-effects on eGFR-decline in 

these high-risk subgroups (meta-analysis for eGFR-decline unadjusted for eGFR-baseline 

restricted to DM or CKD at baseline, n= 37,375 or 26,653 respectively, Methods). For the 9 

variants with genuine eGFR-decline association, we found almost all effects to be two- to four-

fold larger in DM or in CKD compared to the overall analysis (Table 3, average effect size 

[mL/min/1.73m2/year and allele]: 0.061 in DM, 0.079 in CKD, compared to 0.030 overall).  

To get an idea of the magnitude, we scaled the effects to “per 5 unfavorable average 

alleles” resulting in a decline of 0.305 in DM, 0.395 in CKD, compared to 0.150 

mL/min/1.73m2/year overall. This compared well to the 9-variant weighted GRS effect on 

eGFR-decline per 5 unfavorable average alleles in the HUNT study (n=2,235 with DM, n=502 

with CKD, n=46,328 overall; Methods): 0.219 in DM, 0.262 in CKD, and 0.102 
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mL/min/1.73m2/year overall (one-sided P=1.57x10-5, P=0.0193, and P=1.06x10-34, 

respectively). 

The genetic effect sizes were also larger in the two subgroups when viewed relative to 

the phenotype variance (on the example of HUNT, Methods): rs77924615 variant (UMOD-

PDILT locus) explained 0.38% of the eGFR-decline variance in DM, 0.47% in CKD, and 0.22% 

overall; the 9-variants jointly explained 1.14%, 1.48%, and 0.51%, respectively. Of note, the 

explained variance of eGFR-decline overall was comparable to the explained variance of 

cross-sectional eGFR (rs77924615: 0.21%; 9 variants: 0.62%), but narrow-sense heritability 

was smaller (Supplementary Note S7). 

 

GALNTL5, SPATA7, and TPPP were identified as candidates for CKD-progression 

Variants associated with CKD-progression and mapped genes might help identify drug targets 

against disease progression19. We queried the 9 SNPs with genuine association for eGFR-

decline for significant association with CKD-progression, i.e. whether they still showed 

significant association with eGFR-decline when focusing on individuals with CKD at baseline 

(judged at P<0.05/9=5.56x10-3, n up to 26,547). We found five such SNPs: (i) two in the UMOD-

PDILT locus, which confirmed UMOD for a role in CKD-progression, (ii) three SNPs in novel 

loci for eGFR-decline, which mapped to three genes with eQTL in kidney tissue (GALNTL5 in 

PRKAG2 locus, kidney-tissue specific; SPATA7, and TPPP), making these compelling 

candidates as CKD-progression genes. 

 

Unfavorable GRS increased the risk for ESKD and AKI 

Finally, we wanted to understand the cumulative impact of the 9 genuine eGFR-decline 

variants for severe clinical endpoints. We thus evaluated the 9-variant weighted GRS in cases-

control studies for ESKD and AKI via logistic regression (ncases=2,068 and 3,878, ncontrols=4,640 

and 11,634, respectively; Methods). The GRS effect per 5 unfavorable average alleles 

showed a significant OR=1.12 for ESKD (95%CI=0.99-1.23; one-sided P=0.033) and OR=1.18 

for AKI (95% CI=1.09-1.27; one-sided P<0.0001 Table 4). When comparing the individuals 

with GRS ≥90th versus ≤10th percentile (i.e. ≥14.6 unfavorable alleles versus ≤8.3 in UK 

Biobank), we found a significant OR=1.35 for ESKD (95%CI=1.03-1.77, one-sided P=0.0157) 

and OR=1.27 (95%CI=1.08-1.50, one-sided P=0.002, Table 4).  

 

DISCUSSION 

Here, we provide data and results on a large longitudinal GWAS on annual eGFR-decline with 

>340.000 individuals from mostly population-based studies – to our knowledge the largest 

GWAS on annual eGFR-decline so far and probably one of the largest longitudinal GWAS of 

any trait. We identified 12 variants across 11 loci as genome-wide significant for annual eGFR-
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decline unadjusted and/or adjusted for eGFR-baseline (Figure 5). These included 9 variants 

across 8 loci with non-zero association unadjusted for eGFR-baseline, which we termed 

“genuinely” associated with eGFR-decline. Seven of these 9 variants also showed SNP-by-

age interaction on cross-sectional eGFR in independent data of >350,000 individuals, while 

the three variants without genuine association did not. We generated and provide genome-

wide summary statistics for eGFR-decline, CKD-progression, and eGFR-decline in DM. This 

data resource is informative for future meta-analyses, causal inference studies via Mendelian 

Randomization41, and drug development pipelines. 

Clinically very important is our finding of the two-to four-fold larger genetic effects of 

almost all identified variants when focusing on individuals with DM or CKD at baseline, since 

these individuals are already at higher risk of kidney failure. This observation is in line with a 

“horse-racing effect”42 (“a faster horse is more likely observed up front”): individuals with an 

accumulation of faster eGFR-decline alleles are more likely observed with low eGFR at a given 

point in time, implying that these genetic effects might partly explain lower eGFR at baseline. 

A part of the larger eGFR-decline effect among CKD individuals might reflect collider bias. 

However, DM-status does not fulfill the characteristics of a collider for the SNP-associations 

with eGFR-decline (no impact by adjusting for DM-status, no SNP-association with DM-status), 

rendering the higher eGFR-decline effects in DM genuine. 

The clinical relevance is further underscored by the 9-variant GRS being associated 

with increased risk of AKI and ESKD. This observation requires further analyses in future larger 

data. If substantiated, this may indicate a genetic risk of incomplete kidney function recovery 

after AKI and a genetic predisposition for ESKD. 

The 9 identified variants across 8 loci included the UMOD-PDILT locus associated with 

eGFR-decline and CKD-progression, which is largely confirmatory but serves as proof-of-

concept. A variant near MIR378C previously identified for CKD-progression43 (n~3000) was 

not confirmed here. Our other 7 loci are novel for eGFR-decline (near/in PRKAG2-GALNTL5, 

SPATA7, FGF5, OVOL1, TPPP, C15ORF54, and ACVR2B). These included at least three loci 

associated with CKD-progression (defined as eGFR-decline in individuals with CKD at 

baseline), mapping to the genes GALNTL5, SPATA7 and TPPP by SNP-modulated expression 

in tubolo-interstitium15,18. These associations and genes for CKD-progression are in strong 

demand as genetic information on a disease progression phenotype, in order to help identify 

treatment19. Our data particularly flags TPPP by its locus’ large effect on eGFR-decline and 

CKD-progression, making it second only after UMOD. This also documents the value of 

longitudinal GWAS in revealing relevance of genes like TPPP: the TPPP locus was one of 

hundreds of small effect loci cross-sectionally, but among the few loci longitudinally. 

Our results highlight some overlap of quantitative eGFR-decline genetics with binary 

extreme decline genetics23, but also distinction. All loci identified here were directionally 
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consistent, nominally significant with “rapid3” and/or “CKDi25” (one-sided P<0.05) and two 

were genome-wide significant for rapid3 or CKDi25 (UMOD-PDILT, PRKAG2-GALNTL5). 

Particularly the loci identified here for CKD-progression, which is among individuals with CKD 

at baseline, complement the previously reported associations with CKDi25, which is among 

individuals without CKD at baseline. Methodologically, regression applied to a quantitative 

rather than dichotomized outcome has larger power and statistical advantages. 

While all variants identified for eGFR-decline captured loci known from cross-sectional 

eGFR15, these associations are important on various accounts. First, the mere fact that eGFR-

decline genetics is a subgroup of cross-sectional eGFR genetics is informative for future 

searches. Second, the finding that the full genetic signals were the same enabled the use of 

fine-mapping results from cross-sectional GWAS in >1 million individuals18 to prioritize genes 

also for longitudinal eGFR-decline. Third, all faster-decline alleles were the cross-sectional 

eGFR-lowering alleles. Together, this supported two classes of genetic variants for cross-

sectional eGFR, distinguished by lack or presence of a slope effect, with steeper slope for the 

cross-sectional eGFR-lowering allele. The data rendered the third theoretical option, i.e. 

presence of a slope effect with flatter slope for the cross-sectional eGFR-lowering allele, void.  

Some limitations warrant mentioning. Although this GWAS is currently the largest 

GWAS on eGFR-decline so far, more loci for eGFR-decline and CKD-progression might be 

detectable upon further increased sample size. The yield of eGFR-decline loci in >340,000 

individuals was comparably low considering older GWAS for cross-sectional eGFR having 

already detected >50 loci in 170,000 individuals44. We used the CKD-EPI formula containing 

an ancestry term (Levey et al., Ann Intern Med), accounted for by ancestry-specific GWAS; 

future work should utilize the new ancestry-term-free CKD-EPI formula 2021 (Inker et al., 

NEJM). Evaluating the potential existence of sex-specific genetic effects on eGFR-decline is 

of interest, but was not addressed in this project. The target population is primarily population-

based, including kidney diseases proportional to respective prevalence, and primarily 

European ancestry. Larger all-ancestry meta-analyses on eGFR-decline will open up 

opportunities to also utilize differential linkage disequilibrium between ancestries to help 

narrow down causal variants and genes. The interpretability of the SNP-by-age interaction on 

cross-sectional eGFR is limited to the age spectrum in the data (40-70 years) and by the power 

given the sample size; still, the sample size used was large and the age range typical also for 

most eGFR-decline GWAS studies. Two aspects need mentioning regarding the phenotype 

definition: uncertainty in eGFR-decline may be larger for studies with shorter follow-up, which 

decreases power, but measurement error in the outcome does not induce bias in linear 

regression45. By defining annual eGFR-decline from two eGFR assessments over time, our 

SNP associations capture only the linear component of decline. Serial eGFR assessments are 

better to characterize eGFR-trajectories, but at the cost of limiting sample size, since such 
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studies are few and typically small. Furthermore, generalized additive mixed models for non-

linear eGFR-trajectories are complex and require particularly large sample sizes. The linear 

modelling of eGFR-decline is a reasonable approximation of monotonous decline, maintaining 

large sample sizes and limiting model complexity to be applicable for GWAS. Overall, the 

choice of the adjustment, target population, and phenotype definition are important to consider 

when interpreting results. While some modelling aspects are addressed here, other covariate 

adjustment or relative decline as phenotype might reveal further or other genetic loci. Future 

work is warranted to quantify effects in different target populations and the genetically 

determined shape of the decline, which requires more – and larger – longitudinal studies, 

ideally with more than two eGFR assessments over time.  

Methodologically unique is our contrasting of GWAS SNP-associations on eGFR-

decline for different covariate adjustment, which fills an important gap and helps design future 

studies. This is highly relevant, since covariate adjustment can alter GWAS findings and 

interpretation29–32,46. Adjusting for baseline DM-status had no impact, but genetic effects for 

eGFR-decline were larger when restricting to DM-individuals; this suggests DM-status as 

modulator for the SNP-association with eGFR-decline rather than mediator (i.e. in the causal 

pathway from SNP to eGFR-decline) or collider (i.e. generating biased association). 

Adjustment for eGFR-baseline yielded larger eGFR-decline effects and more genome-wide 

significant variants. Glymour et al. highlight that adjustment for baseline levels in analyses of 

change may help detect effects, but can induce spurious associations when the rate of change 

observed after baseline reflects a rate of change experienced in the past37. This might reflect 

the situation here rendering the larger genetic effects adjusted for eGFR-baseline - and the 

larger genetic effects when restricting to individuals with CKD at baseline – reflective of collider 

bias. Glymour et al. recommend the documentation of change effects without baseline 

adjustment37. In line with this, we considered a variant’s association with eGFR-decline 

genuine, when the variant reached genome-wide significance baseline-unadjusted or baseline-

adjusted and Bonferroni-corrected significance baseline-unadjusted. The baseline-unadjusted 

model provides the relevant genetic effect sizes for eGFR-decline.  

Interestingly, two of the three associations without genuine eGFR-decline association 

may relate to biomarker generation rather than kidney function: GATM and CPS1, known for 

a role in creatine biosynthesis42 and urea cycle43, respectively, reside in loci without supporting 

association with cross-sectional cystatin-based eGFR18. Conversely, the SHROOM3 locus 

was associated with cystatin-based eGFR18,22 and experimental studies support a role of 

SHROOM3 in kidney pathology47–49; thus, SHROOM3 appears to have an effect on cross-

sectional kidney function, but not on kidney function decline within the limits of detectability by 

sample size. 
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A further unique aspect of our work is the empirical evidence for a link between SNP-

effects on eGFR-decline with SNP-by-age interaction effects on cross-sectional eGFR. By this, 

we provide important insights into the age-dependency of kidney function genetics as well as 

into the genetic dependency of aging eGFR in adult general populations, where “aging” 

includes onset of age-related diseases as they develop in populations. Considering the much 

broader availability of cross-sectional than longitudinal data, the further parallel exploitation of 

SNP-by-age interaction might be a promising route to help improve our understanding of the 

mechanisms of kidney function decline over time.  

In summary, we provide GWAS summary statistics, identified genetic loci, and 

prioritized genes for kidney function decline and CKD-progression. While UMOD has drawn 

attention already, GALNTL5, SPATA7, and TPPP may now receive more focus as therapeutic 

targets for disease progression. Our exploration of different covariate adjustment and the 

comparison to age-dependency of SNP-effect on eGFR cross-sectional provides important 

insights into the interpretation of these effects. With the emerging large biobank data linking 

medical records, longitudinal GWAS will become very important in the future. Our 

methodological framework is informative and applicable also generally for longitudinal 

phenotypes.  

 

Availability of data and materials 

To support future work, we provide genome-wide summary statistics on eGFR-decline 

unadjusted for eGFR-baseline (adjusted for age, sex and DM-status) overall and restricted to 

individuals with DM or CKD at baseline (all adjusted for age and sex) (https://www.uni-

regensburg.de/decline and http://ckdgen.imbi.uni-freiburg.de). The summary statistics on 

eGFR-decline in individuals with CKD at baseline can be considered genetic effects on CKD-

progression. We also provide genome-wide summary statistics on eGFR-decline adjusted for 

eGFR-baseline (additionally to adjustment for age and sex), but these summary statistics 

should be used with great care and an understanding that beta-estimates are subject to collider 

bias. For quantification of the genetic effect on eGFR-decline, the results unadjusted for eGFR-

baseline should be utilized.  
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Table 1: Twelve independent variants in 11 loci identified for association with eGFR-decline unadjusted and adjusted for eGFR-baseline. 
We conducted GWAS for eGFR-decline baseline-unadjusted and baseline-adjusted (“decline”, n up to 343,339; declineadj, n up to 320,737). This 
identified (A) 2 variants with genome-wide significance for eGFR-decline baseline-unadjusted (UMOD-PDILT, Pdecline<5x10-8) and 2 further variants 
in a candidate search of the 263 variants known for cross-sectional eGFR15 outside UMOD-PDILT, judged at Bonferroni-corrected significance 
(Pdecline<0.05/263=1.90x10-4; PRKAG2, SPATA7), (B) 5 variants with genome-wide significance for eGFR-decline baseline-adjusted AND Bonferroni-
corrected significant baseline-unadjusted (Pdecline-adj-BL<5x10-8, Pdecline <0.05/12=4.17x10-3), (C) 3 variants with genome-wide significance for eGFR-
decline baseline-adjusted but not significantly associated baseline-unadjusted (Pdecline-adj-BL<5x10-8, Pdecline≥4.17x10-3). For each identified variant, we 
show results for decline (baseline-unadjusted), for decline baseline-adjusted, and for cross-sectional eGFR15. Beta-estimates are in mL/min/1.73² 
per year and per faster-decline allele; significant P-values are stated in bold. 

              decline   declineadj   cross-sectional 

SNPID Locus Name Chr Pos EA/OA EAF  Beta P  Beta P  Beta P 

A from GWAS/candidate search for decline (baseline-unadjusted) 

rs34882080 UMOD-PDILT 16 20,361,441 a/g 0.815  0.065 2.45x10-30  0.092 3.31x10-62  -0.009 2.86x10-95 

rs77924615 UMOD-PDILT 16 20,392,332 g/a 0.798  0.074 5.30x10-38  0.099 3.75x10-69  -0.010 1.45x10-138 

rs10254101 PRKAG2* 7 151,415,536 t/c 0.276  0.020 4.10x10-05  0.037 1.78x10-14  -0.007 1.85x10-67 

rs1028455 SPATA7* 14 88,829,975 t/a 0.657   0.021 5.90x10-06   0.024 3.43x10-08   -0.002 4.78x10-10 

B from GWAS for declineadj, with association for decline (baseline-unadjusted) 

rs1458038 FGF5 4 81,164,723 c/t 0.690  0.019 3.87x10-05  0.028 6.85x10-10  -0.003 7.49x10-24 

rs4930319 OVOL1 11 65,555,458 c/g 0.333  0.015 9.93x10-04  0.028 5.27x10-10  -0.003 2.21x10-24 

rs434215 TPPP§ 5 699,046 a/g 0.277  0.020 3.70x10-04  0.032 7.19x10-09  -0.003 7.63x10-06 

rs28857283 C15ORF54† 15 39,224,711 g/a 0.656  0.021 1.47x10-06  0.030 1.31x10-11  -0.002 6.20x10-09 

rs13095391 ACVR2B 3 38,447,232 a/c 0.502  0.017 1.77x10-04  0.025 4.03x10-08  -0.003 6.57x10-15 

C from GWAS for declineadj, without association for decline (baseline-unadjusted) 

rs9998485 SHROOM3 4 77,362,445 a/g 0.466  0.007 0.156  0.027 9.84x10-09  -0.005 1.22x10-41 

rs1047891 CPS1 2 211,540,507 a/c 0.293  0.004 0.441  0.029 1.15x10-09  -0.007 1.18x10-75 

rs2453533 GATM 15 45,641,225 a/c 0.422  0.002 0.710  0.029 1.72x10-11  -0.009 4.57x10-141 

SNPID=Variant identifier on GRCh37, Locus name=Nearest Gene, Chr and Position=Chromosome and Position on GRCh37, 
EA/OA=Effect allele / other allele, EAF=effect allele frequency, beta and P=genetic effect coefficient of association and association P-value. 
* In PRKAG2 and SPATA7 loci, variants with smallest Pdecline (rs73158188 and rs7160717, respectively) were highly correlated with these 
candidate-based variants (r²=1.00 and 0.93, respectively). § Since the TPPP locus lead variant had imputation quality <0.6 in 45% of the 
studies (median 0.64), we analyzed this locus omitting the imputation quality filter (with filter: declineadj beta=0.033, P=1.00x10-8; decline 
beta=0.015, P=0.039; median imputation quality=0.74). † In the C15ORF54 locus, the identified lead variant for decline was highly correlated 
with a 2nd signal lead variant for cross-sectional eGFR (rs28833881, r²=0.90), but not with the 1st signal lead variant (rs12913015, r²=0.04).  
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Table 2: SNP-by-age interaction for cross-sectional eGFR for the 12 identified variants. 
For the 12 identified variants, we conducted SNP-by-age interaction analysis for cross-
sectional eGFRcrea and eGFRcys in UK Biobank (excluding individuals from decline GWAS; 
n=351,462 for eGFRcrea, n=351,601 for eGFRcys; main age effect modelled non-linearly, 
main SNP effect linearly, age centered at 50 years). The interaction term (age effect and SNP 
effect modelled linearly) was judged at Bonferroni-corrected significance level 
(P<0.05/12=4.17x10-3). Beta-estimates are in mL/min/1.73² per year and per cross-sectional 
eGFR-lowering allele (which was equivalent to faster-decline allele for each SNP); significant 
P-values are stated in bold. 
 

        
SNP x age interaction 

eGFRcrea 
  

SNP x age interaction 
eGFRcys 

SNPID Locus Name EA/OA  Beta P  Beta P 

A from GWAS/candidate search for decline (baseline-unadjusted) 

rs34882080 UMOD-PDILT a/g  -0.043 5.53x10-22  -0.045 2.37x10-17 

rs77924615 UMOD-PDILT g/a  -0.050 2.55x10-29  -0.054 6.59x10-25 

rs10254101 PRKAG2 t/c  -0.009 0.0263  -0.015 9.84x10-04 

rs1028455 SPATA7 t/a   -0.014 2.19x10-04   -0.014 1.06x10-03 

B from GWAS for declineadj, with association for decline (baseline-unadjusted) 

rs1458038 FGF5 c/t  -0.013 7.11x10-04  -0.013 3.12x10-03 

rs4930319 OVOL1 c/g  -0.015 2.55x10-05  -0.016 1.84x10-04 

rs434215 TPPP a/g   -0.028 1.02x10-10   -0.033 5.02x10-11 

rs28857283 C15ORF54 g/a  -0.010 5.09x10-03  -0.006 0.148 

rs13095391 ACVR2B a/c  0.004 0.227  0.002 0.695 

C from GWAS for declineadj, without association for decline (baseline-unadjusted) 

rs9998485 SHROOM3 a/g  -0.004 0.206  -0.009 0.022 

rs1047891 CPS1 a/c  0.004 0.228  0.005 0.244 

rs2453533 GATM a/c  0.014 9.71x10-05  0.002 0.722 

SNPID=Variant identifier on GRCh37, Locus name=Nearest Gene, EA/OA=Effect allele / other 
allele, Beta and P=genetic effect and association P-value. The TPPP variant rs434215 is well-
imputed in the UK Biobank (imputation quality=0.82).  Jo
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Table 3: The 9 variants’ effects on eGFR-decline unadjusted for eGFR-baseline in high-
risk subgroups. Shown are the 9 variants with genuine association for eGFR-decline for 
their association with eGFR-decline restricted to individuals with baseline diabetes mellitus 
(DM, n up to 38,206) or baseline CKD (i.e. eGFR<60 mL/min/1.73m², n up to 26,653). Beta-
estimates and 95% confidence intervals (CI) are in mL/min/1.73m² per year and per faster-
decline allele.  
 

      
Decline among 
 DM at baseline   

Decline among 
CKD at baseline   

Decline among 
all 

SNPID Locus Name  Beta 95% CI  Beta 95% CI  Beta 95% CI 

A from GWAS/candidate search for decline (baseline-unadjusted) 

rs34882080 UMOD-PDILT  0.159* 0.108, 0.211  0.138* 0.074, 0.203  0.065 0.054, 0.076 

rs77924615 UMOD-PDILT  0.136* 0.084, 0.189  0.167* 0.099, 0.235  0.074 0.063, 0.085 

rs10254101 PRKAG2  0.065 0.020, 0.110  0.095* 0.042, 0.148  0.020 0.010, 0.030 

rs1028455 SPATA7  0.030 -0.011, 0.071  0.085* 0.034, 0.135  0.021 0.012, 0.029 

B from GWAS for declineadj, with association for decline (baseline-unadjusted) 

rs1458038 FGF5  0.030 -0.013, 0.072  0.040 -0.013, 0.092  0.019 0.010, 0.028 

rs4930319 OVOL1  0.021 -0.021, 0.062  0.031 -0.019, 0.080  0.015 0.006, 0.024 

rs434215 TPPP§  0.031 -0.024, 0.086  0.112* 0.043, 0.180  0.020 0.006, 0.035 

rs28857283 C15ORF54  0.046 0.005, 0.086  0.042 -0.007, 0.091  0.021 0.013, 0.030 

rs13095391 ACVR2B  0.029 -0.021, 0.080  0.006 -0.054, 0.066  0.017 0.008, 0.026 

Average   0.061   0.079   0.030  

SNPID=Variant identifier on GRCh37, Locus name=Nearest Gene, Beta=genetic effect of genetic 
association where the effect alleles is the same as in Table 1 and Table 2, 95% CI = 95% confidence 
interval of Beta (Beta±1.96*standard error of the association).  
* Statistically significant different from zero (P< 0.05/9=5.56x10-3). 
§ Since the lead variant had imputation quality <0.6 in 45% of the studies (median 0.64), we analyzed 
this variant omitting the imputation quality filter (with filter: decline among DM at baseline beta=-0.093, 
P=0.338, n=927; decline among eGFR <60 mL/min/1.73m² beta=0.022, P=0.618, n=2924; median 
imputation quality=0.74). 
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Table 4: Genetic risk score (GRS) analyses for end-stage kidney disease (ESKD) and Acute Kidney Injury (AKI). In 3 case-control studies for 
ESKD and one for AKI, we computed the weighted GRS across the 9 eGFR-decline variants (counting the faster-decline alleles, weighted by effect 
size for eGFR-decline unadjusted for eGFR-baseline; divided by sum of weights and multiplied by 9, i.e. scaled as 0 to 18). Shown are odds ratios 
(OR), 95% confidence intervals (CI) and P-values (one-sided) for the quantitative GRS association (per 5 “average” unfavorable alleles) and for a 
high versus low GRS association (≥95th versus ≤5th, ≥90th versus ≤10th GRS percentiles derived in UK Biobank) with (A) ESKD and (B) AKI. 
Associations are derived by logistic regression adjusted for matching variables age-group and sex (AKI additionally for principal components). 

        Per 5 unfavorable 
average alleles 

  High versus low GRS group 
     5% versus 95%  10% versus 90% 

Study 
Number 
of Cases 

Number 
of 

Controls 

 OR 95% CI 
P 

(1-sided) 
 OR 95% CI 

P 
(1-sided) 

 OR 95% CI 
P 

(1-sided) 

(A) ESKD (cases: ICD10 code N18.0 or N18.5; controls: no ICD10 code N18, eGFR>60 mL/min/1.73m², frequency-matched by age-group and 
sex) 

4D_KORA-F3 1,100 1,601  1.122 0.925,1.362 0.121  1.260 0.669,2.377 0.237  1.526 0.978,2.379 0.0313 

GENDIAN_KORA-F4 470 1,545  1.146 0.923,1.423 0.108  0.954 0.468,1.946 0.449  1.036 0.625,1.719 0.445 

UKBBCa_co 498 1,494  1.085 0.885,1.330 0.216  1.220 0.639,2.329 0.273  1.479 0.921,2.373 0.0525 

Meta-analysis 2,068 4,640   1.117 0.993,1.256 0.0329   1.150 0.785,1.686 0.236   1.349 1.027,1.773 0.0157 

               

(B) AKI (cases: ICD 10 code N17; controls: no ICD10 code N17, eGFR>60 mL/min/1.73m², frequency-matched by age-group and sex)  

UKBBCaCo 3,878 11,634   1.179 1.095,1.270 6.47x10-06   1.524 1.204,1.931 4.70x10-04   1.272 1.080,1.499 1.97x10-03 

Study=Study name, OR=Odds Ratio of the GRS-association, 95% CI=95% confidence interval of the association, P (1-sided)=1-sided association 
P-value, ESKD=End-stage Kidney Disease, Individuals analyzed here are distinct from the eGFR-decline GWAS except for the KORA-F3 and KORA-
F4 controls. AKI=Acute Kidney Injury, UKBBCaCo=cases and controls from UK Biobank distinct from UK Biobank study participants used in the 
GWAS for eGFR decline. 
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Figure 1: Eleven loci identified by GWAS for eGFR-decline unadjusted and/or adjusted 
for eGFR-baseline. We conducted GWAS for eGFR-decline baseline-unadjusted and 
baseline-adjusted (n up to 343,339 or 320,737, respectively). Shown are association P-values 
versus genomic position, identified loci annotated by nearest gene: (A) association for eGFR-
decline baseline-unadjusted identified one genome-wide significant locus for decline (P<5x10-

8) and two Bonferroni-corrected significant loci among the 263 lead variants for cross-sectional 
eGFR15 outside of UMOD-PDILT (red dots, P<0.05/263=1.90x10-4; known locus for decline 
marked in blue; novel loci for this phenotype in orange); (B) association for eGFR-decline 
baseline-adjusted identified 8 additional loci (novel loci marked in green; known loci or loci 
already identified in (A) marked in blue). Altogether, 11 loci were identified with genome-wide 
significance for eGFR-decline unadjusted and/or adjusted for eGFR-baseline.  
 

Figure 2: Relationship of SNP-effects on eGFR-decline baseline-unadjusted with 
baseline-adjusted effects for the 12 identified variants. Shown are: (A) SNP-effects per 
year and allele for eGFR-decline baseline-unadjusted (“decline”) versus eGFR-decline 
baseline-adjusted in all studies (ndecline=343,339; ndecline-adj=320,737) and restricted to studies 
where baseline-adjusted results were computed rather than formula-derived (inserted panel, 
n=103,970); red line indicates identify line); (B) standardized SNP-effects per year and allele 

for eGFR-decline baseline-unadjusted ( 𝛽̂𝐷𝐸𝐶𝐿𝐼𝑁𝐸/𝑠𝑑𝐷𝐸𝐶𝐿𝐼𝑁𝐸, n=343,339) and per allele for 

cross-sectional eGFR on ln-scale (𝛽̂𝐵𝐿 𝑠𝑑𝐵𝐿⁄ , n=765,348 15); grey line indicates phenotype 
correlation line y=0.34*x (0.34=mean phenotype correlation across studies). For A&B: coding 
allele is the faster-decline allele (=cross-sectional eGFR-lowering allele). Color codes whether 
SNP was identified for decline baseline-unadjusted and/or baseline-adjusted. (C) Illustration 
of the SNP-effect for eGFR-decline baseline-adjusted (standardized to Y-scale) as a sum of 
the SNP-effect baseline-unadjusted (standardized) and the correlation-weighted SNP-effect 
on eGFR at baseline (standardized). 
 

Figure 3: Relationship of SNP-by-age interaction effects for eGFRcys with those of 
eGFRcrea and with SNP-effects for eGFR-decline for the 12 identified variants. Shown 
are SNP-by-age interaction effect sizes per year and allele for cross-sectional eGFRcys (UK 
Biobank individuals independent from GWAS, nSNPxage=351,601; main age effect modelled 
non-linearly, main SNP-effect linearly, age effect and SNP effect in interaction term linearly, 
age centered at 50 years) versus: (A) SNP-by-age interaction effects on cross-sectional 
eGFRcrea (nSNPxage=351,462), (B) SNP-effects on eGFR-decline baseline-unadjusted per year 
and allele (ndecline=343,339). Coding allele is the faster-decline allele (=cross-sectional eGFR-
lowering allele); color code as in Figure 2; red line indicates identity line; symbol types code 
significance of interaction term (P< 0.05/12). Among the 9 SNPs with genuine eGFR-decline 
association, 7 SNPs showed interaction for eGFRcrea or eGFRcys (all negative), and all 3 
SNPs without genuine eGFR-decline association showed no interaction for eGFRcys (one with 
positive significant interaction for eGFRcrea).  
 

Figure 4: A concept for three classes of SNP-associations on cross-sectional eGFR 
distinguished by the presence and direction of the SNP-association with eGFR-decline.  
Let A/a be the genotype group of individuals with, on average, lower cross-sectional eGFR 
compared to a/a (A=effect allele). Let’s further assume that eGFR-declines monotonously by 
age (approximated as linear decline) and that there is no “cross-over” between genotype 
groups. Shown are (left) a graphical scheme, (middle) the theoretical association, (right) the 
observed SNPs in line with the respective class. In the three graphical schemes, black lines 
illustrate mean eGFR-decline by genotype group; SNP-effects on eGFR for these individuals 
captured cross-sectionally at different ages are magenta. When a cross-sectional study 
captures individuals of relevant ages, the SNP-effects on eGFR should show an interaction by 
age for class II and class III SNPs (positive and negative, respectively). The 9 variants with 
genuine eGFR-decline association were class III, while the other 3 variants were class I.  
 

Figure 5: Data, analyses, and results in a nutshell.  
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Supplementary Methods 

General approach for GWAS meta-analysis 

An analysis plan and standardized scripts for phenotype generation and GWAS analyses were 

developed and implemented in all 61 CKDGen studies and UK Biobank. The 61 CKDGen 

studies consisted of 58 studies that were long-term partners of CKDGen (“old” CKDGen 

studies) and three studies that have joined CKDGen more recently allowing for more elaborate 

analyses (AugUR, HUNT and MGI; extended analysis plan, see below). Most studies were 

population-based and thus including individuals with specific kidney diseases according to the 

prevalence in the general population. Each study conducted GWAS analyses according to this 

pre-defined plan, separately by ancestry (if applicable). Ancestry was defined by genetic 

principal components or participants’ self-report. For each study, phenotypic information and 

genome-wide summary statistics per SNP were transferred to the meta-analysis centers.  

Each study had been conducted according to the declaration of Helsinki. The studies 

have been approved by each local ethics committee. All participants in all studies provided 

written informed consent. 

Meta-analyses were conducted, significant variants identified and respective locus 

regions selected. A GWAS across all available studies was shown to be advantageous over 

conducting a discovery followed by a replication stage on selected variantsS1,S2. Therefore, 

rather than conducting a discovery GWAS in old CKDGen studies and a replication in recently 

joined CKDGen studies and UK Biobank, we included all studies into the GWAS meta-analysis 

on eGFR decline.  

 

Phenotype definition 

In each contributing study, serum creatinine was measured at least two times, utilizing two 

measurements at largest time distance (study-specific details in Supplementary Table S1). 

When measurements were obtained by Jaffé assay (before 2009), creatinine measurements 

were calibrated (multiplying by 0.95S3). Serum creatinine measured at baseline and follow-up 

was used to estimate eGFR at baseline and follow-up, respectively, according to the Chronic 

Kidney Disease Epidemiology Collaboration (CKD-EPI) equationS4. This equation contains an 

age, sex, and ancestry term for a best fit of creatinine-based eGFR to measured GFR. At 

baseline and follow-up, eGFR was winsorized at 15 and 200 mL/min/1.73m². Annual eGFR-

decline was defined as “- (eGFR at follow-up - eGFR at baseline) / number of years of follow-

up”; thus, eGFR-decline is positive when eGFR is lower at follow-up compared to baseline and 

comparable across studies with different follow-up length.  

In each study, eGFR-decline was analyzed overall and restricted to individuals with 

CKD or DM at baseline. CKD at baseline was defined as eGFR<60 mL/min/1.73m² at baseline. 

In CKDGen, DM at baseline was defined as fasting plasma glucose ≥126 mg/dl (7.0 mmol/L) 
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or diabetes therapy, or (fasting glucose unavailable) as non-fasting plasma glucose ≥200 mg/dl 

(11.0 mmol/L) or diabetes therapy, or (glucose unavailable) as self-reported diabetes. For UK 

Biobank, DM was defined as HbA1c≥48 mmol/mol or diabetes therapy. 

 

Study-specific generation of outcome variables according different adjustment models 

In each study, different models for the SNP-association with annual eGFR-decline as outcome 

were computed genome-wide: (i) adjusted for age, sex, and DM and applied to all individuals 

(“decline DM-adjusted”); (ii) adjusted for age and sex restricted to individuals with DM or CKD 

at baseline (“decline in DM”, “decline in CKD”). In the recently joined CKDGen studies and UK 

Biobank, an extended suite of models was applied: additional analyses were (iii) adjusted for 

age and sex using all individuals (“decline”), (vi) adjusted for age, sex and eGFR baseline 

using all individuals (eGFR baseline on log-scale, ln(eGFR), “decline adjusted for baseline”). 

Further study-specific adjustments were applied (as applicable), including genetic principal 

components to account for population substructure.  

These adjustments were implemented by generating residuals of annual eGFR-decline 

adjusted for the respective covariates and using these residuals as outcome in GWAS. This is 

a standard approach yielding comparable results to using the unadjusted phenotype as 

outcome in GWAS adjusting for the respective covariates. The utilized approach implies fewer 

covariates in GWAS being computationally more efficient. We standardized the creation of 

these outcome variables for GWAS by providing a centrally developed script, which also 

provided descriptive statistics on the study-specific phenotype.  

 

Genotyping, imputation, and study-specific GWAS 

In each study, genotyping was conducted using Affymetrix and Illumina arrays 

(Supplementary Table S2). Imputation was performed using 1000 GenomesS5 phase 1 or 

phase 3, the Haplotype Reference ConsortiumS6 v1.1 or customized reference panels, 

annotating all variants on the GRCh build 37 reference build; imputed genotypes were coded 

as allelic dosages and imputation quality was provided as IMPUTE2S7 info score, 

MACH/minimacS8 RSQ or similar; quality control before and after imputation was conducted 

study-specifically (Supplementary Table S2).  

In each study, GWAS analyses were conducted according to the centrally defined 

analysis plan. CKDGen studies included different ancestries (European, African American, 

East Asian, South Asian, and Hispanic) and contributed analyses ancestry-specific. Since 

most CKDGen studies individuals were European ancestry (94.90%), UK Biobank analyses 

focused on unrelated European ancestry individuals where two assessments of eGFR were 

available (n=15,442). For each GWAS, linear regression on the respective outcome variable 

was computed per SNP (modelled as allele dosages linearly) adjusted for principle 
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components and other study-specific covariates as applicable (Supplementary Table S2). 

This yielded three GWAS results for “old” and recently joined CKDGen studies (decline DM-

adjusted, decline in DM, decline in CKD) and two further GWAS results for recently joined 

CKDGen studies and UK Biobank (decline, decline adjusted for baseline). Summary statistics 

were collected and quality controlled centrally with GWAtoolboxS9. 

 

Study-specific summary statistics for decline adjusted for baseline  

As noted above, GWAS results on eGFR-decline adjusted for eGFR-baseline was not 

available in all studies. GWAS meta-analyses logistics in so many studies are highly complex; 

it is not trivial to “add” analyses applying other models. However, there is mathematical help 

to facilitate covariate adjustment post-hoc, i.e. by formula, based on GWAS summary statistics 

unadjusted for eGFR-baseline and GWAS summary statistics for eGFR-baseline and study-

specific phenotype informationS10
. We demonstrate how this works (Supplementary Note S1) 

and that it works in this setting by validation studies: we compared formula-derived summary 

statistics for baseline-adjusted decline with model-computed baseline-adjusted decline in a 

subset of studies (the recently joined CKDGen studies, UK Biobank, selected “old” CKDGen 

studies). For eGFR-decline adjusted for baseline in the following, we used formula-derived 

summary statistics for the “old” CKDGen studies and computed summary statistics for the 

recently joined studies and UK Biobank.  

 

Meta-analyses of GWAS summary statistics 

Before meta-analysis, we excluded, from each study file, multi-allelic variants, variants with a 

Minor Allele Count <10, and variants with an imputation quality <0.6 (R² from minimacS8 or info 

score from ImputeS7). Per study, genomic control (GC) correction was applied when the GC-

factor lambda was >1. We excluded a study for a specific analysis, when it contributed <100 

individuals after quality control for this analysis.  

Per model, we conducted a fixed-effects inverse-variance-weighted meta-analysis 

using metalS11. To account for the sequential recruitment of studies, we meta-analyzed per-

variant summary statistics across “old” CKDGen studies (GC-corrected) and across recently 

joined CKDGen studies plus UK Biobank (GC-corrected), and then meta-analyzed these two 

(again GC-corrected, Supplementary Figure S1). After meta-analysis, only variants present 

in ≥50% of GWAS files and minor allele frequency ≥1% were retained for further analyses.  

 

Identification of associated loci 

For our GWAS search, we selected genome-wide significant variants (P<5.00x10-8) in the 

meta-analyzed summary statistics and identified independent locus lead variants by an 

iterative approach, as applied previouslyS12: (i) from all genome-wide significant variants, we 
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selected the variant with the smallest P-value as the first lead variant and defined this variant’s 

locus region as lead variant ±500kB, (ii) omitting this identified region, we selected the next 

variant with the smallest P-value, and (iii) repeated this procedure until no further variant with 

P-value<5.00x10-8 was observed. The MHC region (chr6:28.5-33.5MB) was considered a 

single locus. We checked for overlapping loci, but there were none. 

For the candidate-based approach, we used the 265 lead variants previously reported 

for association with cross-sectional ln(eGFR)S12, excluded the locus regions identified by the 

GWAS search, and, for the remaining candidate variants, judged significance at Bonferroni-

corrected level.  

For identified variants, we evaluated ancestry-related heterogeneity using MR-MEGA 

v.0.1.5 (Meta-Regression of MultiEthnic Genetic AssociationS13, including three principle 

components. We also conducted sensitivity analyses incorporating further models of covariate 

adjustment for identified eGFR-decline associations in a validation meta-analysis. 

 

SNP-by-age interaction on cross-sectional eGFR 

We investigated the lead SNPs identified for (creatinine-based) eGFR-decline for SNP-by-age 

interaction on cross-sectional eGFR (based on creatinine or cystatin C, eGFRcrea, eGFRcys). 

For this we used data that was independent of the SNP identification step: unrelated European 

ancestry UK Biobank individuals with one eGFRcrea or eGFRcys assessment excluding the 

15,442 individuals in the decline GWAS (yielding > 350,000 individuals).  

For each SNP, we applied two linear regression models, one each for the outcome 

eGFRcrea or eGFRcys, using the covariates age, sex, SNP, SNP-by-age interaction term, and 

four principal components (age centered at 50 years). We modelled (i) the main age effect on 

the outcome allowing for non-linear effects (to avoid spurious effects from non-linear main age 

effect when modelling age linearly), (ii) the main SNP effect linearly per allele dosage, and (iii) 

for the SNP-by-age interaction effect, the SNP-effect was modelled linearly per allele dosage 

and the age effect was allowed to vary non-linearly (smooth function, varying coefficient 

modelS14, penalized thin-plate regression splines, mgcv-package in RS15). In a second analysis, 

the age effect in the SNP-by-age interaction was modelled linearly (i.e. linear effects for both 

SNP and age in the SNP-by-age term). We judged significance of the interaction at Bonferroni-

corrected level. 

 

Genetic effect sizes and GRS analysis for eGFR-decline 

We provide SNP-specific effect sizes on eGFR-decline in mL/min/1.73m2 per year over all 

individuals and focused on individuals with DM at baseline or CKD at baseline. We provide 

cumulative effects by GRS analysis in the population-based study HUNT (19-90 years old, 

European ancestry, up to 21 years of follow-up, mean of age-/sex-adjusted residuals for eGFR-
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decline = 1.02 mL/min/1.73m2/year). To compute the GRS, we counted the number of the 

faster-decline allele across identified variants for each study participant, weighted by the effect 

size for eGFR-decline unadjusted for eGFR-baseline, then divided by the sum of weights and 

multiplied by the number of variants in the GRS. By this, the GRS is scaled from 0 to 2 times 

the number of variants, where one unit reflects one “average” unfavorable allele. We tested 

the quantitative GRS with eGFR-decline via linear regression adjusted for age and sex 

(unadjusted for eGFR-baseline) and we compared individuals with high versus low GRS (≥95th 

versus ≤5th percentile, ≥90th versus ≤10th percentile derived from UK Biobank excluding 

individuals in the eGFR-decline GWAS). This was done over all individuals and restricted to 

individuals with DM at baseline or CKD at baseline. 

 We also computed a SNP’s genetic effect size relative to the phenotype variance as 

beta-estimates² * Var(SNP) / Var(Y), i.e. beta-estimates² * 2*MAF*(1-MAF)/ (standard 

deviation of Y)², where MAF is the minor allele frequency of the respective variant. The joint 

effect of several variants was derived as the sum of the respective SNPs’ effects. For this, 

again, we used the phenotype variance from HUNT: the standard deviation of age-/sex-

adjusted residuals for eGFR-decline = 0.91 mL/min/1.73m² overall, 1.25 mL/min/1.73m² 

among individuals with DM, 1.39 mL/min/1.73m² with CKD, and for eGFR cross-sectional 

=0.12 mL/min/1.73m² on the log-scale.  

 

GRS analyses for ESKD and AKI 

We were interested in whether the GRS across the variants identified for eGFR-decline 

showed association with severe clinical endpoints, ESKD and AKI. For this, we used three 

case sets for ESKD and one case set for AKI as well as controls (eGFR>60 mL/min/1.73m²) 

from population-based studies frequency-matched with regard to age-group and sex as 

described previouslyS16. Briefly, the three ESKD studies consisted of: (i) ESKD cases from 

unrelated European ancestry UK Biobank individuals (ICD10 code N18.0 or N18.5, i.e. need 

for dialysis) and matched UK Biobank controls (no record of any N18), excluding individuals in 

eGFR-decline GWAS; (ii) ESKD cases from GENDIAN and controls from KORA-F4; (iii) ESKD 

cases from the 4D-studyS17 and controls from KORA-F3. The study on AKI used AKI cases 

from UK Biobank (ICD10 code N17, “Acute Renal Failure”) and UK Biobank controls (no record 

of N17), excluding individuals in eGFR-decline GWAS. By this, the cases and controls across 

all four studies were independent of eGFR-decline GWAS, except the KORA-F3 and KORA-

F4 controls to keep the previously designed and published case-control comparisons with 

GENDIAN and 4D. 

For each of these four case-control studies, we retrieved the respective SNPs and 

computed a weighted GRS across identified variants for each individual as described above. 

We tested the quantitative GRS with ESKD or AKI. We applied a one-sided test, since we were 
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only interested in this association when the GRS increased the odds of ESKD or AKI. We also 

compared individuals with high versus low GRS (≥95th GRS percentile, ≤5th percentile and 

≥90th versus ≤10th GRS percentile, defined in UK Biobank individuals excluding individuals in 

eGFR-decline GWAS) and tested (one-sided) for increased odds of ESKD (meta-analysis 

across the three studies) or AKI. Associations are derived via logistic regression adjusted for 

matching variables age-groups and sex (for AKI additionally for the first two principal 

components). 

 

Supplementary Note S1: Equivalence of DM-adjusted versus not DM-adjusted GWAS 

on eGFR-decline in the validation meta-analysis 

In the recently joined studies (HUNT, MGI, AugUR) and UK Biobank, we had more adjustment 

models computed for GWAS on eGFR-decline, to better understand similarities and 

differences. In these, we compared the GWAS summary statistics for eGFR-decline adjusted 

for DM-status to GWAS without adjustment for DM-status (i.e. GWAS on age- and sex-

adjusted residuals and with and without adjustment for DM-status at baseline). In each study, 

we found precisely the same beta-estimates and standard errors (SE): (i) for the 265 SNPs 

identified previously for cross-sectional eGFRS12, for which we had a prior hypothesis that 

these contained the SNPs associated with eGFR-decline, as well as (ii) genome-wide where 

most of the SNP-associations are under the Null (Supplementary Figure S4A).  

We added further “old” CKDGen studies to substantiate these findings in further studies 

and in an expanded validation meta-analysis (n=103,970). Again, we found DM-adjusted and 

not DM-adjusted beta-estimates and SEs to be precisely the same (Supplementary 

Figure S4A).  Of note, this validation meta-analysis included general population studies and 

studies of specific scope: hospital-based (MGI), focused on individuals aged 70+ years 

(AugUR), or focused on individuals with chronic kidney disease (GCKD).  

Given this equivalence, we did not distinguish any more between results DM-

unadjusted or DM-adjusted.
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Supplementary Note S2: Formula-based covariate adjustment using GWAS summary 

statistics  

Let’s assume we have a quantitative phenotype Y and a covariate C. Let’s further assume, we 

have GWAS summary statistics as beta-estimates and respective standard errors, ��� and ���� 

(beta-estimate and standard error) from linear regression models per genetic variant, i.e. from 

�~	 + ����� (unadjusted model, omitting the indexing per variant). Let’s assume we also 

have GWAS summary statistic ��
 and ���
 for the covariate C from the model �~	 + �
��� 

(covariate model via linear regression, C binary or quantitative). We can then “adjust” the 

summary statistics formula-based, i.e. we can derive the GWAS summary statistics ������
 and 

�������
 for the adjusted model, ����
~	 + �����
��� + ��, as describedS18 according to  

������
 = ��� −  ���
 ∗ ������� ∗ ��
 and 

�������
 = ������ +  ���
 ∗ �������� ∗ ���
� − 2 ∗ ��� ∗ ������� ∗ !"��#���, ��
% ∗ ���� ∗ ���
. 

Here, we assume that we know the standard deviation of C and Y, sdC and sdY, respectively, 

the phenotypic correlation, ��
 (estimated as Pearson correlation coefficient between Y and C) 

and the genetic correlation between Y and C, !"��#���, ��
%, (using all genetic effects for Y and 

C genome-wide for estimation as reasonable proxy). When ��
 is zero, the adjusted model 

SNP-effects, ������
, are the same as the unadjusted model SNP-effects, ���.  

 Alternatively, when we have GWAS summary statistics from the adjusted model, 

����
~	 + �����
��� + ��, and the covariate model, �~	 + �
���, we can “de-adjust” 

summary statistics formula-based, i.e. we can derive the GWAS summary statistics of the 

unadjusted model as  

��� = ������
 +  ���
 ∗ ������� ∗ ��
 and 

���� = &�������
� + '��
 ∗ ()�()
*� ∗ ���
� + 2 ∗ '�� ∗ ()�()
* ∗ !"��#������
 , ��
% ∗ �������
 ∗ ���
 

. 

We apply this on our example to summary statistics for annual eGFR-decline adjusted 

for eGFR-baseline (BL): given the beta-estimates for decline unadjusted for ln(eGFRcreaBL) 

(in fact, residuals adjusted for age, sex), ���+,-./+, and the beta-estimates for ln(eGFRcreaBL) 

(i.e. residuals adjusted for age and sex), ��01, we can “adjust” results for BL using the formula, 

i.e., derive the beta-estimates for decline adjusted for BL (residuals adjusted for age and sex), 

���+,-./+_���_01, as  

���+,-./+_���_01 = ���+,-./+ −  ���+,-./+,01 ∗ ��3456784��9: � ∗ ��01.  
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Effect sizes here are given for the BL-lowering effect allele (which is usually the decline-

increasing allele). The can also be written as 

;<3456784_=3>_9:��3456784 = ;<3456784��3456784 + ��+,-./+,01 ∗ �− ;<9:��9:�. 

This shows that the effect size of decline adjusted for BL standardized to the scale of 

standardized ��� effects (i.e. divided by ()�+,-./+) is the sum of (i) the (standardized) effect size 

of decline unadjusted (i.e. the vertical distance of this effect to the x-axis in a ���/()� versus 

��
/()
 plane) and (ii) the vertical distance from the intersection point of the x-axis at ��
/()
 

(i.e. < 0 when the coding allele is the ��
-lowering allele) to the phenotype correlation line, 

@(B) = ��
 ∗ B , when the phenotype correlation is positive, like ��
=0.33 in UK Biobank, i.e. to 

the point (��
/()
, 0.33*��
/()
). This also shows that ���+,-./+=3>9: < ���+,-./+, since ��
 < 0, by 

definition. 

 

Supplementary Note S3: Validation of the formula-derived association for eGFR-

decline adjusted for eGFR-baseline 

In the recently joined studies and UK Biobank, we had more adjustment models computed for 

GWAS on eGFR-decline, to better understand similarities and differences. In these, we 

compared the summary statistics for eGFR-decline adjusted for eGFR-baseline (i.e. age- and 

sex-adjusted residuals and additional adjusted for ln(eGFRcrea baseline)) with eGFR-decline 

unadjusted for eGFR-baseline (i.e. age- and sex-adjusted residuals) and found substantial 

differences (Supplementary Figure S4B). Thus, the two models, unadjusted and adjusted for 

eGFR-decline were considered further.  

Generally, in GWAS meta-analysis, the number of GWAS models computed needs to 

be as parsimonious as possible to remain feasible. In each of the “old” CKDGen studies, we 

had GWAS summary statistics for eGFR-decline unadjusted for eGFR-baseline, GWAS 

summary statistics for cross-sectional eGFR, and study-specific phenotypic information. We 

knew that this enabled us to do the adjustment by formulaS10,S18 (Supplementary Note S1). 

For the “old” CKDGen studies, we thus derived GWAS summary statistics for eGFR-decline 

adjusted for eGFR-baseline applying this formula.  

While the formula was established previouslyS10, we validated that it worked in this 

setting using the recently joined CKDGen studies and UK Biobank, where we had the model 

“eGFR-decline adjusted for eGFR-baseline” computed: we also derived the SNP-associations 

for “eGFR-decline adjusted for eGFR-baseline” based on the formula for comparison in these 

studies for the purpose of validation. We found the formula to work very precisely per study: 

we observed equivalence in beta estimates and SEs when focused on the 265 SNPs identified 

previously for cross-sectional eGFRS12, for which we had a prior hypothesis that these 

contained the SNPs associated with eGFR-decline, as well as genome-wide, where most SNP-
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associations were under the Null (Supplementary Figure S4C; e.g., in UK Biobank for the 

265 variants: Pearson correlation coefficient r=1.00 for betas and SEs; maximum difference in 

beta=3.26x10-2, maximum differences in SEs =1.01x10-3). We added further “old” CKDGen 

studies also to yield an expanded validation meta-analysis (n=103,970). Again, we found the 

formula to work precisely in each study and in the expanded validation meta-analysis 

(Supplementary Figure S4C).  

The formula is mathematically derived and works perfectly when GWAS summary 

statistics for baseline eGFR are available. For studies with GWAS on cross-sectional eGFR, 

the sample size for cross-sectional eGFR is typical a bit larger than the sample size for eGFR-

baseline for longitudinal studies (i.e. restricting to individuals in the follow-up). We evaluated 

the impact of using cross-sectional eGFR summary statistics rather than baseline eGFR 

summary statistics in the formula in three “old” CKDGen studies at the hand of the Regensburg 

meta-analysis center. There was no difference in SEs for the 265 variants or genome-wide, a 

slight difference for beta estimates of the 265 variants, and a larger (random, not biased) 

difference in betas genome-wide (Supplementary Figure S4D). This difference in genome-

wide SNP-estimates can be attributed to random noise in the per-variant estimates under the 

null hypothesis (considering most genome-wide SNPs as not associated with eGFR-decline). 

We extended this validation experiment by three further studies, and found the same 

(Supplementary Figure S4D). In summary, we concluded that the formula-derived 

association estimates worked well in this setting for the 265 variants and also, with some more 

random noise, for the other genome-wide variants.  

Of note, these validation meta-analyses included general population studies as well as 

studies of specific scope: hospital-based (MGI), focused on individuals aged 70+ years 

(AugUR), focused on individuals with chronic kidney disease (GCKD), or focused on 

individuals with DM (Diacore).  

 

Supplementary Note S4: Graphical illustration of the relationship between SNP-effects 

on eGFR-decline unadjusted and adjusted for eGFR-baseline.  

Figure 2C provides an informative geometrical illustration for the relationship between a SNP-

effect on eGFR-decline baseline-unadjusted (standardized, depicted on Y-axis), ��FG
1HIG/
()FG
1HIG  , and the SNP-effect on eGFR-decline baseline-adjusted (standardized to Y-axis 

scale), ��FG
1HIG_���_01/()FG
1HIG  = ��FG
1HIG/()FG
1HIG  + ��+,-./+,01 ∗ #−��01/()01%, where 

�FG
1HIG,01 is the phenotypic correlation of baseline-unadjusted eGFR-decline with baseline 

eGFR and ��01/()01 is the standardized variant effect on baseline eGFR.  

While this relationship was derived per study (Supplementary Note S1), this also holds 

approximately for meta-analyzed effect sizes, as mostly the same studies contributed to the 

respective meta-analyses. The difference between the two effects, baseline-adjusted and 
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baseline-unadjusted decline, ��+,-./+,01 ∗ #−��01/()01%, can be visualized when adding the 

phenotype correlation line, @(B) = �FG
1HIG,01 ∗ B (mean correlation across studies= 0.34): 

while the baseline-unadjusted decline effect, ��FG
1HIG/()FG
1HIG, is the vertical distance from 

symbol to X-axis, the baseline-adjusted decline effect, ��FG
1HIG_���_01/()FG
1HIG, is the vertical 

distance from symbol to phenotype correlation line.  

 

Supplementary Note S5: Comparison of the signals for eGFR-decline unadjusted and 

adjusted for eGFR-baseline and cross-sectional eGFR for the 11 identified loci 

We compared the association signals for the 11 identified loci for eGFR-decline (unadjusted 

for eGFR-baseline) with signals for eGFR-decline adjusted for eGFR-baseline with signals for 

eGFR cross-sectionalS12 in regional association plots (Supplementary Figure S5A-C),  

For the 4 variants identified for eGFR-decline unadjusted for eGFR-baseline, we found 

unadjusted eGFR-decline signals to coincide with adjusted eGFR-decline signals and with 

cross-sectional eGFR signals (Supplementary Figure S5A). Lead variants for unadjusted 

eGFR-decline (i.e. the variant with the smallest P-value for unadjusted eGFR-decline) were 

the same or highly correlated with the respective cross-sectional lead variants (r²=same, same, 

1.00 and 0.93 for UMOD-PDILT (2), PRKAG2 and SPATA7, respectively).  

Among the 5 lead variants identified by GWAS on eGFR-decline adjusted for eGFR-

baseline with significant association for eGFR-decline unadjusted for eGFR-baseline (i.e. 

“genuine” eGFR-decline variants, Supplementary Figure S5B), all signals for decline 

adjusted coincided with respective signals for decline unadjusted, except for the TPPP locus 

(but there, the signal for decline unadjusted sharpened when including the studies with lower 

imputation quality and then coincided). Three of the 5 lead variants were the same as (FGF5) 

or highly correlated with (C15ORF54 and ACVR2B, R²=0.61 and 0.98) the respective lead 

variants for decline unadjusted. In the OVOL1 locus, the lead variant for decline adjusted 

(rs4930319) depicted the same association signal as for decline unadjusted, but was not highly 

correlated with the variant with the smallest P-value for decline unadjusted (R² with 

rs117829045=0.11) due to differing allele frequencies (MAF=0.11 and 0.33, respectively); the 

variants were suggested to be inherited via the same haplotypes (D’=1.00). Among the 5 

variants, we found 3 signals for eGFR-decline adjusted for eGFR-baseline to coincide with the 

signal for cross-sectional eGFR (for FGF5, OVOL1, ACVR2B) and lead variants for decline 

adjusted as highly correlated with the respective lead variants for cross-sectional eGFR (r²= 

0.95, 0.98, 0.96, respectively; Supplementary Figure S5B). In C15ORF54 and TPPP loci, the 

decline adjusted signal appeared to be a 2nd signal for cross-sectional eGFR: the lead variant 

for decline adjusted were not correlated with the lead variant for cross-sectional eGFR (R²= 

0.04 and 0.11). The lead variant for decline adjusted near TPPP depicted a cross-sectional 

signal 22kb distant from the reported cross-sectional lead variant with different allele 
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frequencies (MAF=0.49 and 0.27, respectively; D’=0.57); of note, the lead variants for decline 

adjusted captured a 2nd signal identified in the recently published cross-sectional eGFR 

analysisS19 and there the lead variants were exactly the same. The C15ORF54 lead variant for 

decline adjusted was highly correlated with a 2nd signal for cross-sectional eGFR (rs28833881, 

r²=0.98).  

For the 3 loci identified by eGFR-decline adjusted for eGFR-baseline without significant 

association with eGFR-decline unadjusted for eGFR-baseline (i.e., not a genuine eGFR-

decline association), there was no signal for decline unadjusted (GATM, CPS1, SHROOM3; 

Supplementary Figure S5C). The lead variants for decline adjusted were the same or highly 

correlated with the respective cross-sectional eGFR lead variant (R²=0.98, same, 0.59). 

 

Supplementary Note S6: Age-dependency of SNP-effects and main age effect on 

eGFR. 

Before interpreting SNP-by-age interaction effects on cross-sectional eGFRcrea and 

eGFRcys, we evaluated the main age effect on eGFRcrea and eGFRcys (i.e. age and sex in 

the model). We found large main age effects, which were fairly linear: beta-estimate per year 

of age [95%-CI] = -0.775 units [-0.780, -0.771] and -1.024, [-1.030, -1.019] on eGFRcrea or 

eGFRcys, respectively (Supplementary Figure S6Z). We nevertheless allowed for non-linear 

main age effects in the SNP-by-age interaction analyses, since the main age effect was large 

and even a slight deviation from non-linearity can distort interaction effects if unaccounted.  

We found the age-dependency of the SNP-effects on eGFRcrea and eGFRcys (i.e. 

age-effect in the interaction term) to be fairly linear when non-linear modelling of main age 

effect was applied (Supplementary Figure 6 SA,B,C). Of note, when the main age effect was 

modelled linearly, the SNP-effects on eGFRcrea and eGFRcys appeared to be non-linearly 

modified by age, which is a known problem in interaction analyses (data not shown); this 

supported the choice of the main age effect modelled non-linearily. 

 

Supplementary Note S7: Narrow-sense heritability 

We estimated SNP-based heritability (h2) for eGFR-baseline and for eGFR-decline unadjusted 

and adjusted for eGFR-baseline using the genomic relatedness matrix restricted maximum 

likelihood (GREML) method as implemented in the GCTA software package 

(https://yanglab.westlake.edu.cn/software/gcta/#Overview). For this, we used individual 

participant data from UK Biobank for the ~15,000 unrelated individuals of European ancestry 

that had baseline and follow-up eGFR measurements available.  
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We estimated narrow-sense heritability (h2) for eGFR-decline at 1% (standard error 2%, 

P = 0.31) and 5% for eGFR-decline adjusted for baseline (standard error 2.1%, P = 0.0075) 

and 20% (standard error 2.5%, P< 1.00x10-100) for eGFR-baseline.  

The small heritability for eGFR-decline in UK Biobank might derive from a large 

measurement error in eGFR-decline based on a study with only two measurements only 4 

years apart. The larger heritability for eGFR-decline adjusted for eGFR-baseline compared to 

unadjusted for eGFR-baseline is reflective of the collider bias.
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Supplementary Figure S1: Meta-analysis workflow. Shown is the meta-analysis workflow to capture the sequential recruitment and different suite of 
computed models (eGFR-decline unadjusted and adjusted for eGFR-baseline, “decline” and “decline adjusted”). In the first level, we conducted a meta-
analysis of summary statistics across studies that were part of CKDGen since a long time (“old CKDGen studies”, green boxes) and a meta-analysis across 
recently joined CKDGen studies (“new studies”, blue boxes) and UK Biobank (orange box). In a second level, we meta-analyzed these two results. At each 
level, genomic-control (GC) correction was applied, when lambda was >1.00.  
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Supplementary Figure S2: Study-specific median annual eGFR-decline versus sample 

size, follow-up time and median age. Shown are, for each of the 62 studies, the study-
specific median of annual eGFR-decline versus (A) number of individuals, (B) time to follow-
up, and (C) median age at baseline. Whiskers represent interquartile range. 
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Supplementary Figure S3: No influence of alternative adjustments for age on eGFR-

decline in UK Biobank. We explored alternative adjustments for age in UK Biobank 
(n=15,442, age range 40-70 years): (A) residuals of eGFR-decline adjusted for age, sex, and 
ln(eGFR-baseline) versus residuals of eGFR-decline adjusted for age, sex and residuals 
(ln(eGFR-baseline) adjusted for age and sex) and (B) residuals of eGFR-decline adjusted for 
age_centered (i.e. centered at 50 years) and sex with residuals of eGFR-decline adjusted for 
age_centered, (age_centered)² and sex. Alternative adjustments did not change the GWAS 
phenotype.  
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Supplementary Figure S4A: No influence from adjusting SNP-associations for eGFR-decline for diabetes mellitus (DM). We compared SNP-
associations for eGFR-decline with DM-adjustment with SNP-associations for eGFR-decline without adjustment for DM in recently joined CKDGen 
studies, UK Biobank, several “old CKDGen studies”, and their meta-analysis (total=103,970; Supplementary Note S2). Columns 1&2 show beta-
estimates and standard errors (SE) among the 265 variants known for cross-sectional eGFRS12, where we had a prior hypothesis that these might 
be associated with eGFR-decline. Columns 3&4 show betas and SEs genome-wide, where most SNP-associations are under the Null (i.e., not 
associated with eGFR-decline). Column 5 shows QQ-plots for P-values genome-wide. Coded allele is the cross-sectional eGFR-lowering allele, 
SNPs with minor allele frequency ≥0.05 are in green and with minor allele frequency <0.05 in orange. All SNPs have imputation quality>0.6 and 
MAC>10 for each study. 
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Supplementary Figure S4A: continued 
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Supplementary Figure S4A: continued 
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Supplementary Figure S4B: Differences between SNP-association for eGFR-decline unadjusted versus adjusted for eGFR-baseline We 
compared SNP-associations for eGFR-decline adjusted for eGFR-baseline with SNP-associations for eGFR-decline unadjusted for eGFR-baseline 
in recently joined studies, UK Biobank, several “old CKDGen studies”, and their meta-analysis (total=103,970). Columns 1&2 show beta-estimates 
and standard errors (SE) among the 265 variants known for cross-sectional eGFRS12, where we had a prior hypothesis that these might be associated 
with eGFR-decline. Columns 3&4 show betas and SEs genome-wide, where most SNP-associations are under the Null (i.e., not associated with 
eGFR-decline). Column 5 shows QQ-plots for P-values genome-wide. Coded allele is the cross-sectional eGFR- lowering allele, SNPs with minor 
allele frequency ≥0.05 are in green and with minor allele frequency <0.05 in orange. All SNPs have imputation quality>0.6 and MAC>10 for all 
studies. 
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Supplementary Figure S4B: continued 
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Supplementary Figure S4B: continued 
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Supplementary Figure S4C: Validation of formula-derived adjustment for eGFR-baseline in eGFR-decline associations (part 1). We 
compared SNP-associations for eGFR-decline adjusted for eGFR-baseline by model with SNP-associations for eGFR-decline adjusted for eGFR-
baseline by formula (using beta-estimates for eGFR-baseline) in recently joined studies, UK Biobank, several “old CKDGen studies”, and their meta-
analysis (total=103,970). Columns 1&2 show beta-estimates and standard errors (SE) among the 265 variants known for cross-sectional eGFRS12, 
where we had a prior hypothesis that these might be associated with eGFR-decline. Columns 3&4 show betas and SEs genome-wide, where most 
SNP-associations are under the Null (i.e., not associated with eGFR-decline). Column 5 shows QQ-plots for P-values genome-wide. Coded allele is 
the cross-sectional eGFR-lowering allele, SNPs with minor allele frequency ≥0.05 are in green and with minor allele frequency <0.05 in orange. All 
SNPs have imputation quality>0.6 and MAC>10 for all studies. 
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Supplementary Figure S4C: continued 
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Supplementary Figure S4C: continued 
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Supplementary Figure S4D: Validation of formula-derived adjustment for eGFR-baseline in eGFR-decline associations (part 2). In “old 
CKDGen studies”, sample sizes were typically larger for cross-sectional eGFR than for baseline eGFR (i.e. restricted to individuals in follow-up). We 
compared SNP-associations for eGFR-decline adjusted for eGFR-baseline by model with SNP-associations for eGFR-decline adjusted for eGFR-
baseline by formula using beta-estimates for cross-sectional eGFR in six “old” CKDGen studies. Columns 1&2 show beta-estimates and standard 
errors (SE) among the 265 variants known for cross-sectional eGFRS12, where we had a prior hypothesis that these might be associated with eGFR-
decline. Columns 3&4 show betas and SEs genome-wide, where most SNP-associations are under the Null (i.e., not associated with eGFR-decline). 
Column 5 shows QQ-plots for P-values genome-wide. Coded allele is the cross-sectional eGFR-lowering allele, SNPs with minor allele frequency 
≥0.05 are in green and with minor allele frequency <0.05 in orange. All SNPs have imputation quality>0.6 and MAC>10 for all studies. 
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Supplementary Figure S4D: continued 
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Supplementary Figure S5A: Region plots of the 4 variants in 3 loci identified for eGFR-decline unadjusted for eGFR-baseline. Shown are 
regional association plots (1st column) for cross-sectional eGFRS12 (“eGFRcrea”, n up to 765,348), (2nd and 3rd column) for eGFR-decline unadjusted 
for eGFR-baseline (“decline”; n up to 343,339; blue dashed line P=0.05/263=1.90x10-4 in 2nd column and P=0.05 in 3rd column), and (4th column) for 
eGFR-decline adjusted for eGFR-baseline (“declineadj”; n up to 320,737). Reference variants are the cross-sectional eGFR lead variant (1st and 2nd 
column) and the declineadj lead variant (i.e. variant with the smallest P-value for declineadj; 3rd and 4th column). Red lines indicate P=5.00x10-8. The 
decline signals coincide with the cross-sectional eGFR signals; decline lead variants are the same or highly correlated with cross-sectional eGFR 
lead variants (r²=same, same, 1.00 and 0.93 for UMOD-PDILT (2), PRKAG2 and SPATA7, respectively).  
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Supplementary Figure S5B: Regions of the 5 variants in 5 loci identified from GWAS for eGFR-decline adjusted for eGFR-baseline with 

significant association for eGFR-decline unadjusted for eGFR-baseline. Shown are regional association plots (1st column) for cross-sectional 
eGFRS12 (“eGFRcrea”, n up to 765,348), (2nd and 3rd column) for eGFR-decline unadjusted for eGFR-baseline (“decline”; n up to 343,339; blue 
dashed line P=0.05/263=1.90x10-4 in 2nd column and P=0.05 in 3rd column), and (4th column) for eGFR-decline adjusted for eGFR-baseline 
(“declineadj”; n up to 320,737). Highlighted are lead variants for cross-sectional eGFRS12 (1st and 2nd column; for C15ORF54, using the 2nd signal lead 
variant) or the declineadj lead variant (3rd and 4th column). Red lines indicate P=5.00x10-8. Signals for declineadj coincide with signals for cross-sectional 
eGFR.  
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Supplementary Figure S5B (continued) 

 



32 

 

Supplementary Figure S5C: Regions of the 3 variants in 3 loci identified from GWAS for eGFR-decline adjusted for eGFR-baseline without 

significant association for eGFR-decline unadjusted for eGFR-baseline. Shown are regional association plots (1st column) for cross-sectional 
eGFRS12 (“eGFRcrea”, n up to 765,348), (2nd and 3rd column) for eGFR-decline unadjusted for eGFR-baseline (“decline”; n up to 343,339; blue 
dashed line P=0.05/263=1.90x10-4 in 2nd column and P=0.05 in 3rd column), and (4th column) for eGFR-decline adjusted for eGFR-baseline 
(“declineadj”; n up to 320,737). Highlighted are lead variants for cross-sectional eGFRS12 (1st and 2 column) and declineadj lead variants (3rd and 4th 
column). Red lines indicate P=5.00x10-8. Signals for declineadj coincide with signals for cross-sectional eGFR; there is no association for decline 
(unadjusted) in these regions.  
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Supplementary Figure S6: Age-dependency of cross-sectional eGFR and age-dependency of SNP-effects on cross-sectional eGFR in UK 

Biobank. We conducted SNP-by-age interaction analyses on cross-sectional eGFRcrea and eGFRcys in individuals from UK Biobank that were 
independent from the GWAS (n=351,462; i.e. excluding the 15,442 individuals in the eGFR-decline GWAS) using linear regression with covariates 
sex, age, SNP, SNP-by-age and outcome eGFRcrea or eGFRcys. The SNP-effect was modelled as linear dosage effect (for main effect and in 
interaction term; i.e. additive genetic effect per allele). Age was centered at 50 years and modelled linearly as well as allowing for a smooth non-
linear change by age. For cross-sectional eGFRcrea (1st row) and eGFRcys (2nd row), we show the age-dependency (Z) of the main age effect on 
eGFRcrea and eGFRcys, (A) on the SNP-effects of the 4 variants identified for eGFR-decline (unadjusted for eGFR-baseline), (B) on the SNP-
effects of the 5 variants identified for eGFR-decline adjusted for eGFR-baseline with significant association for eGFR-decline unadjusted for eGFR-
baseline, and (C) on the SNP-effects of the 3 variants identified for eGFR-decline adjusted for eGFR-baseline without significant association for 
eGFR-decline unadjusted for eGFR-baseline. In A-C, the main age effect was modelled non-linearly (to avoid residual confounding) and the 
interaction effects modelling the age-dependency of the SNP-effect linearly (green lines) are the ones reported in Table 3.  
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Supplementary Figure S6 (continued) 



5 EA

6 EA

UKB EA

AFTER EU

AFTER (EURAGEDIC) 
European Rational Approach 
for the Genetics of Diabetic 
Complications

EA Adult onset Type 1 Diabetes 18496510, 20357380 Modified Jaffe 

Amish Amish Studies EA
Population based "founder" cohort 18440328, 26374108, 

15621217
Modified kinetic Jaffe reaction

AA AA
EA EA

ASPS
Austrian Stroke Prevention 
Study

EA Population-based 10408549, 7800110 Modified kinetic Jaffe reaction, 1991 - 2005

ASPS-Fam
Autrian Stroke Prevention 
Family Study

EA Family-based 25309438, 25443291 Modified kinetic Jaffe reaction, 2006 - 2012

Omni AA AA
Omni EA EA
Omni HA HIS
AA AA
EA EA

Cilento Cilento Study EA
Population-based, Isolated Population 
Study

17476112, 19550436 Jaffe, 2005

DECODE deCODE genetics/Amgen EA Population-based 20686651, 25082825
Ensymatic and modified kinetic Jaffe reaction assay since 
1997

DIACORE DIAbetes COhoRtE EA
Prospective cohort study of patients with 
diabetes mellitus type 2

23409726
Serum Creatinine was measured 2010-2013 using an 
enzymatic assay traceable to NIST.

ESTHER

Epidemiological investigation of 
the chances of preventing, 
recognizing early and optimally 
treating chronic diseases in an 
elderly population

EA Population-based 23446902, 15578318 Kinetic Jaffe-method, 2000 - 2002

FHS The Framingham Heart Study EA Community- and family-based 5921755, 1208363, 17372189 Modified Jaffe method

FINCAVAS
The Finnish Cardiovascular 
Study

EA
Fincavas follow-up cohort of consecutive 
patients undergoing exercise stress test

16515696 Entzymatic photometric, 1992-2015

GCKD
German Chronic Kidney 
Disease study

EA

Included are European ancestry CKD 
patients aged 18-74 years with an eGFR 
between 30–60 mL/min per 1.73 m2 or 
an eGFR >60 mL/ min per 1.73 m2 and a 
urinary albumin-to-creatinine ratio 
(UACR) >300 mg/g, albuminuria >300 
mg/day, a urinary protein-to-creatinine 
ratio >500 mg/g, or proteinuria >500 
mg/day

21862458, 25271006
Serum creatinine was measured using the Ceratinine plus 
enzymatic assay (Roche) on a Modular (P) analyzer in 2012

Geisinger Research 
(MyCode)

MyCode Community Health 
Initiative 

EA Population-based 26866580 Enzymatic method done by Roche Cobas instruments, 1996+

HANDLS
Healthy Aging in 
Neighborhoods of Diversity 
across the Life Span study

AA
Population-based prospective 
longitudinal study

20828101 Modified Jaffe 2004-2009

HYPERGENES
Hypergenes - European 
Network for Genetic-
Epidemiological Studies

controls EA Case-control for Hypertension 22184326 Jaffe assay 2002

Jackson Heart 
Study (JHS)

Jackson Heart Study AA Community and family-based 16320381

IDMS calibrated serum creatinine was used from visit 1 and 
visit 3…  creatinine measurements were made from 2000 on 
but calibration to the same standard was done in 2015 (see 
PMID: 25806862 for a full description). 

JMICC
Japan Multi-institutional 
Collaborative Cohort (J-MICC) 
Study

EAS Population-based  17696755, 32963210 Enzymatic method, 2007-2010

F3 EA
F4 EA

Lifelines Lifelines Cohort Study EA Population-based
18075776, 25502107, 

26333164
Enzymatic, IDMS traceable, Roche (Modular); 2006-2013

MDC-CC
Malmö Diet and Cancer Study- 
Cardiovascular Cohort

EA Population-based 11916347 Jaffé method and the IDMS-traceable standard was used

AFR AA

EAS EAS

EUR EA

HIS HIS

METSIM
Metabolic Syndrome in Men 
study

EA Population-based 28119442 Kinetic Jaffé method, 2005-2010

NESDA
Netherlands Study of 
Depression and Anxiety

EA
Population-based, predominantly cases 
with major depression

18763692 Partly Jaffe, partly enzymatic; 2004-2007

OGP Ogliastra Genetic Park Study EA Population-based 20823129

Colorimetric method Jaffè without deproteinization 
(Biotecnica instruments).Creatinine forms a colored orange-
red complex in an alkaline picrate solution. The difference in 
absorbance at fixed times during conversion is proportional 
to the concentration of creatinine in the sample.    2005-2008

PIVUS
Prospective Investigation of 
Vasculature in Uppsala Seniors

EA Population-based 16141402 Kinetic jaffe method 

POPGEN POPGEN control sample EA Population-based 16490960
Serum creatinine was measured 2005-2008 using an 
enzymatic assay

PREVEND
Prevention of Renal and 
Vascular End-stage Disease 
study

EA Population-based 12356629

An isotope dilution mass spectrometry (IDMS) traceable 
enzymatic method on a Roche Modular analyzer using 
reagents and calibra- tors from Roche (Roche Diagnostics, 
Mannheim, Germany) ‘97-’98

I EA Enzymatic assay, 1999
II EA Enzymatic assay, 2000
III EA Enzymatic assay, 2006

SHIP Study of Health in Pomerania 1 EA Population-based 20167617 Jaffe, 2002
SiMES Singapore Malay Eye Study EAS Population-based 17365815, 21490949 Jaffe, 2004-2007
SINDI Singapore Indian Eye Study EAS Population-based 19995197,  24244560 Jaffe, 2007-2009

EA EA
EAS EAS
SA SA

Jaffe, 2001-2003

Supplementary Table S1: Description of participating studies: study design

ADVANCE

Action in Diabetes and 
Vascular disease: preterAx and 
diamicroN mr Controlled 
Evaluation

factorial, multicentre, randomised 
controlled trial, with a 5- to 6-year follow-
up.

11848259

Study Full name of the study Subgroup

Ancestry

(EA/AA/HI

S/EAS/SA

)

Study Design (if not population-based, 

please specify selection and/or 

enrichment strategy)

Important study references, 

e.g. design paper (PMID)

Serum creatinine assay and year of measurement, 

baseline

ARIC
Atherosclerosis Risk in 
Communities study

Population-based 2646917 Modified kinetic Jaffé reaction, 1989

Jaffe, 2008

CHS Cardiovascular Health Study Population-based 1669507
Colorimetric method on a Kodak Ektachem 700 Analyzer 
(Eastman Kodak, Rochester, NY), 1989-90 and 1992-93

BioMe BioMe™ BioBank Program Population-based 25349204

Baseline is year 2002, exam 2 2004, exam 3 2005 and exam 
4 2007. All assays rate relectance spectrophotometry using 
thin film adaptation of the creatine aminohydrolase method 
on the Vitros analyzer (Johnson and Johnson Clinical 
Diagnositcs)

KORA
Cooperative Health Research 
in the Augsburg Region

Population-based 16032514 Modified kinetic Jaffe reaction, 1994

RS Rotterdam Study Population-based 29064009

MESA
Multi-Ethnic Study of 
Atherosclerosis

Population-based without CVD 12397006

Jaffe, 2010SOLID-TIMI 52 SOLID-TIMI 52 Clinical trial 21982651



EA EA

EAS EAS

SA SA

ULSAM Uppsala study of adult men EA Population-based 21335440 Kinetic jaffe method 
660 EA
AA1M AA
Omni1 EA
Omni5 EA

YFS The Young Finns Study EA Population-based 18263651, 23069987
Serum creatinine was determined spectrophotometrically by 
the Jaffé method (picric acid; Olympus Diagnostica GmbH) 
from frozen plasma samples. Year 2001.

AugUR The German AugUR study EA Prospective cohort study in the elderly 26489512
Serum Creatinine was determined on a encymatic Siemens-
Kit ECREA, 2018

HUNT
Trøndelag Health Study, 
Norway EA Population-based 22879362 Modified kinetic Jaffé reaction, 1995-1997

MGI Michigan Genomics Initiative EA Hospital-based Jaffe, variable year of measurement
UKBB Uk Biobank EA Population-based 25826379 Enzymatic analysis on a beckman Coulter AU5800

AA: African American ancestry; EA: European ancestry; HIS: Hispanics; SA: South Asian ancestry; EAS: East Asian ancestry

Vanderbilt Vanderbilt BioVU
Population-based with enrichment for a 
variety of disease studies

18500243 Extracted from clinical records

STABILITY
STabilization of Atherosclerotic 
plaque By Initiation of 
darapLadIb TherapY

Clinical trial 24678955, 20934559 Jaffe, 2009



Study Exclusions prior to genotyping and/or genetic analysis

Genotyping 

Array

Genotype 

calling

QC filters for genotyped SNPs used for 

imputation

No of 

SNPs 

used for 

imputatio

n

Pre-

phasing 

software
1

Imputation Software

Imputation 

reference panel

Filtering of imputed 

genotypes

Software 

used for 

GWAS
3

Handling 

of 

populatio

n 

stratificati

on

Type of 

reported 

imputatio

n quality

ADVANCE Ethnic outliers, sex mismatches, call rate < 
95%

Affymetrix 
5.0,
Affymetrix 
6.0,
Affymetrix 
UKB

Affymetrix 
power 
tools 
1.17.0

avg_het <23% or >30%; call rate <97%; MAF 
<1%; snp call rate <95%; HWE <0.001;

Affymetrix 
5.0 : 
363,062;
Affymetrix 
6.0 : 
702,628;
Affymetrix 
UKB : 
759,238

ShapeIT2 Impute2 1000 Genomes 
Project Phase 3 
Version 5

MAF<0.005; info 
score<0.3

PLINK 1.90 
beta

PC1-PC2 Info Score

AFTER EU sample call rate <98%, extreme 
heterozygosity, sex mismatches, non-
European ancestry, cryptic relatedness, 
duplicates

Illumina 
HumanCore 
Exome 
v1.0/v1.1 

Illumina 
Genome 
Studio

Call Rate <=95%, HWE Filter 10e-06, INDELS 
removed, non 1KG variants removed, 40% 
MAF difference with 1000G, Duplicate SNPs

318,207 ShapeIT2 Minimac3 1000 Genomes 
Project Phase 3 
Version 5 (updated 
on Oct 20, 2015)

none EPACTS PC1-PC5 r²

Amish age <18, severe chronic disease, call rate 
<95%, pHWE<10E-6

Affymetrix 
500K and 
6.0

BRLMM Sample call rate <95%, pHWE<5E-6, MAF 
<0.01

397,704 ShapeIT2 Impute2 1000 Genomes 
Project Phase 1 
Release Version 3 
ALL (March 2012)

none MMAP NA Info Score

ARIC EA Of the 9713 genotyped individuals of 
European ancestry, we excluded 658 
individuals based on discrepancies with 
previous genotypes, disagreement 
between reported and genotypic sex, one 
randomly selected member of a pair of first-
degree relatives, or outlier based on 
measures of average DST or >8 SD away 
on any of the first 10 principal components.

Affymetrix 
6.0

Birdseed call rate <95%, MAF<0.5%, pHWE<10e-5 682,749 ShapeIT2 Impute2 1000 Genomes 
Project Phase 1 
Release Version 3 
ALL (March 2012)

none SNPTEST 
v2

PC1-PC10 Info Score

ARIC AA Of the 3,207 genotyped individuals of Africa 
ancestry, we excluded 336 individuals 
based on discrepancies with previous 
genotypes, disagreement between 
reported and genotypic sex, one randomly 
selected member of a pair of first-degree 
relatives, or outlier based on measures of 
average DST or >6 SD away on any of the 
first 10 principal components.

Affymetrix 
6.0

Birdseed call rate <95%, MAF<1%, pHWE<10e-5 773,317 ShapeIT2 Impute2 1000 Genomes 
Project Phase 1 
Release Version 3 
ALL (March 2012)

none SNPTEST 
v2

PC1-PC10 Info Score

ASPS Ethnic outliers; duplicates; gender 
mismatch; cryptic relatedness; sample call 
rate < 98%; excess heterozygosity

Illumina  
Human610-
Quad 
BeadChip

Illumina call rate < 98 %;         MAF < 1% ;              
pHWE < 5×10-6

566,930 ShapeIT2 Impute2 1000 Genomes 
Project Phase 1 
Release Version 3 
ALL (March 2012)

none EPACTS 
(v3.2.6)

PC1-PC4 Info Score

ASPS-Fam Ethnic outliers; duplicates; gender 
mismatch; cryptic relatedness; sample call 
rate < 98%; excess heterozygosity

Affymetrix 
Genome-
Wide 
Human SNP 
Array 6.0

Birdseed 
v2

call rate < 98 %;MAF < 5%;pHWE < 1×10-6 501,288 ShapeIT2 Impute2 1000 Genomes 
Project Phase 1 
Release Version 3 
ALL (March 2012)

none EPACTS 
(v3.2.6)

PC1-PC4 Info Score

BioMe none Illumina 
HumanOmn
iExpressExo
me-8 v1.0

BeadStudi
o

Removed samples:
1.  Sample call rate: < 98%
2.  Heterozygosity: coefficient < -0.1 or > 0.3 for 
common variants (MAF>1%)
3.  inbreeding coefficient < 0.4 or > 0.9 for rare 
variants (MAF<1%)
4. MAF = 0
5. HWE < 1x10-5

AA/HIS: 
828,109
EA: 
688,734

AA/HIS: 
ShapeIT2
EA: 
minimac

AA/HIS: 
IMPUTE2
EA: 
Michigan 
Imputation 
Server

AA/HIS: 1000 
Genomes Project 
Phase 1 Release 
Version 3
EA: Haplotype 
Reference 
Consortium 1.1

none EPACTS-
3.2.6-
patched

PC1-PC8 AA/HIS: 
Info Score
EA: r²

CHS AA Beyond laboratory genotyping failures, 
participants were excluded if they had a call 
rate<=95% or if their genotype was 
discordant with known sex or prior 
genotyping (to identify possible sample 
swaps).

Illumina 
HumanOmn
i1-Quad_v1 
BeadChip

Illumina 
GenomeS
tudio

call rate < 97%, HWE P < 10-5, > 1 duplicate 
error or Mendelian inconsistency (for reference 
CEPH trios), heterozygote frequency = 0

940,567 no pre-
phasing

Impute2 1000 Genomes 
Project Phase 3

Variants with 
insufficient effective 
minor alleles are 
filtered prior to 
analysis. This 
threshold was set at 
5 effective alleles. 
Where effective 
alleles is defined as 
MAF*sampleN*2*im
pQuality.

custom R 
software

PC1-PC5 r²

CHS EA European ancestry participants were 
excluded from the GWAS study sample 
due to the presence at study baseline of 
coronary heart disease, congestive heart 
failure, peripheral vascular disease, valvular 
heart disease, stroke or transient ischemic 
attack or lack of available DNA. Beyond 
laboratory genotyping failures, participants 
were excluded if they had a call rate<=95% 
or if their genotype was discordant with 
known sex or prior genotyping (to identify 
possible sample swaps). 

Illumina 
370CNV 
BeadChip

Illumina 
BeadStudi
o

call rate < 97%, HWE P < 10-5, > 2 duplicate 
errors or Mendelian inconsistencies (for 
reference CEPH trios), heterozygote frequency 
= 0, SNP not found in HapMap.

359,592 MaCH Minimac1 1000 Genomes 
Project Phase 3

Variants with 
insufficient effective 
minor alleles are 
filtered prior to 
analysis. This 
threshold was set at 
10 effective alleles. 
Where effective 
alleles is defined as 
MAF*sampleN*2*im
pQuality.

custom R 
software

PC1-PC5 r2

Cilento Gender mismatch Illumina 
370K 
(n=859) 
Illumina 
OmniExpres
s(n=758)

Illumina 
BeadStudi
o

SNPs in common between the two arrays, call 
rate<95%, MAF<1%. 

~190,000 Eagle Sanger 
Imputation 
Service

Haplotype 
Reference 
Consortium

none EPACTS 
(fixed 
version 
febbrary 
2017)

NA Info Score

DECODE Call rate < 97% The chip-
typed 
samples 
were 
assayed 
with the 
Illumina 
HumanHap
300, 
HumanCNV
370, 
HumanHap
610, 
HumanHap
1M, 
HumanHap
660, Omni-
1, Omni 2.5 
or Omni 
Express 
bead chips 
at deCODE 
genetics

Graphtype
r

Yield < 95%, MAF>0.01, HW < 0.001 Inhouse 
software

Inhouse 
software, 
similar to 
IMPUTE

Icelandic reference 
panel - variants 
matched with 
Haplotype 
Reference 
Consortium or 1000 
Genomes Project 
Phase 3

None Inhouse 
software

for 
quantitativ
e traits: 
BOLT 
LMM or 
variance 
covariance 
matrix 
prop. to 
the kinship 
matrix / for 
binary: 
adj. for 
county of 
birth

Info Score

DIACORE all patients included Axiom UK 
Biobank 
Array

Axiom 
GT1 in 
Genotypin
g Console 
4.0

1) Missing phenotype
2) Ancestry not European
3) Relatedness 2nd degree or closer
4) Genetic gender discordant with phenotypic 
gender
5) Gonosomal aberation
6) Excess of Heterocygosity
7) Low callrate

799,756 ShapeIT2 Minimac1 1000 Genomes 
Project Phase 3 
Version 5

none epacts 
3.2.6

PC1-PC10 r²

Supplementary Table S2: Description of participating studies: genotyping and imputation



ESTHER Quality control was performed according to 
Nat. Protoc. 2010 Sept.; 5(9): 1564-1573, 
Anderson et al.: Gender mismatch, sample 
call rate < 97%,removal of duplicated or 
related samples, removal of ethnic outliers 
(Germans only remained), MAF 0.01, 
GENO 0.05, HWE 0.00001

Illumina 
Infinium 
OncoArray-
500K 
BeadChip

GenomeS
tudio

MAF < 0.01 368,205 ShapeIT Impute2 1000 Genomes 
Project Phase 3 
Version 5

none SNPTEST 
v2.5.2

not 
required

Info Score

FHS call rate >97%,sample failures, genotyped 
sex different from recorded sex, extreme 
heterozygosity or high Mendelian error rate

Affymetrix 
GeneChip 
Human 
Mapping 
500K Array 
Set® and 
50K Human 
Gene 
Focused 
Panel®

Affymetrix 
BRLMM

call rate ≥97%, pHWE≥1E-6, Mishap p≥1e-9, 
≤100 Mendel errors, MAF≥1%

412,053 ShapeIT MACH 1000 Genomes 
Project Phase 1 
Release Version 3 
(March 2012)

none GWAF PCs 
asscoated 
with trait 
with 
p<0.05

r²

FINCAVAS call rates < 95%, pHWE < 1E-6, sex 
mismatch, MDS outliers, excess 
heterozygosity

Illumina 
HumanCore
Exome and 
Metabochip

Genome 
Studio

call rate<95%, pHWE<1e-6, monomorphic 
removed

HCE: 
306,474. 
MC: 
155,499

Eagle2 Minimac3 Haplotype 
Reference 
Consortium 1.1

None EPACTS PC1-PC5 r²

GCKD Call rate < 97%, failed sex check, outside 2 
SD of mean heterozygosity, cryptic 
relatedness and genetic ancestry outlier

Illumina 
Omni2.5Exo
me 
BeadChip

Illumina 
GenomeS
tudio

Exclude SNPs with call rate < 96%, or HWE p 
< 1E-5, or MAF < 1%

2,337,794 Eagle Minimac3 Haplotype 
Reference 
Consortium 1.1

none EPACTS no 
associated 
PCs

r²

Geisinger 
Research
(MyCode)

none Illumina 
Human 
Omni 
express 
Exome

Illumina’s 
Genotype 
studio

Removed samples and markers having:
1. IMPUTE2 info score < 0.7
2. Marker call rate < 99%
3. Sample call rate < 90%
4. MAF < 0.01
5. HWE < 1e-07
6. Removed SNPs having insertions and 
deletions

589,485 SHAPEIT
2

Impute2 1000 Genomes 
Project Phase 1 
Release Version 3 
ALL (March 2012)

Removed SNPs with 
info score<0.7

PLATO 
v0.0.1

not 
required

Info Score

HANDLS Ethnic outliers, cryptic relateds, and sex 
mismatches, call rate < 95%

Illumina 1M 
genotyping 
array

Illumina 
GenomeS
tudio

MAF < 0.01, HWE pvalue < 1.0E-07, call rate < 
95%

907,763 MACH 
1.0

Michigan 
Imputation 
Server

1000 Genomes 
Project Phase 3 
Version 5

None EPACTS 
(v3.2.6)

PCs r²

HYPERGEN
ES

Ethnic outliers, sex mismatches, related, 
call rate<95%; Extremes in heterozygosity 

Illumina 1M  
Duo 
genotyping 
array

Illumina 
GenomeS
tudio

MAF<0.01; Call rate <99%; HWE < 
0.00000004

909,532 ShapeIT Minimac1 1000 Genomes 
Project Phase 1 
Release Version 3 
(March 2012)

none EPACTS 
(v3.2.6)

PCs r²

Jackson 
Heart Study 
(JHS)

sex mismatches, sample duplications or 
swaps, sample call rate <95%

Affymetrix 
6.0

Birdseed call rate <95% 868,969 MACH 
1.0

Minimac1 1000 Genomes 
Project Phase 1 
Release Version 3 
(March 2012), ALL

none EPACTS 
(v3.2.6)

PC1-PC10 
and 
kinship 
matrix for 
continuous 
traits

r²

JMICC sample call rate < 98 %, sex mismatches, 
related samples (IBD 0.1875), samples not 
mapping to JPT (1000 genomes)

Illumina 
HumanOmn
iExpressExo
me

GenomeS
tudio

Call rate < 98%, pHWE <10e-6, MAF < 1 %,
exclude SNPs do not match or not present in 
1000 Genomes phase 3 reference panel, 
remove SNPs with allele freqeuncy difference 
>20% between scaffold and EAS in 1000GP3, 
remove duplicates

570,162 ShapeIT2 Minimac3 1000 Genomes 
Project Phase 3

none EPACTS PC1-PC5 r²

KORA_F3 check for European ancestry, check for 
population outlier

Illumina 
Omni 
2.5/Illumina 
Omni 
Express

Genome 
Studio

call rate >97%, missmatch of phenotypic and 
genetic gender, 5SD from mean heterozygosity 
rate, comparison with other genotyping of the 
same individuals (Metabochip, Exome, Omni)

587,981 ShapeIT Michigan 
Imputation 
Server

1000 Genomes 
Project Phase 3 
Version 5

none EPACTS 
(v3.2.6)

PC1-PC10 r²

KORA_F4 check for European ancestry, check for 
population outlier

Affymetrix 
Axiom

Affymetrix 
Software

call rate >97%, missmatch of phenotypic and 
genetic gender, 5SD from mean heterozygosity 
rate, comparison with other genotyping of the 
same individuals (Metabochip, Exome, Omni)

508,532 ShapeIT Michigan 
Imputation 
Server

1000 Genomes 
Project Phase 3 
Version 5

none EPACTS 
(v3.2.6)

PC1-PC10 r²

Lifelines call rate <95%; sex mismatch; 
heterozygosity > 4SD from mean; non-
CaucasiansIBS

Illumina 
Cyto SNP12 
v2

GenomeS
tudio

samples with call rate < 0.8, excess 
heterozygosity, non-Caucasian ethnicity (as 
determined by PCA), high relatedness (pi-hat > 
0.4) or a gender mismatch; SNPs with MAF < 
1%, a HWE p-value ≤10-3, or a callrate < 95%

257,581 Minimac1 1000 Genomes 
Project Phase 1 
Release Version 3 
(March 2012)

none PLINK 1.90 
beta

PC1-PC10 r²

MDC-CC 1. bad call rate
 2. excess homozygosity
 3. failed gender check
 4. Related individuals/duplicates
 5. Popoulation outliers

Illumina 
HumanOmn
iExpressExo
me 
BeadChip v. 
1.0

GenomeS
tudio 
v2011.1

monormorphic, bad call rate (<95%), fail HWE 
(p<10^-6)

~800,000 ShapeIT2 Impute2 1000 Genomes 
Project Phase 1 
Release Version 3 
ALL (March 2012)

none SNPTEST PC1-PC10 Info Score

MESA-AFR Sex discrepancy, duplicates, call rate 
<95%, pHW <1E-6, heterozygosity, and 
outliers

Affymetrix 
Genome-
Wide 
Human SNP 
Array 6.0

Birdseed 
v2

call rate≥95%, MA>1% 897,979 ShapeIT2 Michigan 
Imputation 
Server

1000 Genomes 
Project Phase 3 
Version 5 ALL

none EPACTS 
(v3.2.6)

PC1-PC3 r²

MESA-EUR Sex discrepancy, duplicates, call rate 
<95%, pHW <1E-6, heterozygosity, and 
outliers

Affymetrix 
Genome-
Wide 
Human SNP 
Array 6.0

Birdseed 
v2

call rate≥95%, MA>1% 897,979 ShapeIT2 Michigan 
Imputation 
Server

Haplotype 
Reference 
Consortium

none EPACTS 
(v3.2.6)

PC1-PC3 r²

MESA-HIS Sex discrepancy, duplicates, call rate 
<95%, pHW <1E-6, heterozygosity, and 
outliers

Affymetrix 
Genome-
Wide 
Human SNP 
Array 6.0

Birdseed 
v2

call rate≥95%, MA>1% 897,979 ShapeIT2 Michigan 
Imputation 
Server

1000 Genomes 
Project Phase 3 
Version 5 ALL

none EPACTS 
(v3.2.6)

PC1-PC3 r²

MESA-EAS Sex discrepancy, duplicates, call rate 
<95%, pHW <1E-6, heterozygosity, and 
outliers

Affymetrix 
Genome-
Wide 
Human SNP 
Array 6.0

Birdseed 
v2

call rate≥95%, MA>1% 897,979 ShapeIT2 Michigan 
Imputation 
Server

1000 Genomes 
Project Phase 3 
Version 5 ALL

none EPACTS 
(v3.2.6)

PC1-PC3 r²

METSIM call rate, sex check, duplicate removal, PC 
outliers

Illumina 
HumanOmn
iExpress-
12v1

GenomeS
tudio

call rate<95%, MAF<1% ShapeIT2 Minimac3 Haplotype 
Reference 
Consortium 1.1

none EPACTS mixed-
model

r²

NESDA Non-Caucasians, XO and XXY samples, 
and samples with a call rate <90%, high 
genome-wide homo- or heterozygosity, 
excess IBS

Perlegen-
Affymetrix 
5.0; 
Affymetrix 
6.0 907K

Birdseed call rate≤95%; MAF<0.01; pHWE<1E-5; 
ambiguous location or allele with reference; 
>20% allele frequency difference from 
reference; ambiguous SNPs with a MAF>35%

378,163 MACH Minimac3 1000 Genomes 
Project Phase 1 
Release Version 3 
ALL (March 2012)

none EPACTS PC1-PC3 r²

OGP sex mismatches, sample duplications or 
swaps, sample call rate <95%

Affymetrix 
500K Gene 
Chip

BRLMM call rate < 95 %;MAF < 1%;pHWE < 1×10-6 347,517 BEAGLE Michigan 
Imputation 
Server

Haplotype 
Reference 
Consortium

none EPACTS 
(v3.2.6)

Genomic 
Kinship for 
quantitativ
e traits; 
First 3 
PCs for 
binary 
traits

r²

PIVUS Call rate <95%; sex mismatch; extreme 
heterozygosity; related individuals; ancestry 
outliers

Illumina 
OmniExpres
s and 
Metabochip

Genome 
Studio

call rate <95%, HWE p<10^-6, MAF<1% 738,583 ShapeIT2 Impute4 Haplotype 
Reference 
Consortium

info<0.4 SNPTEST PC1-PC2 Info Score



POPGEN sample call rate < 90 %, sex mismatches, 
duplicates Samples (IBD 0.185), samples 
with heterozygosity outside mean +-3SD, 
samples not mapping to CEU (Hapmap), 
i.e. outside median +- 3*IQR and samples 
with batch problems, i.e. outside median +-
3*IQR 

Affymetrix 
Axiom, 
Affymetrix 
6.0, Illumina 
Immunochip 
(Beadchip), 
Illumina 
Metabochip, 
Illumina 
550k 
(merged 
after QC) 

Illumina 
GenomeS
tudio or 
Illumina 
Opticall

SNP call rate < 5%, HWE < 1x10^-5, no MAF 
for QC but MAF pre Imputation

1049248 ShapeIT2 Impute2 1000 Genomes 
Project Phase 1 
Release Version 3 
ALL (March 2012)

removed SNPs with 
info <= 0.3

EPACTS not 
required

Info Score

PREVEND call rate <95%; sex mismatch; non-
Caucasians; duplicated samples

Illumina 
Cyto SNP12 
v2

Illumina 
GenomeS
tudio

call rate < 95%; MAF <1%; pHWE< 1E-4 232571 ShapeIT2 Michigan 
Imputation 
Server

Haplotype 
Reference 
Consortium

none SNPTEST 
V2

PC1-PC5 
and 
exclusion 
of PC 
outliers

Info Score

RS-I MAF < 0.05, SNP callrate < 0.95 and/or 
HWE p-value < 1 x 10-7, excess 
heterozygosity, gender swaps, genetic 
ancestry and familial relationships

Illumina 
550K

GeneCall MAF < 0.05, SNP callrate < 0.95 and/or HWE p-
value < 1 x 10-7

502668 MaCH Minimac 3 Haplotype 
Reference 
Consortium 1.0

none RVTEST PC1-PC5 r²

RS-II MAF < 0.05, SNP callrate < 0.95 and/or 
HWE p-value < 1 x 10-7, excess 
heterozygosity, gender swaps, genetic 
ancestry and familial relationships

Illumina 
550K

GeneCall MAF < 0.05, SNP callrate < 0.95 and/or HWE p-
value < 1 x 10-8

490409 MaCH Minimac 4 Haplotype 
Reference 
Consortium 1.0

none RVTEST PC1-PC5 r²

RS-III MAF < 0.05, SNP callrate < 0.95 and/or 
HWE p-value < 1 x 10-7, excess 
heterozygosity, gender swaps, genetic 
ancestry and familial relationships

Illumina 
610K and 
660K

GeneCall MAF < 0.05, SNP callrate < 0.95 and/or HWE p-
value < 1 x 10-9

517658 MaCH Minimac 5 Haplotype 
Reference 
Consortium 1.0

none RVTEST PC1-PC5 r²

SHIP duplicate samples (by IBS), 
reported/genotyped gender mismatch, 
callrate <= 92%

Affymetrix 
SNP 6.0

Birdseed2 pHWE <= 0.0001 or CallRate <= 0.95 or 
monomorphic SNPs, duplicate IDs, inconsistent 
reference alleles, mapping problem to build 37

823635 Eagle2 Minimac3 Haplotype 
Reference 
Consortium 1.1

none EPACTS-
3.2.6-
patched

not 
required

r²

SiMES monomorphic, call rate <95%, pHW <1E-6, 
heterozygosity, related 
individuals/duplicates, discordant ethnicity, 
and gender discrepancy.

Illumina 
Human610-
Quad 
Beadchips

Genomest
udio 
GenTrain 
and 
GenCall

T2D DIAMANTE protocol: exclude SNPs do not 
match or not present in 1000 Genomes phase 
3 reference panel, remove SNPs with allele 
freqeuncy difference >20% between scaffold 
and reference population in 1000Gp3, remove 
duplicates

549947 ShapeIT Michigan 
Imputation 
Server

1000 Genomes 
Project Phase 3 
Version 5 ALL

none EPACTS 
(v3.2.6)

PC1, PC2 r²

SINDI monomorphic, call rate <95%, pHW <1E-6, 
heterozygosity, related 
individuals/duplicates, discordant ethnicity, 
and gender discrepancy.

Illumina 
Human610-
Quad 
Beadchips

Genomest
udio 
GenTrain 
and 
GenCall

T2D DIAMANTE protocol: exclude SNPs do not 
match or not present in 1000 Genomes phase 
3 reference panel, remove SNPs with allele 
freqeuncy difference >20% between scaffold 
and reference population in 1000Gp3, remove 
duplicates

552278 ShapeIT Michigan 
Imputation 
Server

1000 Genomes 
Project Phase 3 
Version 5 ALL

none EPACTS 
(v3.2.6)

PC1-PC3 r²

SOLID-TIMI 
52

individuals excluded if call rate <97%, >3rd 
degree relative determined by kindship 
coefficient estimates from KING, GWAS 
gene didn't match annotated gender

Axiom® 
Biobank 
Plus 
Genotyping 
Array

call rates <95%, monomorphic, Hardy-
Weinberg <E-6,

~547000 HAPI-UR 1000 Genomes 
Project Phase 1 
Release Version 3 
ALL (March 2012)

none EPACTS 
(v3.2.6)

PC1-PC10 Info Score

STABILITY individuals excluded if call rate <95%, >3rd 
degree relative determined by kindship 
coefficient estimates from KING, GWAS 
gene didn't match annotated gender

Illumina 
HumanOmn
iExpressExo
me-8 v1 
array

call rates <95%, monomorphic, Hardy-
Weinberg <E-7,

881788 ShapeIT2 Minimac3 1000 Genomes 
Project Phase 1 
Release Version 3 
ALL (March 2012)

none EPACTS 
(v3.2.6)

PC1-PC10 r²

ULSAM Call rate <95%; sex mismatch; extreme 
heterozygosity; related individuals; ancestry 
outliers

Illumina 
2.5M and 
Metabochip

Genome 
Studio

call rate <95%, HWE p<10^-6, MAF<1% 1621481 ShapeIT2 Impute4 Haplotype 
Reference 
Consortium

info<0.4 SNPTEST PC1-PC2 Info Score

Vanderbilt-
660

sex check, duplicate removal, call rate 
(<98%), HapMap concordance check

  Illumina 
660W

Genome 
Studio

call rate <98%, HWE<0.001, MAF <0.001 527715 ShapeIT Minimac3 Haplotype 
Reference 
Consortium 1.1

none EPACTS PC1-PC3 r²

Vanderbilt-
AA1M

sex check, duplicate removal, call rate 
(<98%), HapMap concordance check

Illumina 1M Genome 
Studio

call rate <98%, HWE<0.001, MAF <0.001 784048 ShapeIT Minimac3 Haplotype 
Reference 
Consortium 1.1

none EPACTS PC1-PC3 r²

Vanderbilt-
Omni1

sex check, duplicate removal, call rate 
(<98%), HapMap concordance check

Illumina 
OMNI-Quad

Genome 
Studio

call rate <98%, HWE<0.001, MAF <0.001 924162 ShapeIT Minimac3 Haplotype 
Reference 
Consortium 1.1

none EPACTS PC1-PC3 r²

Vanderbilt-
Omni5

sex check, duplicate removal, call rate 
(<98%), HapMap concordance check

HumanOmn
i5-Quad

Genome 
Studio

call rate <98%, HWE<0.001, MAF <0.001 3702007 ShapeIT Minimac3 Haplotype 
Reference 
Consortium 1.1

none EPACTS PC1-PC3 r²

YFS call rates < 95%, pHWE < 1E-6, sex 
mismatch, MDS outliers, excess 
heterozygosity

Illumina 
670k 
Custom

Illuminus call rate<95%, pHWE<1e-6, monomorphic 
removed

542086 Eagle2 Minimac3 Haplotype 
Reference 
Consortium 1.1

None EPACTS PC1-PC5 r²

AugUR sex check, duplicate removal, relatedness, 
call rate (<98%), HapMap concordance 
check

Infinium® 
Global 
Screening 
Array-24 
v1.0

GenomeS
tudio

call rate<95%, pHWE<1e-6, monomorphic 
removed, removed variants not in reference

614130 ShapeIT Minimac3 1000 Genomes 
Project Phase 3 
Version 5 ALL

None rvtests PC1-PC4 r²

HUNT Only Europeans were included for this 
analysis. Samples with call rate <99%, 
departures from HWE, duplicates, gender 
mismatch, unusual XY composition, 
mismatch with reference genome, and 
samples with contamination > 2.5% were 
removed

Illumina HumanCoreExome (HumanCoreExome12 v1.0, HumanCoreExome12 v1.1 and UM HUNT Biobank v1.0)GenCall from GenomeStudiocall rate <95%, MAF<0.5%, pHWE<10e-5 368139 Eagle2 Minimac3 Haplotype 
Reference 
consortium release 
1.1 + 2,201 low-
coverage whole-
genome sequences 
samples from the 
HUNT study

r²≥0.3 SAIGE v0.35.8.3PC1-PC4 r²

MGI Only European individuals were used for 
analysis, duplicates, gender mismatch, 
unusual XY composition, related samples, 
and samples with contamination > 2.5% 
were removed

the Illumina 
Infinium 
CoreExome-
24

GenomeS
tudio

Sample call rate < 99%, chromosomal call-rate 
drop > 5%

502255 Eagle Minimac3 HRC none rvtests PC1-PC4 r²

UKBB variants showing batch effects, plate 
effects, departures from HWE, sex effects, 
array effects, discordance across control 
replicates. Samples: ancestry outliers, 
outliers for heterozygosity and missingness. 
Further QC details can be found here : 
https://www.biorxiv.org/content/early/2017/0
7/20/166298

UK BiLEVE 
Axiom array, 
UK Biobank 
Axiom array

Axiom 
GT1 
algorithm 
as 
implement
ed in the 
Affymetrix 
Power 
Tools 
software

Failed QC in > 1 batch, call rate < 95%, MAF < 
0.0001, further details can be found here : 
https://www.biorxiv.org/content/early/2017/07/2
0/166298

670739 ShapeIT3 Impute4 Haplotype 
Reference 
Consortium

None Quicktest PC1-PC10 Info Score

1 References for cited software: MACH (PMID: 19715440); ShapeIT (PMID: 22138821); Eagle (PMID: 27270109); Beagle (PMID: 21310274).
2 References for cited software: ImputeV2 (PMID: 19543373); minimac3 (PMID: 27571263); PBWT (PMID: 24413527); Sanger Imputation server (PMID: 27548312); Michigan Imputation Server (PMID: 27571263).
3 References for cited software: EPACTS (Kang, H.M. Epacts: Efficient and Parallelizable Association Container Toolbox. University of Michigan: Department of Biostatistics and Center for Statistical Genetics (2012); PMID: 20208533); SNPTest (PMID: 20517342); RegScan 
(PMID: 24008273); RVTESTS (PMID: 27153000); PLINK 1.90 (PMID: 25722852); GenABEL (PMID: 17384015); ProbABEL (PMID: 20233392); GWAF (PMID: 20040588); GEMMA (PMID: 22706312); mach2qtl (PMID: 21058334).



overall

DM at 

baseline

CKD at 

baseline

5 EA 4.35 70% 100% 67.2 67.4 (6.6) 72.1 (59.5, 86.3) 752 752 192
6 EA 4.35 62% 100% 67.2 67.4 (6.6) 74.0 (62.8, 86.1) 2,169 2,169 436
UKB EA 4.35 59% 100% 68.4 67.4 (6.6) 69.3 (57.4, 83.2) 1,061 1,061 319

AFTER EU EA 6.00 57% 100% 42.7 43.7 (11.1) 89.7 (67.0, 103.9) 831 831 140
Amish EA 7.00 50% 1% 48.0 48.3 (16.3) 100.4 (88.9, 111.6) 798 NA NA

AA AA 8.38 37% 20% 53.3 53.9 (5.8) 115.0 (102.8, 123.9) 1,903 298 NA
EA EA 8.69 47% 9% 54.6 54.8 (5.7) 101.1 (94.2, 107.4) 7,284 545 NA

ASPS EA 1.00 43% 0% 65.0 65.8 (8) 73.6 (63.7, 88.1) 469 NA NA
ASPS-Fam EA 4.00 40% 0% 68.0 64.6 (10.6) 76.6 (65.3, 86.8) 104 NA NA

Omni EA EA 2.77 35% 5% 62.9 63.8 (8.7) 76.3 (63.8, 89.1) 852 110 134
Omni AA AA 5.34 52% 3% 47.0 47.1 (13.7) 96.6 (79.9, 114.8) 1,717 NA 153
Omni HA HIS 4.97 37% 6% 48.4 48.7 (14.8) 92.5 (77.0, 106.1) 2,123 123 180
AA AA 4.00 39% 24% 72.0 72.9 (5.7) 72.0 (59.5, 87.2) 481 NA 100
EA EA 6.00 44% 12% 71.0 72.3 (5.4) 65.2 (55.3, 75.9) 2,080 210 673

Cilento EA 8.00 44% 10% 53.0 52.6 (19.7) 92.2 (80.2, 107.1) 788 NA NA
DECODE EA 14.00 47% 5% 44.0 45.4 (18.9) 94.1 (78.56, 108.9) 117,666 9,471 10,086
DIACORE EA 2.96 60% 100% 66.7 65.5 (8.8) 82.4 (67.8, 92.9) 2,169 2,169 352
ESTHER EA 5.00 42% 17% 62.0 61.6 (6.5) 93.0 (76.5, 103.0) 1,090 155 NA
FHS EA 15.00 47% 6% 54.0 54.0 (14.9) 74.4 (47.1, 102.1) 2,925 195 1,296
FINCAVAS EA 8.90 61% 13% 57.8 55.1 (13.2) 90.8 (78.4, 100.0) 835 123 NA
GCKD EA 2.00 60% 35% 63.0 60.1 (12) 46.4 (37.1, 57.4) 3,941 1,341 3,115

Geisinger Research 
(MyCode)

EA
13.00

42% 13% 50.0 49 (15.2) 95.1 (80.1, 107.6)
36,286 4,659 2,237

HANDLS AA 5.00 44% 18% 49.0 48.5 (9) 102.6 (87.6, 116.4) 735 135 NA
HYPERGENES controls EA 1.50 61% 0% 57.5 59.5 (9.8) 87.7 (76.9, 97.5) 461 NA NA
Jackson Heart 
Study (JHS)

AA 6.60 38% 22% 55.5 55.1 (12.8) 96.5 (80.6, 110.0) 2,162 418 NA
JMICC EAS 5.03 40% 3% 54.3 54.0 (9.4) 102.2 (96.0,108.4) 975 NA NA

F3 EA 10.00 47% 2% 47.0 47.3 (13.0) 104.4 (94.0, 113.8) 2,878 NA NA
F4 EA 7.00 49% 3% 49.0 49.2 (13.9) 93.9 (81.9, 105.2) 2,916 NA NA

Lifelines EA 5.50 42% 3% 47.0 48.1 (11.4) 94.2 (83.1, 104.1) 10,553 322 142
MDC-CC EA 16.49 41% 4% 56.3 56.4 (5.7) 80.7 (70.9, 90.6) 2,889

AFR AA 4.00 46% 17% 63.0 62.3 (10.1) 82.3 (70.1, 95.1) 1,283 198 122
EAS EAS 4.00 49% 13% 62.0 62.7 (10.2) 83.2 (71.3, 93.7) 615 NA NA
EUR EA 4.00 48% 5% 63.0 62.4 (10.4) 75.4 (65.6, 86.2) 2,199 128 297
HIS HIS 4.00 48% 17% 61.0 61.4 (10.3) 84.2 (71.1, 94.3) 1,176 187 NA

METSIM EA 4.00 100% 13% 57.0 57.7 (7.1) 93.5 (85.3, 100.0) 5,349 596 NA
NESDA EA 6.00 34% 4% 43.0 41.9 (13.1) 103.7 (93.9, 114.8) 1,758 NA NA
OGP EA 6.34 33% 7% 51.7 53.2 (17.7) 73.1 (61.5, 85.0) 407 NA NA
PIVUS EA 5.13 50% 11% 70.1 70.2 (0.2) 81.7 (67.4, 90.6) 539 NA NA
POPGEN EA 6.00 53% 3% 57.0 54.7 (14.2) 91.0 (80.0, 100.9) 821 NA NA
PREVEND EA 4.00 52% 4% 49.0 49.6 (12.5) 84.3 (73.7, 94.4) 2,932 105 149

I EA 7.22 40% 13% 72.3 73.2 (7.6) 74.5 (64.3, 84.2) 1,338 121 116
II EA 9.30 46% 12% 62.0 64.8 (8.0) 81.7 (71.5, 91.1) 1,248 NA NA
III EA 5.34 44% 9% 56.9 57.2 (6.9) 86.5 (76.9, 95.5) 2,289 NA NA

SHIP 1 EA 3.00 48% 9% 55.0 54.5 (15.3) 90.4 (75.9, 103.8) 2,163 133 NA
SiMES EAS 3.67 49% 31% 58.8 59.6 (11.0) 79.3 (64.7, 92.4) 1,451 405 191
SINDI EAS 4.68 51% 40% 56.8 58 (10.0) 93.9 (80.5, 103.0) 1,554 552 NA

EA EA 2.00 75% 26% 64.0 64.5 (9.3) 78.9 (65.1, 91.0) 5,759 1,473 938
EAS EAS 3.00 83% 34% 65.0 64.7 (9.0) 84.3 (70.1, 92.1) 235 NA NA
SA SA 1.00 79% 34% 62.0 61.0 (11.1) 76.9 (62.4, 92.9) 207 NA NA
EA EA 3.00 82% 37% 65.0 64.7 (9.1) 73.4 (61.2, 85.6) 7,687 2,821 1,677
EAS EAS 3.00 78% 43% 65.0 64 (9.1) 83.1 (68.1, 92.8) 523 222 NA
SA SA 3.00 84% 41% 59.0 58.5 (10.4) 78.5 (64.7, 90.6) 469 NA NA

ULSAM EA 6.75 100% 10% 71.0 71.0 (0.6) 57.7 (51.7, 63.9) 686 NA 424
660 EA 8.81 45% 4% 54.8 54.0 (15.8) 86.5 (71.1, 100.4) 1,429 NA 146
AA1M AA 9.76 34% 6% 47.5 47.6 (16.2) 100.3 (79.6, 119.3) 755 NA NA
Omni1 EA 8.97 53% 3% 55.4 54.0 (15.8) 88.2 (70.1, 102.8) 1,859 NA 244
Omni5 EA 4.32 55% 8% 55.9 52.9 (17.2) 88.2 (69.4, 103.6) 508 NA NA

YFS EA 6.00 46% 0% 33.0 31.6 (5.0) 109.7 (100.2, 116.4) 1,683 NA NA
AugUR EA 2.40 55% 22% 76.7 77.6 (5.0) 68.9 (59.0, 80.3) 677 147 184
HUNT EA 21.20 45% 5% 44.5 45.1 (13.7) 104.0 (92.7, 114.2) 46,328 2,235 502
MGI EA 6.00 46% 39% 52.0 50.4 (15.5) 92.8 (77.7,105.6) 20,077 3,254 1,867
UKBB EA 4.00 50% 4% 58.0 57.1 (7.3) 92.6 (83.1,99.0) 15,442 542 241

AA: African American ancestry; EA: European ancestry; HIS: Hispanics; SA: South Asian ancestry; EAS: East Asian ancestry
CKD=Chronic Kidney Disease: eGFRcrea at baseline < 60 mL/min/1.73m²
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Supplementary Table S3: Description of participating studies: phenotype distribution
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Supplementary Table S4: The 12 identified variants for eGFR-decline were associated with other kidney phenotypes, but not with 

DM-status. For the 12 identified variants, we show association results for eGFR based in cystatin CS19(“eGFRcys”, n up to 460,826), blood 
urea nitrogenS12 (“BUN”, n up to 416,178), urine albumin-to-creatinine ratioS20 (“UACR”, n up to 564,257), chronic kidney diseaseS12 (“CKD”, n 
up to 625,219) and DMS21 (n up to 898,130) from published GWAS. Coded allele is the faster-decline allele (which is always the eGFR-lowering 
allele). Genome-wide significant P-values (P<5.00x10-8) are stated in bold. 
 

     eGFRcys BUN UACR  CKD DM 

SNPID Locus Name 
EA/ 
OA 

  Beta P  Beta P  Beta P   OR P  OR P 

Variants with genuine association for eGFR-decline 

rs34882080 UMOD-PDILT a/g   -0.011 3.44x10-75  0.010 4.56x10-20  -0.011 1.14x10-05   1.205 3.89x10-56  0.992 0.570 

rs77924615 UMOD-PDILT g/a   -0.012 6.29x10-94  0.012 3.71x10-42  -0.010 7.24x10-05   1.232 6.66x10-86  0.989 0.400 

rs10254101 PRKAG2 t/c   -0.0090 1.64x10-70  0.013 4.52x10-43  -0.0029 0.191   1.107 1.21x10-25  0.986 0.220 

rs1028455 SPATA7 t/a   -0.0016 9.51x10-04  0.0012 0.105  0.0026 0.213   1.028 7.65x10-04  0.984 0.160 

rs1458038 FGF5 c/t   -0.0029 9.45x10-09  0.0043 5.99x10-09  -0.0029 0.182   1.065 7.36x10-14  0.978 0.047 

rs4930319 OVOL1 c/g   -0.0055 1.26x10-29  -0.0050 3.74x10-11  -0.0038 0.066   1.060 7.35x10-12  1.005 0.640 

rs434215 TPPP a/g   -0.0044 3.10x10-14  0.0034 0.008  0.0034 0.201   1.043 1.28x10-03  0.989 0.380 

rs28857283 C15ORF54 g/a   -0.0022 5.76x10-06  0.0026 5.20x10-04  -0.0025 0.210   1.050 1.19x10-08  0.986 0.200 

rs13095391 ACVR2B a/c   0.00020 0.662  0.0006 0.479  -0.0017 0.743   1.022 0.011  0.983 0.180 

Variants without genuine association for eGFR-decline 

rs9998485 SHROOM3 a/g   -0.0090 3.94x10-83  0.0031 7.68x10-04  -0.012 0.023   1.052 4.48x10-08  1.000 0.980 

rs1047891 CPS1 a/c   0.0039 3.40x10-15  -0.0068 1.26x10-15  -0.019 4.01x10-18   1.053 2.99x10-08  0.983 0.130 

rs2453533 GATM a/c   -1.00x10-04 0.844  1.00x10-04 0.855  -0.013 4.49x10-10   1.076 8.57x10-17  0.972 0.010 
SNPID=Variant identifier on GRCh37, Locus name=Nearest Gene, EA/OA=Effect allele / other allele, Beta and P=genetic effect 
coefficient of association and association P-value, OR=odds ratio, P=association P-value.  
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Supplementary Table S5: The 12 identified variants for eGFR-decline do not show heterogeneity between ancestries and FHS is not an 

influential study. We conducted MR-regression to test for heterogeneity between ancestriesS13 and the meta-analyses restricted to European or 
African American individuals (n=325,840 and 9,038, respectively; sample sizes for other ancestries were small). We also conducted a sensitivity 
meta-analysis excluding the FHS study (due to an initial uncertainty in the median eGFR-decline, n=2,925) and explored direction-consistency of 
genetic effects in FHS alone. Shown are the P-values for between-ancestry heterogeneity (P-anc-het) and beta-estimates in mL/min/1.73m² as well 
as P-values for the sensitivity analyses; significant P-values (Pdecline≤0.05/12=4.17x10-3) are stated in bold. Among the 12 variants, there was no 
evidence for between-ancestry heterogeneity (P-anc-het≥0.05). Association estimates excluding FHS were similar to the original analysis estimates 
(Table 1) and FHS-specific estimates were mostly directionally consistent.  
 

      

  

  

  

European   African American   All no FHS 
  

FHS 

SNPID Locus Name 
EA/ 
OA 

P-anc-het Beta P  Beta P  Beta P Beta P 

Variants identified with genuine association for eGFR-decline 
rs34882080 UMOD-PDILT a/g  0.06  0.066 2.36x10-31  -0.083 0.174  0.065 9.70x10-30  0.091 0.112 
rs77924615 UMOD-PDILT g/a  0.85  0.074 5.50x10-37  0.016 0.836  0.073 3.77x10-37  0.16 0.0423 
rs10254101 PRKAG2 t/c  0.16  0.020 7.03x10-05  0.066 0.223  0.020 4.35x10-05  0.019 0.710 
rs1028455 SPATA7 t/a  0.90  0.020 1.63x10-05  0.023 0.517  0.020 1.12x10-05  0.076 0.124 
rs1458038 FGF5 c/t  0.23  0.019 3.79x10-05  -0.074 0.257  0.020 3.03x10-05  -0.030 0.565 
rs4930319 OVOL1 c/g  0.70  0.014 2.19x10-03  0.043 0.426  0.015 1.37x10-03  0.045 0.347 
rs434215 TPPP§ a/g  0.33  0.021 3.80x10-04  -0.044 0.532  0.021 5.43x10-04  0.12 0.119 
rs28857283 C15ORF54 g/a  0.22  0.021 3.44x10-06  0.075 0.0730  0.022 1.32x10-06  0.015 0.745 
rs13095391 ACVR2B a/c  0.29  0.018 1.67x10-04  0.062 0.207  0.017 1.77x10-04  NA NA 
Variants without genuine association for eGFR-decline 
rs9998485 SHROOM3 a/g  0.65  0.0048 0.242  0.049 0.222  0.0070 0.156  NA NA 
rs1047891 CPS1 a/c  0.35  0.0053 0.287  -0.0040 0.930  0.0040 0.482  0.037 0.456 
rs2453533 GATM a/c   0.69   0.0045 0.638   0.022 0.651   0.0010 0.785   0.043 0.360 
SNPID=Variant identifier on GRCh37, Locus name=Nearest Gene, EA/OA=Effect allele / other allele, P-anc-het=P-value 
of the test for between ancestry heterogeneity, beta and P=genetic effect coefficient of association and association P-
value. § Since the TPPP locus lead variant had imputation quality <0.6 in 45% of the studies (median 0.64), we analyzed 
this locus omitting the imputation quality filter in all studies.
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Supplementary Table S6: No influence by DM-adjustment versus no DM-adjustment or by model-based versus formula-based adjustment 

for baseline eGFR (eGFR-BL) on the 12 variants' association with eGFR-decline. We conducted a validation meta-analysis for the 12 identified 
variants for eGFR-decline (total n=103,970) to compare models with different covariate adjustment. Shown are beta-estimates and P-values for 
eGFR-decline DM-adjusted versus DM-unadjusted, and adjusted for eGFR-baseline by model as well as by formula (Supplementary Note S1); all 
models are age- and sex-adjusted. We found no impact by DM-adjustment, but by adjustment for eGFR-BL (when compared to “not adjusted for 
DM”, which is unadjusted for eGFR-BL). For adjustment for eGFR-BL, we found the same association statistics when model-computed versus 
formula-derived.  
 

        Adjusted for DM   Not adjusted for DM   
Adjusted for eGFR-BL 

by model 
 Adjusted for eGFR-BL 

by formula 

SNPID EA/OA EAF  beta P  beta P  beta P  beta P 

Variants identified with genuine association for eGFR-decline 
rs34882080 a/g 0.83  0.058 4.86x10-15  0.058 4.60x10-15  0.077 2.40x10-27  0.078 1.06x10-28 
rs77924615 g/a 0.19  0.066 1.68x10-19  0.066 1.34x10-19  0.088 7.83x10-37  0.087 4.73x10-37 
rs10254101 t/c 0.28  0.016 0.0130  0.016 0.0125  0.032 1.17x10-07  0.031 1.15x10-07 
rs1028455 t/a 0.34  0.020 8.23x10-04  0.020 7.76x10-04  0.021 1.87x10-04  0.021 1.99x10-04 
rs1458038 c/t 0.35  0.019 1.67x10-03  0.019 1.68x10-03  0.025 1.04x10-05  0.024 1.31x10-05 
rs4930319 c/g 0.34  0.013 0.0241  0.013 0.0279  0.025 1.09x10-05  0.025 5.81x10-06 
rs434215 a/g 0.33  0.015 0.0395  0.015 0.0414  0.027 9.20x10-05  0.027 8.72x10-05 
rs28857283 g/a 0.37  0.019 1.08x10-03  0.019 1.08x10-03  0.026 2.29x10-06  0.026 2.73x10-06 
rs13095391 a/c 0.59  0.022 1.56x10-04  0.022 1.26x10-04  0.027 5.70x10-07  0.027 6.41x10-07 
Variants without genuine association for eGFR-decline 
rs9998485 a/g 0.53  0.016 6.67x10-03  0.015 7.05x10-03  0.030 4.55x10-08  0.030 1.78x10-08 
rs1047891 a/c 0.31  0.010 0.1232  0.010 0.126  0.031 1.66x10-07  0.030 2.53x10-07 
rs2453533 a/c 0.40   -0.0027 0.6378   -0.0028 0.631   0.025 4.46x10-06  0.025 2.78x10-06 
SNPID=Variant identifier on GRCh37, EA/OA=Effect allele / other allele, EAF=Effect Allele Frequency, beta and P=genetic effect 
coefficient of association and association P-value.
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Supplementary Table S7: Associations of APOL1 risk variants with eGFR-decline in African American and European ancestry. While our 
data was derived primarily from persons of European ancestry, we explored variants in the APOL1 gene due to previous reports for chronic kidney 
disease progression in 8,500 African American individualsS22. We conducted GWAS with the additive model for eGFR-decline unadjusted for eGFR-
baseline restricted to African Americans (n up to 9,038) or to European ancestry (n up to 325,840). Shown are beta-estimates (in mL/min/1.73m²), 
standard errors (SE) and P-values. From 6 previously reported APOL1 risk variants (the 7th, indel rs71785313, not analyzable here), none was 
associated with eGFR-decline in African American ancestry (P≥0.05). Interestingly, we detected two yet unreported SNPs near/in APOL1 
suggestively associated with eGFR-decline with P=2.8x10-05 and 3.10x10-05 in African Americans (effect allele frequency=0.01; monomorphic in 
European), uncorrelated with the previously reported variants (r²<0.01). 
 

        African American   European 

SNPID EA/OA EAF  Beta SE P  Beta SE P 

rs73885319 a/g 0.77  0.001 0.05 0.98  NA NA NA 
rs60910145 t/g 0.78  0.002 0.05 0.97  NA NA NA 
rs4821480 t/g 0.37  -0.011 0.04 0.78  -0.015 0.0142 0.28 
rs2032487 t/c 0.37  -0.004 0.04 0.91  -0.010 0.0131 0.45 
rs4821481 t/c 0.37  -0.007 0.04 0.85  -0.001 0.0131 0.45 
rs3752462 t/c 0.73  0.027 0.04 0.51  -0.006 0.0047 0.24 
rs114021047 a/g 0.01  1.034 0.25 2.80x10-05  NA NA NA 
rs115045136  t/c 0.01   1.027 0.25 3.10x10-05   NA NA NA 

SNPID=Variant identifier on GRCh37, EA/OA=Effect allele / other allele, EAF=Effect Allele 
Frequency, beta, SE and P=genetic effect coefficient, standard error of association and association 
P-value.  
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