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Fasting glucose (FG), 2-h glucose after an oral glucose chal-
lenge (2hGlu), and glycated hemoglobin (HbA1c) are glycemic 
traits that are used to diagnose diabetes1. In addition, HbA1c 

is the most commonly used biomarker to monitor glucose control 
in patients with diabetes. Fasting insulin (FI) reflects a combination 
of insulin secretion and insulin resistance, both of which are com-
ponents of type 2 diabetes (T2D); it also reflects insulin clearance2. 
Collectively, all four glycemic traits are useful to better understand 
T2D pathophysiology3–5 and cardiometabolic outcomes6.

To date, genome-wide association studies (GWAS) and analyses 
of Metabochip and exome arrays have identified more than 120 loci 
associated with glycemic traits in individuals without diabetes7–15. 
However, despite considerable differences in the prevalence of T2D 
risk factors across ancestries16–18, most GWAS of glycemic traits have 
insufficient representation of individuals of non-European ancestry. 
Additionally, they have limited resolution for fine-mapping of causal 
variants and for the identification of effector transcripts. Here we 
present large-scale trans-ancestry meta-analyses of GWAS for four 
glycemic traits in individuals without diabetes. We aimed to identify 
additional glycemic-trait-associated loci; investigate the portability 
of loci and genetic scores across ancestries; leverage differences in 
effect allele frequency (EAF), effect size and linkage disequilibrium 
(LD) across diverse populations to conduct fine-mapping and aid 
the identification of causal variants and/or effector transcripts; and 
compare the genetic architecture of glycemic traits to further iden-
tify the cell types and target tissues that are influenced the most by 
the traits that inform T2D pathophysiology.

Results
Study design and definitions. To identify loci associated with glyce-
mic traits (FG, 2hGlu, FI and HbA1c), we aggregated GWAS in up to 
281,416 individuals without diabetes, approximately 30% of whom 
were of non-European ancestry (13% East Asian, 7% Hispanic, 6% 
African American, 3% South Asian and 2% sub-Saharan African 
(Ugandan data were only available for HbA1c)). Each cohort 
imputed data to the 1000 Genomes Project reference panel19 
(phase 1 v.3, March 2012 or later; Methods, Supplementary Table 1, 
Extended Data Fig. 1, Supplementary Note). Up to around 49.3 mil-
lion variants were directly genotyped or imputed, with between 
38.6 million (2hGlu) and 43.5 million variants (HbA1c) available 

for analysis after exclusions based on minor allele count (MAC) < 3 
and imputation quality (imputation r2 or INFO score < 0.40) in each 
cohort. FG, 2hGlu and FI analyses were adjusted for body-mass 
index (BMI)15 but for simplicity they are abbreviated as FG, 2hGlu 
and FI (Methods).

We first performed trait-specific fixed-effect meta-analyses 
within each ancestry using METAL20 (Methods). We defined 
‘single-ancestry lead’ variants as the strongest trait-associated vari-
ants (P < 5 × 10−8) within a 1 Mb region in an ancestry (Table 1). 
Within each ancestry and each autosome, we used approximate con-
ditional analyses in genome-wide complex trait analysis (GCTA)21,22 
to identify ‘single-ancestry index variants’ (P < 5 × 10−8) that 
exert conditionally distinct effects on the trait (Table 1, Methods, 
Supplementary Note). This approach identified 124 FG, 15 2hGlu, 
48 FI and 139 HbA1c variants that were significant in at least one 
ancestry (Supplementary Table 2).

Next, we conducted trait-specific trans-ancestry meta-analyses 
using MANTRA (Methods, Supplementary Table 1, Supplementary 
Note) to identify genome-wide significant ‘trans-ancestry lead 
variants’, defined as the most-significant trait-associated variant 
across all ancestries (log10[Bayes factor (BF)] > 6, equivalent to 
P < 5 × 10−8)23 (Table 1, Methods). Here, we present trans-ancestry 
results as our primary results (Supplementary Table 2).

Causal variants are expected to affect related glycemic traits 
and may be shared across ancestries. Therefore, we combined all 
single-ancestry lead variants, single-ancestry index variants and/or 
trans-ancestry lead variants (for any trait) mapping within 500 kb 
of each other into a single ‘trans-ancestry locus’ bounded by 500 kb 
flanking sequences (Table 1, Extended Data Fig. 2). As defined in 
Table 1, a trans-ancestry locus may contain multiple causal variants 
that affect one or more glycemic traits, exerting their effect in one 
or more ancestry.

Glycemic trait locus discovery. Trans-ancestry meta-analyses 
identified 235 trans-ancestry loci, of which 59 contained lead 
variants for more than one trait. In addition, we identified seven 
‘single-ancestry loci’ that did not contain any trans-ancestry lead 
variants (Table 1, Supplementary Table 2). Of the 242 combined 
loci, 99 (including 6 of the 7 single-ancestry loci) had not previously 
been associated with any of the four glycemic traits or with T2D at 

The trans-ancestral genomic architecture of 
glycemic traits
Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic 
studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association 
studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 
2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry 
and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10−8), 80% of which had no significant evidence of 
between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would 
have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced 
the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set 
analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results 
increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.
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the time of analysis (Fig. 1, Supplementary Table 3, Supplementary 
Note). However, based on recent East Asian and trans-ancestry T2D 
GWAS meta-analyses23–27, the lead variants at 27 of the 99 novel 
glycemic trait loci have strong evidence of association with T2D 
(P < 10−4; 13 loci with P < 5 × 10−8), suggesting that they are also 
important in T2D pathophysiology (Supplementary Tables 2 and 4).

Of the six single-ancestry novel loci, three were unique to indi-
viduals of non-European ancestry (Supplementary Table 3). An 
association with individuals of African American ancestry for FI 
(lead variant rs12056334) near LOC100128993 (an uncharacterized 
RNA gene; Supplementary Note), an association with individuals of 
African American ancestry for FG (lead variant rs61909476) near 
ETS1 and an association with individuals of Hispanic descent for 
FG (lead variant rs12315677) within PIK3C2G (Supplementary 
Table 3) were found. Despite broadly similar EAFs across ancestries, 
rs61909476 was significantly associated with FG only in individu-
als of African American descent (EAF ≈ 7%, β = 0.0812 mmol l−1, 
s.e. = 0.01 mmol l−1, P = 3.9 × 10−8 compared with EAF = 10–17%, 
β = 0–0.002 mmol l−1, s.e. = 0.003–0.017 mmol l−1, P = 0.44–0.95 in 
all other ancestries; Supplementary Table 2, Supplementary Note). 
The nearest protein-coding gene, ETS1, encodes a transcription 
factor that is expressed in mouse pancreatic β-cells, and its over-
expression decreases glucose-stimulated insulin secretion in mouse 
islets28. Located within the PIK3C2G gene, rs12315677 has an 84% 
EAF in individuals of Hispanic descent (70–94% in other ances-
tries) and is significantly associated with FG in this ancestry alone 
(β = 0.0387 mmol l−1, s.e. = 0.0075 mmol l−1, P = 4.0 × 10−8 com-
pared with β = −0.0128–0.010 mmol l−1, s.e. = 0.003–0.018 mmol l−1, 
P = 0.14–0.76 in all other ancestries; Supplementary Note). In mice, 
deletion of Pik3c2g leads to a phenotype characterized by reduced 
glycogen storage in the liver, hyperlipidemia, adiposity and insulin 
resistance with increasing age or after a high-fat diet29. Instances of 
similar EAFs but differing effect sizes between populations could 
be due to genotype-by-environment or other epistatic effects. 
Alternatively, lower imputation accuracy in smaller sample sizes 
could deflate effect sizes, although the imputation quality for these 
variants was good (average r2 = 0.81). Finally, the variants detected 

here may be in LD with ancestry-specific causal variants that were 
not investigated here that differ in frequency across ancestries. 
However, we could not find evidence of rarer alleles in the cog-
nate populations from the 1000 Genomes Project (Supplementary  
Table 5). The final three single-ancestry loci were identified in indi-
viduals of European ancestry (Supplementary Note).

Next, by rescaling the standard errors of allelic effect sizes to 
artificially boost the sample size of the European meta-analysis to 
match that of trans-ancestry meta-analysis, we determined that 21 
of the novel trans-ancestry loci would not have been discovered 
with an equivalent sample size that consisted exclusively of individ-
uals of European ancestry (Supplementary Note). Their discovery 
was due to the higher EAF and/or larger effect size in populations 
of non-European ancestry. In particular, two loci (near LINC00885 
and MIR4278) contain single-ancestry lead variants associated with 
East Asian and African American ancestry, respectively, suggest-
ing that these specific ancestries may be driving the trans-ancestry 
discovery (Supplementary Tables 2,3). Combined with the three 
single-ancestry non-European loci described above, our results 
show that 24% (24 out of 99) of the novel loci were discovered 
due to the contribution of participants of non-European ances-
try, strengthening the argument for expanding genetic studies in  
diverse populations.

Allelic architecture of glycemic traits. Single-ancestry and 
trans-ancestry results combined increased the number of estab-
lished loci for FG to 102 (182 signals, 53 novel loci), FI to 66 (95 
signals, 49 novel loci), 2hGlu to 21 (28 signals, 11 novel loci) and 
HbA1c to 127 (218 signals, 62 novel loci) (Supplementary Table 2), 
with considerable overlap across traits (Extended Data Fig. 3). We 
also detected (P < 0.05 or log10[BF] > 0) most (around 90%) of the 
previously established glycemic signals, 70–88% of which attained 
genome-wide significance (Supplementary Note, Supplementary 
Table 6). Given that analyses for FG, FI and 2hGlu were performed 
adjusted for BMI, we confirmed that collider bias did not influence 
more than 98% of discovered signals30 (Supplementary Note). As 
expected, given the greater power due to increased sample sizes, 

Table 1 | Glossary of terms

Term Definition

Effect allele The effect allele was the allele defined by METAL based on trans-ancestry FG results and aligned such that the same allele 
was kept as the effect allele across all ancestries and traits, irrespective of its allele frequency or effect size for that particular 
ancestry and trait. In this way, the effect allele is not necessarily the trait-increasing allele.

Single-ancestry  
lead variant

The variant with the smallest P value among all variants with P < 5 × 10−8 within a 1 Mb region, based on the analysis of a single 
trait in a single ancestry.

Single-ancestry  
index variants

Variants identified by GCTA of each autosome as exerting conditionally distinct effects on a given trait in a given ancestry 
(P < 5 × 10−8). As defined, these include the single-ancestry lead variants.

Trans-ancestry  
lead variant

The variant identified by trans-ancestry meta-analysis of a given trait that has the strongest association for that trait 
(log10[BF] > 6, which is broadly equivalent to P < 5 × 10−8) within a 1 Mb region.

Single-ancestry locus The 1 Mb region centered on a single-ancestry lead variant that does not contain a lead variant identified in the trans-ancestry 
meta-analysis (that is, does not contain a trans-ancestry lead variant).

Signal Conditionally independent association between a trait and a set of variants in LD with each other and that is noted by the 
corresponding index variant.

Trans-ancestry locus A genomic interval that contains trans-ancestry trait-specific lead variants, with or without additional single-ancestry index 
variants, for one or more traits. This region is defined by starting at the telomere of each chromosome and selecting the first 
single-ancestry index variant or trans-ancestry lead variant for any trait. If other trans-ancestry lead variants or single-ancestry 
index variants mapped within 500 kb of the first signal, they were merged into the same locus. This process was repeated until 
there were no more signals within 500 kb of the previous variant. A 500 kb interval was added to the beginning of the first signal, 
and the end of the last signal to establish the final boundary of the trans-ancestry locus (Extended Data Fig. 2). As defined, a 
trans-ancestry locus may not have a single lead trans-ancestry variant, but may instead contain multiple trans-ancestry lead 
variants, one for each trait.

This study combined analyses of trait associations across multiple correlated glycemic traits and across multiple ancestries, which has presented challenges in our ability to apply commonly used terms 
with clarity. For this reason, we define terms often used in the field with variable meaning and provide definitions for new terms used in this study.
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Fig. 1 | summary of all 242 loci identified in this study. The 235 trans-ancestry loci are shown in orange (novel) or black (established) along with seven 
single-ancestry loci (blue) represented by the nearest gene. Each locus is mapped to the corresponding chromosome (outer segment). Each set of rows 
shows the results from the trans-ancestry analysis (orange) and each of the ancestries: European (purple), African American (tan), East Asian (gray), South 
Asian (green), Hispanic (yellow), Ugandan (pink). Loci with a corresponding signal associated with T2D are represented by red circles in the middle of the 
plot. TMEM110 is also known as STIMATE; FAM101A is also known as RFLNA; PDX1-AS1 is also known as PLUT; LRRC16A is also known as CARMIL1; FAM65B 
is also known as RIPOR2; C15orf26 is also known as CFAP161; FAM58A is also known as CCNQ; IKBKAP is also known as ELP1; AQPEP is also known as LVRN; 
WARS is also known as WARS1; ITFG3 is also known as FAM234A; BRE is also known as BABAM2; NA is also known as XK.
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new association signals tended to have smaller effect sizes and/or 
EAFs in individuals of European ancestry compared with estab-
lished signals (Extended Data Fig. 4).

Characterization of lead variants across ancestries. To better 
understand the transferability of trans-ancestry lead variants across 
ancestries, we investigated the pairwise EAF correlation and the 
pairwise summarized heterogeneity of effect sizes between ances-
tries31 (Methods, Supplementary Note). Consistent with popula-
tion history and evolution, these results demonstrated considerable 
EAF correlation (ρ2 > 0.70) between populations of European and 
Hispanic, European and South Asian, and Hispanic and South Asian 
ancestry, which was consistent across all four traits, and between 
individuals of African American and Ugandan descent for HbA1c 
(Extended Data Fig. 5). Despite high EAF correlations, some pair-
wise comparisons exhibited strong evidence for effect size hetero-
geneity between ancestries that was less consistent between traits 
(Extended Data Fig. 5). However, sensitivity analyses demonstrated 
that, across all comparisons, the evidence for heterogeneity is driven 
by a small number of variants, with between 81.5% (for HbA1c) and 
85.7% (for FG) of trans-ancestry lead variants showing no evidence 
for trans-ancestry heterogeneity (P > 0.05) (Supplementary Note).

Trait variance explained by associated loci. The trait variance 
explained by genome-wide significant loci was assessed using only 
the single-ancestry variants or a combination of single-ancestry 
and trans-ancestry variants (Supplementary Table 7) with β values 
extracted from the relevant single-ancestry meta-analysis results 
(Methods). The variance explained was assessed by linear regression 
in a subset of the contributing cohorts (Methods, Supplementary 
Tables 8–11). In general, the approach that explained the most vari-
ance was one in which trans-ancestry lead variants that had P < 0.1 
in the relevant single-ancestry meta-analysis were combined with 
single-ancestry variants that were not in LD with the trans-ancestry 
variants (LD r2 < 0.1) (Fig. 2, list C in Supplementary Tables 8–11). 
With this approach, the mean variance in the trait distribution 
explained was between 0.7% (2hGlu in European ancestry) and 
6% (HbA1c in African American ancestry). The European-based 
estimates explained more variance relative to previous estimates of 
2.8% for FG and 1.7% for HbA1c32 (Supplementary Note).

Transferability of European-ancestry-derived polygenic scores. 
To investigate the transferability of polygenic scores across ances-
tries we used the PRS-CSauto software33 to first build polygenic 
scores (PGSs) for each glycemic trait based on the data from indi-
viduals of European ancestry. However, the training set for 2hGlu 
was too small; therefore, this trait was excluded. To build the PGSs, 
for each trait we first removed five of the largest European cohorts 
from the European ancestry meta-analysis. These five cohorts were 
meta-analyzed and used as our European ancestry test dataset, for 
each trait. The remaining European ancestry cohorts were also 
meta-analyzed and used as the training dataset, from which we 
derived a PGS for each trait (Methods). We used PRS-CSauto to 
revise the effect size estimates for the variants in the score (obtained 
from the training European datasets) based on the LD of the test 
population. PRS-CSauto does not have LD reference panels for 
South Asian or Hispanic ancestry and as such we were unable to test 
the transferability of the PGS to those populations. The ‘gtx’ pack-
age34 (Methods) was used to obtain the R2 for each test population 
(Fig. 3, Supplementary Table 12). Consistent with other complex 
traits35, the European-ancestry-derived PGS had greater predictive 
power for test data of individuals of European ancestry than for data 
from other ancestry groups.

Fine-mapping. We fine-mapped, 231 trans-ancestry and 
six single-ancestry autosomal loci (Supplementary Table 2, 

Supplementary Note). Using FINEMAP with ancestry-specific 
LD and an average LD matrix across ancestries, we conducted 
fine-mapping both within (161 loci with single-ancestry lead vari-
ants) and across ancestries (231 loci) for each trait (Methods). 
Because 59 of the 231 trans-ancestry loci were associated with more 
than one trait, we conducted trans-ancestry fine-mapping for a total 
of 305 locus–trait associations. Of these 305 locus–trait combina-
tions, FINEMAP estimated the presence of a single causal variant at 
186 loci (61%), whereas multiple distinct causal variants were impli-
cated at 126 loci (39%), for a total of 464 causal variants (Fig. 4a).

Credible sets for causal variants. At each locus, we next constructed 
credible sets (CSs) for each causal variant that account for at least 
99% of the posterior probability of association (PPA). We identi-
fied 21 locus–trait associations (at 19 loci) for which the 99% CS 
included a single variant and we highlight four examples (Fig. 4b, 
Methods, Supplementary Note, Supplementary Table 13).

At MTNR1B and SIX3 we identified, respectively, rs10830963 
(PPA > 0.999, for both HbA1c and FG) and rs12712928 
(PPA = 0.997, for FG) as the likely causal variants. Previous stud-
ies confirm for both loci that these variants affect transcriptional 
activity36–38 (Supplementary Note). At a locus near PFKM associated 
with HbA1c, trans-ancestry fine-mapping identified rs12819124 
(PPA > 0.999) as the likely causal variant. This variant has previously 
been associated with mean corpuscular hemoglobin39, suggesting 
an effect on HbA1c through red blood cells (RBCs; Supplementary 
Note). At HBB, we identified rs334 (PPA > 0.999; Glu7Val) as the 
likely causal variant associated with HbA1c. rs334 is a causal vari-
ant of sickle-cell anemia40, was previously associated with urinary 
albumin-to-creatinine ratio in individuals of Caribbean Hispanic 
ancestry41, severe malaria in a study with a population of Tanzanian 
ancestry42, hematocrit and mean corpuscular volume in populations 
of Hispanic/Latino descent43 and RBC distribution in individuals of 
Ugandan ancestry44; all of these results point to a variant effect on 
HbA1c through non-glycemic pathways.

The remaining locus–trait associations with a single variant in 
the 99% CS (Supplementary Table 13) point to variants that could 
be prioritized for functional follow-up to elucidate the effect on gly-
cemic trait physiology.

At an additional 156 locus–trait associations, trans-ancestry 
fine-mapping identified 99% CSs with 50 or fewer variants  
(Fig. 4b, Supplementary Table 13). Consistent with the potential 
for more than 1 causal variant in a locus, 74 locus–trait associa-
tions contained 88 variants with PPA > 0.90 that were strong can-
didate causal variants (Supplementary Table 14). For example, 10 
are coding variants including several missense variants, such as the 
HBB Glu7Val variant mentioned above, GCKR Leu446Pro, RREB1 
Asp1771Asn, G6PC2 Pro324Ser, GLP1R Ala316Thr and TMPRSS6 
Val736Ala, each of which have been proposed or shown to affect 
gene function12,45–49. We additionally identified AMPD3 Val311Leu 
(PPA = 0.989) and TMC6 Trp125Arg (PPA > 0.999) variants associ-
ated with HbA1c that were previously detected in an exome array 
analysis but had not been fine-mapped with certainty due to the 
absence of backbone GWAS data50. Our fine-mapping data now 
suggest that these variants are likely causal and identify their cog-
nate genes as effector transcripts.

Finally, we evaluated the resolution obtained in the trans-ancestry 
versus single-ancestry fine-mapping (Methods, Supplementary 
Note). We compared the number of variants in 99% CS across 98 
locus–trait associations that—as suggested by FINEMAP—had 
a single causal variant in both trans-ancestry and single-ancestry 
analyses. Fine-mapping within and across ancestries was conducted 
using the same set of variants. At 8 out of 98 locus–trait associa-
tions, single-ancestry fine-mapping identified a single variant in the 
CSs. In addition, at 72 of the 98 locus–trait associations, the num-
ber of variants in the 99% CSs was smaller in the trans-ancestry 
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fine-mapping (Fig. 4c), which likely reflects the larger sample 
size and differences in LD structure, EAFs and effect sizes across 
diverse populations. To quantify the estimated improvement in 
fine-mapping resolution that is attributable to the multi-ancestry 
GWAS, we then compared 99% CS sizes from the trans-ancestry 
fine-mapping to single-ancestry-specific data emulating the same 
total sample size by rescaling the standard errors (Methods). Of the 
72 locus–trait associations with estimated improved fine-mapping 

in trans-ancestry analysis, resolution at 38 (53%) was improved 
because of the larger sample size in the trans-ancestry fine-mapping 
analysis (Fig. 4c), and this estimated improved resolution would 
likely have been obtained in a European-only fine-mapping effort 
with equivalent sample size. However, at 34 (47%) loci, the inclu-
sion of samples from multiple diverse populations yielded the esti-
mated improved resolution. On average, ancestry differences led to 
a reduction in the median number of variants in the 99% CSs from 
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Fig. 2 | Trait variance explained by associated loci. a–c, Results from an analysis of trait variance explained by associated loci for FG (a), FI (b) and HbA1c 
(c). The box plots show the maximum, first quartile, median, third quartile and minimum of trait variance explained when using a genetic score with 
single-ancestry lead and index variants (European (EUR), African American (AA), East Asian (EAS), Hispanic (HISP) and Southeast Asian (SAS) ancestry) 
or a combination of trans-ancestry (TA) lead variants for individual traits and single-ancestry lead and index variants (TA + EUR, TA + AA, TA + EAS, 
TA + HISP and TA + SAS). Variance explained in each ancestry is in different colors. Data points represent the variance explained in individual cohorts used 
in this analysis. Adjusted R2 was estimated in 1–11 cohorts with sample sizes ranging from 489 to 9,758 (Supplementary Tables 8–11).
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24 to 15 variants (37.5% median reduction; Fig. 4c), demonstrating 
the value of conducting fine-mapping analyses across ancestries.

HbA1c signal classification. HbA1c-associated variants can 
exert their effects on HbA1c levels through both glycemic and 
non-glycemic pathways7,51 and their correct classification can affect 
T2D diagnostic accuracy7,52. Using previous association results for 
other glycemic, RBC and iron traits, as well as a fuzzy clustering 
approach, we classified variants into their most likely mode of action 
(Methods, Supplementary Note). Of the 218 HbA1c-associated vari-
ants, 27 (12%) could not be characterized due to missing data and 
23 (11%) could not be classified into a ‘known’ class (Supplementary 
Note). The remaining signals were classified as principally: (1) gly-
cemic (n = 53; 24%); (2) affecting iron levels and/or iron metabo-
lism (n = 12; 6%); or (3) RBC traits (n = 103; 47%). A genetic risk 

score (GRS) composed of all HbA1c-associated signals was strongly 
associated with T2D risk (odds ratio (OR) = 2.4, 95% confidence 
interval (CI) = 2.3–2.5, P = 2.7 × 10−298). However, when using 
partitioned GRSs composed of these different classes of variants 
(Methods), we found that the T2D association was mainly driven 
by variants that influenced HbA1c through glycemic pathways 
(OR = 2.6, 95% CI = 2.5–2.8, P = 2.3 × 10−250), with weaker evidence 
of an association (despite the larger number of variants in the GRS) 
and a more modest risk (OR = 1.4, 95% CI = 1.2–1.7, P = 4.7 × 10−4) 
imparted by signals in the mature RBC cluster that were not glyce-
mic (that is, for which those specific variants had P > 0.05 for FI, 
2hGlu and FG) (Extended Data Fig. 6, Supplementary Note). This is 
in contrast with our previous finding in which we found no signifi-
cant association between a risk score of non-glycemic variants and 
T2D7. Our current results could be partly driven by cases of T2D 
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being diagnosed on the basis of HbA1c levels that may be influ-
enced by the non-glycemic signals, or by glycemic effects that are 
not captured by FI, 2hGlu or FG measures.

Biological signatures of glycemic-trait-associated loci. To better 
understand distinct and shared biological signatures underlying 
variant–trait associations, we conducted genomic feature enrich-
ment, expression quantitative trait loci (eQTL) co-localization, and 
tissue and gene-set enrichment analyses across all four traits.

Epigenomic landscape of trait-associated variants. We explored the 
genomic context that underlies glycemic trait loci by computing 
overlap enrichment for ‘static’ annotations such as coding regions, 
conserved regions and super enhancers merged across multiple 
cell types53–55 using the GREGOR tool56. We observed that FG, FI 
and HbA1c signals (Supplementary Table 7) were significantly 

(P < 8.4 × 10−4, Bonferroni threshold for 59 annotations) enriched 
in evolutionarily conserved regions (Fig. 5a, Extended Data Fig. 7, 
Supplementary Table 15).

We then considered epigenomic landscapes defined in indi-
vidual cell and/or tissue types. Previously, stretch enhancers (StrE; 
enhancer chromatin states that are ≥3 kb in length) in pancreatic 
islets were shown to be highly cell-specific and strongly enriched 
with T2D risk signals57. Considering StrEs across 31 cell types38, 
FG and 2hGlu signals showed the highest enrichment in islets 
(FG, fold enrichment = 4.70, P = 2.7 × 10−24; 2hGlu, fold enrich-
ment = 5.51, P = 3.6 × 10−4; Fig. 5a, Supplementary Table 16), high-
lighting the importance of islets for these traits. FI signals were 
enriched in skeletal muscle (fold enrichment = 3.17, P = 7.8 × 10−6) 
and adipose StrEs (fold enrichment = 3.27, P = 1.8 × 10−7), consis-
tent with the idea that these tissues are targets of insulin action 
(Fig. 5a). StrEs in individual cell types showed higher enrichment 
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Fig. 6 | Tissues and cell types that are significantly enriched in genes in loci associated with glycemic traits. Results of tissue and cell-type enrichment analysis 
for FG-associated loci (a), FI-associated loci (b) and HbA1c-associated loci (c). FDR thresholds are shown in red (q < 0.05), orange (q < 0.2) or black (q ≥ 0.2).
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than super enhancers merged across cell types, highlighting the 
importance of cell-specific analyses (Fig. 5a). HbA1c signals were 
enriched in StrEs of multiple cell types and tissues, but have the 
strongest enrichment in K562 leukemia-derived cells (fold enrich-
ment = 3.24, P = 1.2 × 10−7; Fig. 5a). Among the ‘hard’ glycemic 
and RBC (mature + reticulocyte) HbA1c signals, glycemic signals 
were enriched in islet StrEs (fold enrichment = 3.96, P = 3.7 × 10−16) 
whereas RBC signals were enriched in K562 StrEs (fold enrich-
ment = 7.5, P = 2.08 × 10−14; Fig. 5b, Supplementary Table 17). These 
analyses suggest that these glycemic-trait-associated variants influ-
ence the function of tissue-specific enhancers.

Independent analyses with fGWAS58 and GARFIELD59 yielded 
consistent results (Extended Data Figs. 8 and 9, Supplementary 
Tables 16 and 18). Notably, FI signals at a lenient threshold of 
P < 10−5 were enriched in liver StrEs using GARFIELD (OR = 1.92, 
P = 1.7 × 10−4) (Extended Data Fig. 9a). This suggests that liver regu-
latory annotations are relevant for FI GWAS signals, but that we lack 
the power to detect significant enrichment using the genome-wide 
significant loci and the current set of reference annotations.

We next explored the 27 loci that drive the FI enrichment in adi-
pose and skeletal muscle, 11 of which overlapped with StrEs in both 
tissues (Fig. 5c). At the COL4A2 locus, variants within an intronic 
region overlap with StrEs in adipose tissue, skeletal muscle and 
a human skeletal muscle myoblast (HSMM) cell line that are not 
shared across other cell or tissue types. Among these, rs9555695 (in 
the 99% CS) also overlaps with accessible chromatin regions in adi-
pose (Fig. 5d). At a narrow signal with no proxy variants (LD r2 > 0.7 
in individuals of European ancestry), the lead trans-ancestry variant 
rs62271373 (PPA = 0.94), which is located in an intergenic region 
around 25 kb from the LINC01214 gene, overlaps with StrEs that 
are specific to adipose and HSMM and an active enhancer chroma-
tin state in skeletal muscle (Fig. 5e). Collectively, the tissue-specific 
epigenomic signatures at GWAS signals provide an opportunity 
to nominate tissues in which these variants are likely to be active. 
This map may help future efforts to deconvolute GWAS signals into 
tissue-specific disease pathology.

Co-localization of GWAS and eQTLs. Among the 99 novel gly-
cemic trait loci, we identified co-localized eQTLs at 34 loci in 
blood, pancreatic islets, subcutaneous or visceral adipose, skel-
etal muscle or liver, providing suggestive evidence of causal genes 
(Supplementary Table 19). The co-localized eQTLs include several 
genes that have previously been reported at glycemic trait loci60–62: 
ADCY5, CAMK1D, IRS1, JAZF1 and KLF14. For some additional 
loci, the co-localized genes have previous evidence for a role in gly-
cemic regulation. For example, the lead trans-ancestry variant and 
likely causal variant—rs1799815 (PPA = 0.993)—that is associated 
with FI is the strongest variant associated with expression of INSR, 
which encodes the insulin receptor, in subcutaneous adipose from 
METSIM (P = 2 × 10−9) and GTEx (P = 5 × 10−6) datasets. The A 
allele at rs1799815 is associated with higher FI and lower expression 
of INSR, which is consistent with the relationship between insu-
lin resistance and reduced INSR function63. In a second example, 
rs841572, which is the trans-ancestry lead variant associated with 
FG, has the highest PPA (PPA = 0.535) among the 20 variants in the 
99% CS and is in strong LD (r2 = 0.87) with the lead eQTL variant 
(rs841576, also in the 99% CS) associated with SLC2A1 expression 
in blood (eQTLGen, P = 1 × 10−8). SLC2A1 (which is also known as 
GLUT1) encodes the major glucose transporter in brain, placenta 
and erythrocytes, and is responsible for glucose entry into the 
brain64. rs841572-A is associated with lower FG and lower SLC2A1 
expression. Although rare missense variants in SLC2A1 are an 
established cause of seizures and epilepsy65, our data suggest that 
SLC2A1 variants also affect plasma glucose levels within a popula-
tion. These co-localized signals provide possible regulatory mecha-
nisms for variant effects on genes that influence glycemic traits.

The co-localized eQTLs also provide insights into the mecha-
nisms of action of glycemic trait loci. For example, rs9884482 (in 
the 99% CS) is associated with FI and TET2 expression in subcuta-
neous adipose (P = 2 × 10−20); rs9884482 is in high LD (r2 = 0.96 in 
individuals of European ancestry) with the lead TET2 eQTL vari-
ant (rs974801). TET2 encodes a DNA demethylase that can affect 
transcriptional repression66. Tet2 expression in adipose is reduced 
after diet-induced insulin resistance in mice67, and knockdown of 
Tet2 blocked adipogenesis67,68. Furthermore, in human adipose tis-
sue, rs9884482-C was associated with lower TET2 expression and 
higher FI. In a second example, rs617948 is associated with HbA1c 
(in the 99% CS) and is the lead variant associated with C2CD2L 
expression in blood (eQTLGen, P = 3 × 10−96). C2CD2L (which is 
also known as TMEM24) encodes a protein that regulates pulsatile 
insulin secretion and facilitates release of insulin pool reserves69,70. 
rs617948-G was associated with higher HbA1c and lower C2CD2L, 
providing evidence for a role for this insulin secretion protein in 
glucose homeostasis. Our HbA1c ‘soft’ clustering assigned this 
signal to both the ‘unknown’ (0.51 probability) and ‘reticulocyte’ 
(0.42 probability) clusters. rs617948 is strongly associated with 
HbA1c (P < 6.8 × 10−8), but not with FG, FI or 2hGlu (P > 0.05; 
Supplementary Table 20, Supplementary Note). This suggests that 
there is an effect of this variant on reticulocyte biology and on insu-
lin secretion, potentially influencing HbA1c levels through different 
tissues and providing a plausible explanation for the classification  
as ‘unknown’.

Tissue expression. Consistent with effector transcript expression 
analysis using GTEx data50, we found considerable differences in 
tissue expression across the glycemic trait signals. FG signals were 
enriched for genes expressed in the pancreas (false-discovery rate 
(FDR) < 0.05), whereas there was an insufficient number of signifi-
cant associations in 2hGlu to identify enrichment for any tissue or 
cell type at a threshold of FDR < 0.2. FI signals were enriched in 
connective tissue and cells (which includes adipose tissue), endo-
crine glands, blood cells and muscles (FDR < 0.2) and HbA1c sig-
nals were significantly enriched in genes expressed in the pancreas, 
hemic and immune system (FDR < 0.05) (Fig. 6, Supplementary  
Table 21). Consistent with previous analysis50, FI enrichment in 
connective tissue was driven by adipose tissue (subcutaneous and 
visceral), whereas the newly described enrichment in endocrine 
glands was driven by the adrenal glands and cortex (Supplementary 
Table 21). In addition to enrichment in genes expressed in 
glycemic-related tissues, HbA1c signals were enriched in genes 
expressed in the blood, consistent with the role of RBCs in this trait 
and our previous results50.

The association between FI signals and genes expressed in adre-
nal glands is notable, suggesting a possible direct role for these 
genes in insulin resistance. These genes could influence cortisol lev-
els, which may contribute to insulin resistance and FI levels through 
impaired insulin receptor signaling in peripheral tissues, as well as 
influencing the distribution of body fat, stimulating lipolysis and 
affecting other indirect mechanisms71,72.

Gene-set analyses. Next, we performed gene-set analysis using 
DEPICT (Data-driven Expression-Prioritized Integration for 
Complex Traits) (Methods). In agreement with previous results50, 
we found distinct gene sets that were enriched (FDR < 0.05) in each 
glycemic trait except for 2hGlu, which had insufficient associations 
to have power in this analysis. FG-associated variants highlighted 
gene sets that are involved in metabolism and gene sets that are 
involved in general cellular functions, such as ‘cytoplasmic vesicle 
membrane’ and ‘circadian clock’ (Fig. 7a). By contrast, in addition 
to metabolism-related gene sets, FI-associated variants highlighted 
pathways that are related to growth, cancer and reproduction  
(Fig. 7b). This is consistent with the role of insulin as a mitogenic 
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hormone, and with epidemiological links between insulin and 
certain types of cancer73 and reproductive disorders such as poly-
cystic ovary syndrome74. HbA1c-associated variants highlighted 

many gene sets (Fig. 7c), including those linked to metabolism 
and hematopoiesis, again recapitulating our postulated effects of 
variants on glucose and RBC biology. Additional pathways from 
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HbA1c-associated variants also highlighted previous ‘CREBP 
protein–protein interactions’ and lipid biology related to T2D75 
and HbA1c76, respectively, and potential new biological pathways 
through which variants may influence HbA1c.

Discussion
Here we describe a large glycemic-trait meta-analysis of GWAS 
in which 30% of the population was composed of participants 
of East Asian, Hispanic, African American, South Asian and 
sub-Saharan African ancestry. This effort identified 242 loci (235 
trans-ancestry and seven single-ancestry), which jointly explained 
between 0.7% (2hGlu in individuals of European ancestry) and 6% 
(HbA1c in individuals of African American ancestry) of the vari-
ance in glycemic traits in any given ancestry. Although 114 out of 
242 loci are associated with T2D (P < 10−4; 83 loci with P < 5 × 10−8; 
Supplementary Table 4), the absence of strong evidence of associa-
tion for the remaining loci (P ≥ 10−4) suggests that for alleles with 
a frequency above 5% we can exclude T2D-associated OR ≥ 1.07 
with 80% power (ɑ = 5 × 10−8; and OR ≥ 1.05 for ɑ = 10−4) given 
a current study of 228,499 cases of T2D and 1,178,783 con-
trol individuals27. We identified 486 signals that were associated 
with glycemic traits, of which eight have minor allele frequency 
(MAF) < 1% and 45 have 1% ≤ MAF < 5% in all ancestries, high-
lighting that 89% of signals identified are common in at least one 
ancestry studied.

A key aim of our study was to evaluate the added advan-
tage of including population diversity in genetic discovery and 
fine-mapping efforts. In addition to the larger sample size included 
in the trans-ancestry meta-analysis, we were able to estimate the 
contribution of data from individuals of non-European ancestry in 
locus discovery and fine-mapping resolution. We found that 24 of 
the 99 newly discovered loci owe their discovery to the inclusion of 
data from participants of East Asian, Hispanic, African American, 
South Asian and sub-Saharan African ancestry, due to differences in 
EAF and effect sizes across ancestries.

Comparison of 295 trans-ancestry lead variants (315 locus–
trait associations) across ancestries demonstrated that between 
81.5% (HbA1c) and 85.7% (FG) of the trans-ancestry lead vari-
ants showed no evidence of trans-ancestry heterogeneity in allelic  
effects (P > 0.05).

Given sample size and power limitations, genome-wide signifi-
cant trait-associated variants in a single-ancestry analysis explain 
only a modest proportion of trait variance in that ancestry (Fig. 2). 
We demonstrate that trans-ancestry lead variants explain more trait 
variance than the ancestry-specific variants (Fig. 2). This shows that 
even though some trans-ancestry lead variants are not genome-wide 
significant in all ancestries, they contribute to the genetic architec-
ture of the trait in most ancestries.

We evaluated the transferability of glycemic-trait PGSs derived 
from data from individuals of European ancestry to other ances-
tries. In agreement with other traits35,77,78, we confirm that PGS 
derived from data from participants of European ancestry perform 
much worse when the test dataset is from a different ancestry. Each 
trait-specific PGS improves trait variance explained by between 
3.5-fold (HbA1c) and 6-fold (FG) in the European dataset (Fig. 3, 
Supplementary Table 12) compared with a score built from only 
trans-ancestry lead variants and European index variants (Fig. 2, 
Supplementary Tables 9–12).

Despite development of approaches to derive polygenic risk 
scores79, we note the difficulty in using summary level data to build 
a PGS in one ancestry and then apply it to test datasets of a different 
ancestry. Although PRS-CSauto33 is able to use summary-level data, 
revision of the effect size estimates to account for LD required refer-
ence panels that matched the ancestry of the test dataset. However, 
the current software lacks appropriate reference panels for many 
ancestries, precluding its broad application. Future developments 

of trans-ancestry PGSs are required for improved cross-ancestry 
performance.

We show that fine-mapping resolution is improved in 
trans-ancestry, compared with single-ancestry fine-mapping 
efforts. In around 50% of our loci, we showed that the improvement 
was due to differences in EAF, effect size or LD structure between 
ancestries, and not only due to the overall increased sample size 
that was available for trans-ancestry fine-mapping. By perform-
ing trans-ancestry fine-mapping, and co-localizing GWAS signals 
with eQTL signals and coding variants, we identified new candi-
date causal genes. Taken together, these results motivate continued 
expansion of genetic and genomic efforts in diverse populations to 
improve our understanding of these traits in groups that are dispro-
portionally affected by T2D.

Given data on four different glycemic traits and their use in the 
diagnosis and monitoring of T2D and metabolic health, we also 
sought to characterize biological features underlying these traits. 
We show that despite considerable sharing of loci across the four 
traits, each trait is also characterized by unique features based on 
StrE, gene expression and gene-set signatures. Combining genetic 
data from these traits with T2D data will further elucidate path-
ways that drive normal physiology and pathophysiology, and help 
to further develop useful predictive scores for disease classification  
and management4,5.
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Methods
Study design and participants. This study included trait data from four glycemic 
traits: FG, FI, 2hGlu and glycated HbA1c. The total number of contributing 
cohorts ranged from 41 (2hGlu) to 131 (FG), and the maximum sample size for 
each trait ranged from 85,916 (2hGlu) to 281,416 (FG) (Supplementary Table 1). 
Self-identified ancestry was initially defined at the cohort level, but within each 
cohort ancestry was confirmed with genetic data with ancestry outliers removed 
(Supplementary Table 1). Overall, participants of European ancestry dominated the 
sample size for all traits, representing between 68.0% (HbA1c) and 73.8% (2hGlu) 
of the overall sample size. Individuals of African American ancestry represented 
between 1.7% (2hGlu) and 5.9% (FG) of participants; individuals of Hispanic 
ancestry represented between 6.8% (FG) and 14.6% (2hGlu) of participants; 
individuals of East Asian ancestry represented between 9.9% (2hGlu) and 15.4% 
(HbA1c) of participants; and individuals of South Asian ancestry represented 
between 0% (no contribution to 2hGlu) and 4.4% (HbA1c) of participants. Data 
from participants of Ugandan ancestry were only available for the HbA1c analysis 
and represented 2% of participants.

Phenotypes. Analyses included data for FG and 2hGlu measured in mmol l−1, FI 
measured in pmol l−1 and HbA1c as a percentage (where possible, studies reported 
HbA1c as a National Glycohemoglobin Standardization Program percentage). 
Similar to previous MAGIC efforts7, individuals were excluded if they had type 1 
diabetes or T2D (defined according to a diagnosis by a physician); reported use of 
diabetes-relevant medication(s); or had a FG ≥ 7 mmol l−1, 2hGlu ≥ 11.1 mmol l−1 or 
HbA1c ≥ 6.5%, as described in Supplementary Table 1. 2hGlu measurements were 
obtained 120 min after a glucose challenge using an oral glucose-tolerance test. 
Measurements of FG and FI obtained from whole blood were corrected to plasma 
levels using the correction factor 1.13 as previously described80.

Genotyping, quality control and imputation. Each participating cohort 
performed study-level quality control (QC), imputation and association analyses 
following a shared analysis plan. Cohorts were genotyped using commercially 
available genome-wide arrays or the Illumina CardioMetabochip (Metabochip) 
array81 (Supplementary Table 1). Before imputation, each cohort performed 
stringent sample and variant QC to ensure only high-quality variants were kept 
in the genotype scaffold for imputation. Sample QC checks included removing 
samples with a low call rate less than 95%, extreme heterozygosity, sex mismatch 
with X chromosome variants, duplicates, first- or second-degree relatives (unless 
by design) or ancestry outliers. After sample QC, cohorts applied variant QC 
thresholds for call rate (less than 95%), Hardy–Weinberg equilibrium P < 1 × 10−6 
and MAF. Full details of QC thresholds and exclusions for the participating cohorts 
are available in Supplementary Table 1.

Imputation was performed up to the 1000 Genomes Project phase 1 (v.3) 
cosmopolitan reference panel82, with a small number of cohorts imputing up to 
the 1000 Genomes Project phase 3 panel19 or population-specific reference panels 
(Supplementary Table 1).

Study-level association analyses. Each of the glycemic traits (FG, natural 
log-transformed FI and 2hGlu) were regressed on BMI (except for HbA1c), 
study-specific covariates and principal components (unless implementing a 
linear mixed model). Analyses for FG, FI and 2hGlu were adjusted for BMI as 
we had previously shown that this did not materially affected the results for FG 
and 2hGlu but improved our ability to detect FI-associated loci15. For simplicity, 
we refer to the traits as FG, FI and 2hGlu. For a discussion on collider bias, see 
Supplementary Note section 2c. Both the raw and rank-based inverse-normal 
transformed residuals from the regression were tested for association with genetic 
variants using SNPTEST23 or Mach2Qtl83,84. Poorly imputed variants, defined as 
imputation r2 < 0.4 or INFO score < 0.4, were excluded from downstream analyses 
(Supplementary Table 1). After study-level QC, approximately 12,229,036 variants 
(GWAS cohorts) and 1,999,204 variants (Metabochip cohorts) were available for 
analysis (Supplementary Table 1).

Centralized QC. Each contributing cohort shared their summary statistic results 
with the central analysis group, who performed additional QC using EasyQC85. 
Allele-frequency estimates were compared to estimates from 1000 Genomces Project 
phase 1 reference panel82, and variants were excluded from downstream analyses if 
there was a MAF difference greater than 0.2 for populations of African American, 
European, Hispanic and East Asian ancestry compared with populations of African, 
European, Mexican and Asian ancestry from 1000 Genomes Project phase 1, 
respectively, or a MAF difference of more than 0.4 for individuals of South Asian 
ancestry compared with the population of European ancestry. At this stage, additional 
variants were excluded from each cohort file if they met one of the following criteria: 
were tri-allelic; had a MAC < 3; demonstrated a standard error of the effect size ≥ 10; 
or were missing an effect estimate, standard error or imputation quality. All data that 
passed QC (approximately 12,186,053 variants from GWAS cohorts and 1,998,657 
variants from Metabochip cohorts) were available for downstream meta-analyses.

Single-ancestry meta-analyses. Single-ancestry meta-analyses were performed 
within each ancestry group using the fixed-effects inverse-variance meta-analysis 

implemented in METAL20. We applied a double-genomic control correction15,86  
to both the study-specific GWAS results and the single-ancestry meta-analysis 
results. Study-specific Metabochip results were corrected by genomic control  
using 4,973 SNPs included on the Metabochip array for replication of associations 
with QT interval, a phenotype that is not correlated with the glycemic traits  
being analyzed15.

Identification of single-ancestry index variants. To identify distinct association 
index variants across each chromosome within each ancestry (Table 1), we 
performed approximate conditional analyses implemented in GCTA21 using the 
--cojo-slct option (autosomes) and distance-based clumping (X chromosome). 
LD correlations for GCTA were estimated from a representative cohort from 
each ancestry: Women’s Genome Health Study (European); China Health and 
Nutrition Survey (East Asian); Singapore Indian Eye Study (South Asian); BioMe 
(African American); Study of Latinos (Hispanic) and Uganda (for itself). The 
results from the GCTA were comparable when using alternative cohorts as the LD 
reference. For any index variant with a QC flag that caused reason for concern, 
we performed manual inspection of forest plots to decide whether the signal was 
likely to be real (Supplementary Note). Among 335 single-ancestry index variants 
across all traits, this manual inspection was done for 40 signals of which 32 passed 
and 8 failed after inspection. Thus, a total of 327 single-ancestry index variants 
passed and 8 failed.

Trans-ancestry meta-analyses. To leverage power across all ancestries, we 
also conducted trait-specific trans-ancestry meta-analysis by combining the 
single-ancestry meta-analysis results using MANTRA87 (Supplementary Note). We 
defined log10[BF] > 6 as genome-wide significant, approximately comparable to 
P < 5 × 10−8.

Manual curation of trans-ancestry lead variants. To ensure that trans- 
ancestry lead variants were robust, we performed manual inspection of forest  
plots by at least two authors, for any variants with flags that indicated possible  
QC issues (Supplementary Note). Of 463 trans-ancestry lead variants across all 
traits, 184 passed without inspection, 131 passed after inspection and 148 failed 
after inspection.

Comparison of trans-ancestry lead variants across ancestries. For each pair of 
ancestries, we calculated Pearson’s correlations in EAFs for each trans-ancestry lead 
variant. The pairwise summarized heterogeneity of effect sizes between ancestries 
was then tested using a joint F-test of heterogeneity31. The test statistic is the sum of 
Cochran Q-statistics for heterogeneity across all trans-ancestry signals. Under the 
null hypothesis, the statistics follows a χ2 distribution with n degrees of freedom, 
where n is the number of the trans-ancestry lead variants.

LD-pruned variant lists. Several downstream analyses (for example, genomic 
feature enrichment, genetic scores and estimation of variance explained by 
associated variants) require independent LD-pruned variants (r2 < 0.1) to avoid 
double-counting variants that might otherwise be in LD with each other and that 
do not provide additional ‘independent’ evidence. Therefore, for these analyses 
we generated different lists of either trans-ancestry or single-ancestry LD-pruned 
(r2 < 0.1) variants, retaining—in each case—the variant with the strongest evidence 
of association (Supplementary Table 7). Subsequently, we combined trans-ancestry 
and single-ancestry variant lists and conducted further LD pruning. For some 
analyses, we took the trans-ancestry-pruned variant list and added single-ancestry 
signals if the LD r2 < 0.1, whereas for others we started with the single-ancestry 
pruned lists and supplemented with trans-ancestry lead variants if the LD r2 < 0.1. 
One exception was the list used for eQTL co-localizations, which included all 
single-ancestry European signals (without LD pruning) and supplemented 
with any additional trans-ancestry lead variants (starting from the variants 
with the most significant P values) with LD r2 < 0.1 for data from individuals of 
European ancestry with any of the variants already in list, and that reached at least 
P < 1 × 10−5 in the meta-analysis of individuals of European ancestry.

Trait variance explained by associated loci. To determine how much of the 
phenotypic variance of each trait could be explained by the corresponding 
trait-associated loci, variants were combined in a series of weighted genetic scores. 
The analysis was performed in a subset of the cohorts included in the discovery 
GWAS (with representation from each ancestry) and in a smaller number of 
independent cohorts (European ancestry only). Up to three different genetic 
scores were derived per trait (and for each ancestry) to evaluate the potential for 
the trans-ancestry meta-GWAS-identified loci to provide additional information 
above and beyond that contributed by the ancestry-specific meta-analysis 
results. These genetic scores comprised: list A, single-ancestry signals; list B, 
single-ancestry signals plus trans-ancestry signals; and list C, trans-ancestry signals 
plus single-ancestry signals (Supplementary Table 7). In the case of the cohorts 
of individuals of European ancestry that contributed to the GWAS, we used a 
previously published method32 to adjust the effect sizes (β values) from the GWAS 
for the contribution of that cohort, providing sets of cohort-specific effect sizes 
that were then used to generate the genetic scores. The association between each 
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genetic score and its corresponding trait was tested by linear regression and the 
adjusted R2 from the model was extracted as an estimate of the variance explained.

Transferability of PGSs across ancestries. We used the PRS-CSauto33 software to 
first build PGSs derived from data from individuals of European ancestry for 
each glycemic trait (FG, FI, 2hGlu and HbA1c) on the basis of the summary 
statistics. However, PRS-CSauto does not perform well when the training dataset 
is relatively small and the genetic architecture is sparse33. As a consequence, 2hGlu 
was excluded from this analysis. For each trait, to obtain training and test datasets 
for populations of European ancestry, we first removed all cohorts only genotyped 
on the Metabochip that were not included in this analysis. From the remaining 
cohorts we then removed five of the largest cohorts of European ancestry that 
contributed to the respective meta-analysis of data of populations of European 
ancestry. For each trait, these five cohorts were meta-analyzed and used as the test 
dataset of individuals of European ancestry. Subsequently, the remaining cohorts 
comprising individuals of European ancestry were also meta-analyzed and used 
as the training dataset of individuals of European ancestry. For each of the other 
ancestries, cohorts only genotyped on the Metabochip were also removed, and the 
remaining cohorts were meta-analyzed, and used as the test datasets of populations 
of non-European ancestry. Variants that had MAF < 0.05 or that were missing 
in over half of the individuals in the training dataset were removed33,88. The PGS 
for each trait was built using PRS-CSauto with default settings33 with the effect 
size estimates based on the training dataset of individuals of European ancestry 
being revised based on an LD reference panel that matched the test dataset. The 
proportion of the trait variance explained by the PGS derived from data from 
individuals of European ancestry (R2) was estimated using the R package ‘gtx’34 on 
the basis of the revised effect sizes and summary statistics from the test dataset for 
each ancestry.

Fine-mapping. Of the 242 loci identified in this study, 237 were autosomal loci that 
we took forward for fine-mapping (Supplementary Table 2). We used the Bayesian 
fine-mapping method FINEMAP89 (v.1.1) to refine association signals and attempt 
to identify likely causal variants at each locus. FINEMAP estimates the maximum 
number of causal variants at each locus, calculates the posterior probability of 
each variant being causal and proposes the most likely configuration of causal 
variants. The posterior probabilities of the configurations in each locus were used 
to construct 99% CSs.

We performed both single-ancestry and trans-ancestry fine-mapping. In 
both analyses, only data from cohorts genotyped on GWAS arrays were used, and 
analyses were limited to trans-ancestry lead variants and other single-ancestry 
lead variants that were present in at least 90% of the samples for each trait. For 
the single-ancestry fine-mapping, FINEMAP estimates the number of causal 
variants in a region up to a maximum number, which we set to be two plus the 
number of distinct signals identified from the GCTA signal selection. FINEMAP 
uses single-ancestry and trait-specific z-scores from the fixed-effect meta-analysis 
in METAL20 and an ancestry-specific LD reference, which we created from a 
subset of cohorts (combined sample size of more than 30% of the sample size 
for that ancestry), weighting each cohort by sample size. In the trans-ancestry 
fine-mapping analysis, FINEMAP was similarly used to estimate the number 
of causal variants starting with two, and trait-specific z-scores and LD maps 
were generated from the sample-size-weighted average of those used in the 
single-ancestry fine-mapping. The maximum number of causal variants was 
iteratively increased by one until it was larger than the number of causal variants 
supported by data (Bayes factor), which was the estimated maximum number of 
causal variants used in the final run of the fine-mapping analysis.

To compare fine-mapping results obtained from the single-ancestry and 
trans-ancestry efforts, analyses were limited to fine-mapping regions with evidence 
for a single likely causal variant in both, enabling a straightforward comparison of 
CSs (Supplementary Note). To ensure any difference in the fine-mapping results 
was not driven by different sets of variants being present in the different analyses, 
we repeated the single-ancestry fine-mapping limited to the same set of variants 
used in the trans-ancestry fine-mapping. The fine-mapping resolution was assessed 
on the basis of comparisons of the 99% CSs in terms of the number of variants 
included in the set and length of the region. To assess whether the improvement 
in the trans-ancestry fine-mapping was due to differences in LD, increased sample 
size or both, we repeated the trans-ancestry fine-mapping mimicking the sample 
size present in the single-ancestry fine-mapping by dividing the standard errors by 
the square root of the sample size ratio and compared the results with those from 
the single-ancestry fine-mapping.

Functional annotation of trait-associated variants. HbA1c signal classification. 
There were 218 HbA1c-associated signals from either the single-ancestry (that is all 
GCTA signals from any ancestry) or trans-ancestry meta-analyses. To classify these 
signals in terms of their likely mode of action (that is, glycemic, erythrocytic or 
other7), we examined association summary statistics for the lead variants at the 218 
signals in other large datasets of individuals of European ancestry for 19 additional 
traits: three glycemic traits from this study (FG, 2hGlu and FI); seven mature RBC 
traits90,91 (RBC count, mean corpuscular volume, hematocrit, mean corpuscular 
hemoglobin, mean corpuscular hemoglobin concentration, hemoglobin 

concentration and RBC distribution width); five reticulocyte traits (reticulocyte 
count, reticulocyte fraction of RBCs, immature fraction of reticulocytes, high 
light-scatter reticulocyte count and high light-scatter percentage of RBCs)90,91, 
and four iron traits (serum iron, transferrin, transferrin saturation and ferritin)92. 
Of the 218 HbA1c signals, data were available for the lead (n = 183) or proxy 
(European LD r2 > 0.8, n = 8) variants for 191 signals.

The additional traits were clustered using hierarchical clustering to ensure 
biologically related traits would cluster together (Supplementary Note). We then 
used a non-negative matrix factorization93 process to cluster the HbA1c signals. 
Each cluster was labeled as glycemic, reticulocyte, mature RBC or iron-related 
based on the strength of association of the signals in the cluster to the glycemic, 
reticulocyte, mature RBC and iron traits (Supplementary Note). To verify that our 
cluster naming was correct, we used HbA1c association results conditioned on 
either FG or iron traits or T2D association results (Supplementary Note).

HbA1c GRSs and T2D risk. We constructed GRSs for each cluster of 
HbA1c-associated signals (based on hard clustering) and tested the association of 
each cluster with T2D risk using samples from the UK Biobank. Pairs of HbA1c 
signals in LD (European r2 > 0.10) were LD-pruned by removing the signal with 
the less-significant P value of association with HbA1c. The GRS for each cluster 
was calculated on the basis of the logarithm of the ORs from the latest T2D 
study summary statistics94 and UK Biobank genotypes imputed in the Haplotype 
Reference Consortium19. From 487,409 UK Biobank samples (age between 46 and 
82 years; 55% female), we excluded participants for the following reasons: 373 
with mismatched sex; 9 not used in the kinship calculation; 78,365 individuals 
of non-European ancestry; and 138,504 with missing T2D status, age or sex 
information. We further removed 26,896 related participants (kinship > 0.088, 
preferentially removing individuals with the largest number of relatives and 
control individuals for whom a case of T2D was related to that control individual). 
Individuals with T2D were defined as: (1) a history of diabetes without metformin 
or insulin treatment; (2) self-reported diagnosis of T2D; or (3) diagnosis of T2D 
in a national registry (n = 17,022; age between 47 and 79 years; 36% female). 
Control individuals were participants without a history of T2D (n = 226,240; age 
between 46 and 82 years; 56% female). We tested for associations between each 
GRS and T2D using logistic regression including covariates for age, sex and the 
first five principal components. The significance of the associations was evaluated 
by a bootstrap approach to incorporate the variance of each HbA1c-associated 
signal in the T2D summary data. To do this, we generated the GRS of each cluster 
200 times by resampling the logarithm of the OR of each signal with T2D. For each 
non-glycemic class that had a GRS that was significantly associated with T2D, 
we performed sensitivity analyses to evaluate whether the association was driven 
by variants that also belonged to a glycemic cluster when using a soft clustering 
approach (the signals were classified as also glycemic in the soft clustering or had 
an association P ≤ 0.05 with any of the three glycemic traits).

Chromatin states. To identify genetic variants within association signals 
that overlapped predicted chromatin states, we used a previously published, 
13-chromatin-state model that included 31 diverse tissues, including pancreatic 
islets, skeletal muscle, adipose and liver38. In brief, this model was generated from 
cell and tissue chromatin immunoprecipitation–sequencing data for H3K27ac, 
H3K27me3, H3K36me3, H3K4me1 and H3K4me3, and input control from a 
diverse set of publicly available data53,57,95,96 using the ChromHMM program97. As 
reported previously38, StrEs were defined as contiguous enhancer chromatin state 
(active enhancer 1 and 2, genic enhancer and weak enhancer) segments that were 
longer than 3 kb (ref. 57).

Enrichment of genetic variants in genomic features. We used GREGOR (v.1.2.1) to 
calculate the enrichment of GWAS variants that overlapped static annotations and 
StrEs56. To calculate the enrichment of glycemic-trait-associated variants in these 
annotations, we used the filtered list of trait-associated variants as described above 
(Supplementary Table 7) as input. To calculate the enrichment of sub-classified 
HbA1c variants, we included the list of loci characterized as glycemic, another 
list of loci characterized as reticulocyte or mature RBC—which collectively 
represented the RBC fraction—along with lists of iron-related or unclassified 
loci (Supplementary Table 17). We used the following parameters in GREGOR 
enrichment analyses: European r2 threshold (for inclusion of variants in LD 
with the lead variant) = 0.8, LD window size = 1 Mb, and minimum neighbour 
number = 500.

We used fGWAS (v.0.3.6)58 to calculate the enrichment of 
glycemic-trait-associated variants in static annotations and StrEs using 
summary-level GWAS results. We used the default fGWAS parameters for 
enrichment analyses for individual annotations for each trait. For each annotation, 
the model provided the natural logarithm of the maximum likelihood estimate 
of the enrichment parameter. Annotations were considered to be significantly 
enriched if the log2[parameter estimate] value and respective 95% confidence 
intervals were above zero or significantly depleted if the log2[parameter estimate] 
value and respective 95% confidence intervals were below zero.

We tested the enrichment of trait-associated variants in static annotations and 
StrEs with GARFIELD (v.2)59. We formatted annotation overlap files as required 
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by the tool; prepared input data at two GWAS thresholds—a threshold of 1 × 10−5 
and a more stringent threshold of 1 × 10−8—by pruning and clumping with default 
parameters (garfield-prep-chr script). We calculated enrichment in each individual 
annotation using garfield-test.R with --c option set to 0. We also calculated the 
effective number of annotations using the garfield-Meff-Padj.R script. We used 
the effective number of annotations for each trait to obtain Bonferroni-corrected 
significance thresholds for enrichment of each trait.

eQTL analyses. To aid in the identification of candidate casual genes associated with 
the European-only and trans-ancestry association signals, we examined whether 
any of the lead variants associated with glycemic traits (Supplementary Table 7) 
were also associated with the expression level (FDR < 5%) of nearby transcripts 
located within 1 Mb using existing eQTL datasets of blood, subcutaneous adipose, 
visceral adipose, skeletal muscle and pancreatic islet samples60,61,98–101. The LD was 
estimated from the collected cohort pairwise LD information, where available, 
and otherwise from the samples of individuals of European ancestry from 1000 
Genomes Project phase 3. GWAS and eQTL signals likely co-localize when the 
GWAS variant and the variant most strongly associated with the expression level 
of the corresponding transcript (eSNP) exhibit high pairwise LD (r2 > 0.8; 1000 
Genomes Project phase 3, European ancestry). For these signals, we conducted 
reciprocal conditional analyses to test associations between the GWAS variant and 
transcript level when the eSNP was also included in the model, and vice versa. We 
report GWAS and eQTL signals as co-localized if the association for the eSNP was 
not significant (FDR ≥ 5%) when conditioned on the GWAS variant; we also report 
signals from the eQTLGen whole-blood meta-analysis data that meet only the LD 
threshold because conditional analysis was not possible.

Tissue and gene-set analysis. We performed enrichment analysis using DEPICT 
v.3, which was specifically developed for the imputed meta-analysis data of the 
1000 Genomes Project102 to identify cell types and tissues in which genes of 
trait-associated variants were strongly expressed, and to detect enrichment of 
gene sets or pathways. DEPICT data included human gene-expression data for 
19,987 genes in 10,968 reconstituted gene sets, and 209 tissues and/or cell types. 
Because gene-expression data in DEPICT is based on samples of individuals of 
European ancestry and LD, we selected trait-associated variants with P < 10−5 
in the meta-analysis of data of individuals of European ancestry and tested for 
enrichment of signals in each reconstituted gene set, and each tissue or cell type. 
Enrichment results with FDR < 0.05 were considered to be significant. We ran 
DEPICT on the basis of the association results for all traits among: (1) cohorts 
with genome-wide data; or (2) all cohorts (genome-wide and Metabochip 
cohorts). Because results were broadly consistent between the two approaches, 
we present results from the analysis that contained all cohorts as it had greater 
statistical power.

Statistics and reproducibility. Sample size. No statistical method was used to 
predetermine sample size. We aimed to bring together the largest possible sample 
size with GWAS data from individuals of diverse ancestries (European, Hispanic, 
African American, East Asian, South Asian and sub-Saharan African) without 
diabetes and with data for one or more of the following traits: FG, FI, 2hGlu and 
HbA1c. The sample sizes were 281,416 (FG), 213,650 (FI), 215,977 (HbA1c) and 
85,916 (2hGlu) (Supplementary Table 1). Our sample size was sufficiently powered 
to detect common variant associations for each of the glycemic traits and was able 
to detect associations at 242 loci.

Randomization and blinding. This is a study of continuous traits and there were 
therefore no experiments to randomize and no ‘outcome’ to which investigators 
needed to be blinded to.

Data exclusions. Before conducting this study, we identified reasons for which data 
should be excluded from the analysis at either the cohort or summary level; these 
exclusions are as follows. Sample QC checks included removing samples with low 
call rate less than 95%, extreme heterozygosity, sex mismatch with X chromosome 
variants, duplicates, first- or second-degree relatives (unless by design) or ancestry 
outliers. Following sample QC, cohorts applied variant QC thresholds for call 
rate (less than 95%), Hardy–Weinberg equilibrium P < 1 × 10–6 and MAF. Full 
details of QC thresholds and exclusions by participating cohorts are available 
in Supplementary Table 1. Each contributing cohort shared their summary 
statistic results with the central analysis group, who performed additional QC 
using EasyQC. Allele-frequency estimates were compared with estimates from 
the 1000 Genomes Project phase 1 reference panel, and variants were excluded 
from downstream analyses if there was a MAF difference of more than 0.2 for 
populations of African American, European, Hispanic and East Asian ancestry 
compared with populations of African, European, Mexican and Asian ancestry 
from 1000 Genomes Project phase 1, respectively, or a MAF difference of more 
than 0.4 for individuals of South Asian ancestry compared with populations of 
European ancestry. At this stage, additional variants were excluded from each 
cohort file if they met one of the following criteria: were tri-allelic; had a MAC < 3; 
demonstrated a standard error of the effect size ≥ 10; imputation r2 < 0.4 or INFO 
score < 0.4; or were missing an effect estimate, standard error or imputation quality.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Ancestry-specific and overall meta-analysis summary level results are available 
through the MAGIC website (https://www.magicinvestigators.org/). Summary 
statistics are also available through the GWAS catalog (https://www.ebi.ac.uk/
gwas/) with the following accession codes: GCST90002225, GCST90002226, 
GCST90002227, GCST90002228, GCST90002229, GCST90002230, 
GCST90002231, GCST90002232, GCST90002233, GCST90002234, 
GCST90002235, GCST90002236, GCST90002237, GCST90002238, 
GCST90002239, GCST90002240, GCST90002241, GCST90002242, 
GCST90002243, GCST90002244, GCST90002245, GCST90002246, 
GCST90002247 and GCST90002248.

code availability
Source code implementing the methods described in the paper are publicly 
available at https://doi.org/10.5281/zenodo.4607311.
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Extended Data Fig. 1 | Flow diagram of this study. The figure shows the data, key methods and main analyses included in this effort.
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Extended Data Fig. 2 | Locus diagram. Trans-ancestry locus A contains a trans-ancestry lead variant for one glycemic trait represented by the blue 
diamond, and another single-ancestry index variant for another glycemic trait represented by the orange triangle. Single-ancestry locus B contains a 
single-ancestry lead variant represented by the purple square. The orange, blue and purple bars represent a +/− 500Kb window around the orange, 
blue, and purple variants, respectively. The black bars indicate the full locus window where trans-ancestry locus A contains trans-ancestry lead and 
single-ancestry index variants for two traits and single-ancestry locus B has a single-ancestry lead variant for a single trait.
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Extended Data Fig. 3 | Venn diagram. Overlap of TA loci between traits.
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Extended Data Fig. 4 | see next page for caption.
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Extended Data Fig. 4 | allele frequency versus effect size. Allele frequency versus effect size for all signals detected through the trans-ancestry meta-
analyses, for each of the four traits. Frequency and effect size are from the European meta-analyses. The power curves were computed based on the 
European sample size for each trait, and the mean (m) and standard deviation (sd) computed on the FENLAND study: FG, m = 4.83 mmol/l, sd=0.68; FI, 
m = 3.69 mmol/l, sd=0.60; 2hGlu, m = 5.30 mmol/l, sd=1.74; HbA1c, m = 5.55%, sd=0.48.
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Extended Data Fig. 5 | eaF correlation and heterogeneity test. Pearson correlation of EAF on the lower tri-angle and p-value of one-side heterogeneity 
test without multiple testing corrections on the upper tri-angle of the trans-ancestry lead variants associated with each trait between ancestries. 
Correlations > 0.7 are in bold.
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Extended Data Fig. 6 | Forest plot of T2D GRs from Hba1c variants. The p-value on the right side is from the two-side test without multiple testing 
corrections. Vertical points of each diamond represent the point estimate of the odds ratio. The horizontal points of each diamond represent the 95% 
confidence interval of the odds ratio. Figure shows the association results between HbA1c-associated variants built into a GRS for T2D by taking each 
HbA1c-associated variant and using a weight that corresponds to its T2D effect size (logOR) based on analysis by the DIAGRAM consortium. The overall 
GRS is subsequently partitioned according to the HbA1c signal classification. The overall and partitioned GRS were tested for association with T2D based 
on data from UK biobank.
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Extended Data Fig. 7 | enrichment of glycemic trait associated GWas variants to overlap genomic annotations using GReGOR. Figure shows enrichment 
for 59 total static and stretch enhancer annotations considered. One-side test significance (red) is determined after Bonferroni correction to account for 
59 total annotations tested for each trait; nominal significance (P < 0.05) is indicated in yellow.
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Extended Data Fig. 8 | enrichment of glycemic trait associated GWas variants to overlap genomic annotations using fGWas. Figure shows log2(Fold 
Enrichment) of GWAS variants to overlap 59 static and stretch enhancer annotations calculated. Significant enrichment (red) is considered if the 95% 
confidence intervals (shown by the error bars) do not overlap 0.
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Extended Data Fig. 9 | enrichment of glycemic trait associated GWas variants to overlap genomic annotations using GaRFieLD. Figure shows the β or 
effect size (log odds ratio) for GWAS variants to overlap 59 static and stretch enhancer annotations. GWAS variants were included at two significance 
thresholds, 1e-05 (A) and 1e-08 (B). One-side test significance (red) is determined after Bonferroni correction to account for effective annotations tested 
for each trait reported by GARFIELD (see Supplementary Note); nominal significance (P < 0.05) is indicated in yellow. The 95% confidence intervals are 
shown by the error bars.

NaTuRe GeNeTics | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics














The trans-ancestral genomic architecture 
of glycemic traits

In the format provided by the 
authors and unedited

Supplementary information

https://doi.org/10.1038/s41588-021-00852-9



1 
 

Supplementary Note 1 

Contents 2 

1. Glycemic trait locus discovery......................................................................................................... 4 3 

a. Single-ancestry and trans-ancestry meta-analyses ......................................................................... 4 4 

Supplementary Figure 1 .................................................................................................................. 4 5 

Supplementary Figure 2 .................................................................................................................. 4 6 

Supplementary Figure 3 .................................................................................................................. 4 7 

Supplementary Figure 4. ................................................................................................................. 5 8 

Supplementary Figure 5 .................................................................................................................. 5 9 

Supplementary Figure 6. ................................................................................................................. 5 10 

Supplementary Figure 7. ................................................................................................................. 5 11 

Supplementary Figure 8 .................................................................................................................. 6 12 

Supplementary Figure 9. ................................................................................................................. 6 13 

Supplementary Figure 10. ............................................................................................................... 6 14 

Supplementary Figure 11 ................................................................................................................ 6 15 

Supplementary Figure 12. ............................................................................................................... 7 16 

Supplementary Figure 13. ............................................................................................................... 7 17 

Supplementary Figure 14. ............................................................................................................... 7 18 

Supplementary Figure 15. ............................................................................................................... 7 19 

Supplementary Figure 16. ............................................................................................................... 8 20 

Supplementary Figure 17. ............................................................................................................... 8 21 

Supplementary Figure 18. ............................................................................................................... 8 22 

Supplementary Figure 19. ............................................................................................................... 8 23 

Supplementary Figure 20. ............................................................................................................... 9 24 

Supplementary Figure 21. ............................................................................................................... 9 25 

Supplementary Figure 22. ............................................................................................................. 10 26 

Supplementary Figure 23. ............................................................................................................. 10 27 

Supplementary Figure 24. ............................................................................................................. 11 28 

b. Manual curation of single-ancestry index and lead variants and trans-ancestry lead variants ... 11 29 

c. Characterization of loci ................................................................................................................. 12 30 

Supplementary Figure 25 .............................................................................................................. 12 31 

Supplementary Figure 26 .............................................................................................................. 13 32 

Supplementary Figure 27 .............................................................................................................. 13 33 

Supplementary Table N1............................................................................................................... 14 34 



2 
 

Supplementary Figure 29 .............................................................................................................. 15 35 

d. Definition of novel locus ............................................................................................................... 15 36 

e. Contribution of non-European ancestry data to locus discovery ................................................. 16 37 

Supplementary Figure 30 .............................................................................................................. 17 38 

Supplementary Figure 31 .............................................................................................................. 18 39 

Supplementary Figure 32. ............................................................................................................. 19 40 

Supplementary Figure 33. ............................................................................................................. 20 41 

Supplementary Figure 34 .............................................................................................................. 21 42 

Supplementary Figure 35. ............................................................................................................. 22 43 

Supplementary Table N2............................................................................................................... 23 44 

Supplementary Table N3............................................................................................................... 23 45 

2. Allelic architecture of glycemic traits ............................................................................................ 24 46 

a. Complexity of association signals at a locus ................................................................................. 24 47 

Supplementary Table N4............................................................................................................... 24 48 

Supplementary Figure 36. ............................................................................................................. 27 49 

b. Detection of previously established loci/signals ........................................................................... 27 50 

Supplementary Table N5............................................................................................................... 27 51 

Supplementary Table N6............................................................................................................... 28 52 

c. Collider bias ................................................................................................................................... 28 53 

Supplementary Table N7............................................................................................................... 29 54 

Supplementary Table N8............................................................................................................... 29 55 

Supplementary Figure 37 .............................................................................................................. 30 56 

3. Characterization of trans-ancestry lead variants and European index variants across ancestries57 

 31 58 

Supplementary Table N9............................................................................................................... 31 59 

Supplementary Table N10............................................................................................................. 32 60 

Supplementary Table N11............................................................................................................. 33 61 

Supplementary Table N12............................................................................................................. 34 62 

4. Trait variance explained by associated loci................................................................................... 34 63 

5. Fine-mapping ................................................................................................................................ 36 64 

Supplementary Figure 38 .............................................................................................................. 37 65 

Supplementary Figure 39 .............................................................................................................. 39 66 

Supplementary Table N13............................................................................................................. 40 67 

Supplementary Figure 40. ............................................................................................................. 42 68 

Supplementary Figure 41. ............................................................................................................. 43 69 



3 
 

6. Biological signatures of glycemic trait associated loci .................................................................. 43 70 

a. HbA1c signal classification ............................................................................................................ 43 71 

Supplementary Figure 42 .............................................................................................................. 44 72 

Supplementary Figure 43 .............................................................................................................. 45 73 

Supplementary Table N14............................................................................................................. 45 74 

Supplementary Table N15............................................................................................................. 46 75 

Supplementary Figure 44- ............................................................................................................. 46 76 

Supplementary Table N16............................................................................................................. 47 77 

b. HbA1c clusters and T2D genetic risk score (GRS) ......................................................................... 48 78 

c. Epigenomic landscape of trait-associated variants ....................................................................... 48 79 

7. References .................................................................................................................................... 50 80 

8. Individual Funding and/or Other Acknowledgements .................................................................. 52 81 

 82 

 83 

  84 



4 
 

1. Glycemic trait locus discovery 85 

a. Single-ancestry and trans-ancestry meta-analyses 86 

We first performed trait-specific fixed-effect meta-analyses within each ancestry using METAL1 87 

(Methods, Supplementary Table 1). QQ plots and Manhattan plots are shown in Supplementary 88 

Figures 1-20. 89 

 90 

 91 
Supplementary Figure 1. Manhattan plot and QQ plot of the EUR meta-analysis of FG. 92 

 93 
Supplementary Figure 2. Manhattan plot and QQ plot of the EAS meta-analysis of FG. 94 

 95 
Supplementary Figure 3. Manhattan plot and QQ plot of the AA meta-analysis of FG. 96 
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 97 
Supplementary Figure 4. Manhattan plot and QQ plot of the HISP meta-analysis of FG. 98 

 99 
Supplementary Figure 5. Manhattan plot and QQ plot of the SAS meta-analysis of FG. 100 

 101 
Supplementary Figure 6. Manhattan plot and QQ plot of the EUR meta-analysis of FI. 102 

 103 
Supplementary Figure 7. Manhattan plot and QQ plot of the EAS meta-analysis of FI. 104 
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 105 
Supplementary Figure 8. Manhattan plot and QQ plot of the AA meta-analysis of FI. 106 

 107 
Supplementary Figure 9. Manhattan plot and QQ plot of the HISP meta-analysis of FI. 108 

 109 
Supplementary Figure 10. Manhattan plot and QQ plot of the SAS meta-analysis of FI. 110 

 111 
Supplementary Figure 11. Manhattan plot and QQ plot of the EUR meta-analysis of HbA1c. 112 
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 113 
Supplementary Figure 12. Manhattan plot and QQ plot of the EAS meta-analysis of HbA1c. 114 

 115 
Supplementary Figure 13. Manhattan plot and QQ plot of the AA meta-analysis of HbA1c. 116 

 117 
Supplementary Figure 14. Manhattan plot and QQ plot of the HISP meta-analysis of HbA1c. 118 

 119 
Supplementary Figure 15. Manhattan plot and QQ plot of the SASmeta-analysis of HbA1c. 120 
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 121 
Supplementary Figure 16. Manhattan plot and QQ plot of the AFR meta-analysis of HbA1c. 122 

 123 
Supplementary Figure 17. Manhattan plot and QQ plot of the EUR meta-analysis of 2hGlu. 124 

 125 
Supplementary Figure 18. Manhattan plot and QQ plot of the EAS meta-analysis of 2hGlu. 126 

 127 
Supplementary Figure 19. Manhattan plot and QQ plot of the AA meta-analysis of 2hGlu. 128 
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 129 
Supplementary Figure 20. Manhattan plot and QQ plot of the HISP meta-analysis of 2hGlu. 130 
 131 
Next, we conducted trait-specific trans-ancestry meta-analyses of ancestry-specific results using 132 

MANTRA (Methods, Supplementary Table 1) to identify genome-wide significant “trans-ancestry 133 

lead variants”, defined as the most significant trait-associated variant across all ancestries (log10 134 

Bayes Factor [BF] >6 (Supplementary Figures 21-24). 135 

 136 

 137 

Supplementary Figure 21. Manhattan plot of the trans-ancestry meta-analysis of FG. 138 
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 139 

Supplementary Figure 22. Manhattan plot of the trans-ancestry meta-analysis of FI. 140 

 141 

Supplementary Figure 23. Manhattan plot of the trans-ancestry meta-analysis of HbA1c. 142 
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 143 

Supplementary Figure 24. Manhattan plot of the trans-ancestry meta-analysis of 2hGlu. 144 

 145 

b. Manual curation of single-ancestry index and lead variants and trans-ancestry lead 146 

variants 147 

To ensure single-ancestry index and lead variants were robust, we performed manual inspection of 148 

forest plots by at least two authors for any single-ancestry index and lead variants with QC flags. QC 149 

flags that led to manual inspection were : (i) ≤ 1 cohort with P-value < 0.05 & consistent direction of 150 

effect compared to single-ancestry METAL results; (ii) a single cohort within the ancestry provided 151 

data to the  single-ancestry index and lead variant; (iii) single-ancestry meta-analysis heterogeneity P 152 

< 1x10-5 (rank inverse normal transformation); (iv) opposite direction of effect between the single-153 

ancestry meta-analysis and the trans-ancestry meta-analysis in METAL (i.e. combining all the single-154 

ancestry meta-analyses results - rank inverse normal transformation); (v) MAF < 1%; and (vi) sample 155 

size for single-ancestry index and lead variant < 1/3 maximum sample size for that ancestry. In total 156 

we detected 335 single-ancestry index and lead variants across all traits, of which 295 passed without 157 

inspection, 32 passed after manual inspection, and 8 failed the manual inspection. 158 

Similarly to the single-ancestry analysis, we performed manual inspection of forest plots for TA lead 159 

variants meeting one of the following flags, indicating possible QC issues: (i) ≤ 1 cohort with P < 0.05 160 

& consistent direction of effect with the trans-ancestry meta-analysis in METAL (i.e. combining all the 161 

single-ancestry meta-analyses results - rank inverse normal transformation); (ii) only one ancestry 162 

provided data to the trans-ancestry lead variant; (iii) ≤ 1 ancestry with single-ancestry meta-analysis 163 

P ≤ 0.05; (iv) all ancestries with single-ancestry meta-analysis P ≤ 0.05 have a single cohort providing 164 

data to the TA variant; (v) single-ancestry meta-analysis heterogeneity P (rank inverse normal 165 

transformation) < 1x10-5 for ≥ 1 ancestry; (vi) heterogeneity P-value for trans-ancestry meta-analysis 166 

in METAL combining the single-ancestry meta-analyses results (rank inverse normal transformation) < 167 

1x10-5; (vii) heterogeneity log10BF from MANTRA (rank inverse normal transformation) > 3.7 168 

[=log10(0.05/1x10-5)]; (viii) ≤ 4 variants with log10BF > 6 in the trans-ancestry distance-based clump for 169 

that signal; (ix) opposite direction of effect between the raw and rank inverse normal meta-analysis 170 
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results (trans-ancestry meta-analysis in METAL combining the single-ancestry meta-analyses results); 171 

(x) MAF < 1%; or (xi) sample size for the TA lead variant < 1/3 maximum sample size within an ancestry 172 

or overall. Of 463 trans-ancestry lead variants across all traits, 184 passed without inspection, 131 173 

passed after inspection, and 148 failed the manual inspection.  174 

 175 

c. Characterization of loci 176 

Based on discovery efforts across all four traits and ancestries, this effort led to the identification of 177 

242 loci (235 trans-ancestry and seven single-ancestry) associated with at least one glycemic trait 178 

(Supplementary Table 2). The distribution of the length of each locus is shown in Supplementary 179 

Figure 25 and encompasses between 763 Kb – 3.04 Mb and is < 1.5 Mb in 98% of the loci (237/242). 180 

In 94% of the loci (227/242), the maximum distance between two adjoining signals is  200 Kb 181 

(Supplementary Figure 26). The maximum distance between adjoining signals from different traits is 182 

also  200 Kb for 96% of loci (232/242 – Supplementary Figure 27).  183 

 184 

 185 

Supplementary Figure 25 – Distribution of the length (Mb) of each locus. 186 

54.5%

43.4%

1.7% 0.4%

Locus length

≤ 1Mb

> 1Mb & ≤ 1.5Mb

> 1.5Mb & ≤ 2Mb

> 3Mb
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 187 

Supplementary Figure 26 – Distribution of the maximum distance (Kb) between two adjoining signals from the 188 
same trait. 189 

 190 

Supplementary Figure 27 - Distribution of the maximum distance (Kb) between two adjoining signals from 191 
different traits. 192 

The largest associated region is locus 242, spanning > 3 Mb on chromosome X, which includes 4 trans-193 

ancestry lead variants and 12 single-ancestry lead variants from one trait (Supplementary Table N1; 194 

Supplementary Figure 28). Locus 149 has the longest maximum distance between adjoining signals 195 

from both the same and different traits (EUR FG rs10717442 and trans-ancestry rs34228231; > 479 196 

Kb, EUR HbA1c rs10838696 and trans-ancestry FG rs34228231; nearly 457 Kb) with overall length of 197 

1.5 Mb (Supplementary Figure 29). In these two extreme examples, the long length of the locus and 198 

distance between signals are due to the distance-based clumping (locus 242) and very strong 199 

association signals in the trans-ancestry analysis with wider LD blocks (locus 149), suggesting that 200 

overall this definition is correctly grouping signals together in relevant loci. 201 

 202 
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 203 

Supplementary Table N1 – Details of the two loci with the longest overall locus length (242) and the longest 204 
distance between adjoining signals from same trait or different traits (149). 205 

Locus ID Chr. Start position (bp) End position (bp) Length (bp) Max. distance between adjacent 
signals (bp) 

Same trait Different traits 

149 11 46,778,502 48,320,241 1,541,740 479,561 456,956 

242 X 152,362,433 155,405,080 3,042,648 319,200 NA 

 206 

 207 
Supplementary Figure 28 - Locus plot of the trans-ancestry lead variants and single-ancestry lead variants for 208 
HbA1c identified at locus 242, which spans over 3 Mb on Chromosome X. TA- trans-ancestry; EUR- European; EAS – East 209 
Asian; HISP – Hispanic; AA- African American; SAS- South Asian; AFR- African, specifically Ugandan.  210 
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 211 

Supplementary Figure 29 – Locus plot of the trans-ancestry lead variants and single-ancestry index variants for FG 212 
(top) and HbA1c (bottom) identified at locus 149, which has the longest maximum distance between adjoining association 213 
variants of both the same and different traits with overall length of 1.5 Mb. TA- trans-ancestry; EUR- European; EAS – East 214 
Asian; HISP – Hispanic; AA- African American; SAS- South Asian; AFR- African, specifically Ugandan. 215 

d. Definition of novel locus 216 

Of the 242 identified loci, 99 had not been previously associated with any of the four glycemic traits 217 

or type 2 diabetes at the time of first analysis (November 2017; Supplementary Table 3; lookups in 218 

more recent T2D association studies are reported in the main text and Supplementary Table 4). Loci 219 

were considered novel for a specific trait if no trait-associated signal within the locus mapped within 220 

500 kb of a previously reported association for any glycemic trait2-4 or variants mapping to established 221 

type 2 diabetes5,6 loci at the time of first analysis (November 2017). However, we acknowledge that 222 

some of these “novel” loci may in fact be due to established signals that map outside the 500Kb 223 

flanking regions. 224 
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e. Contribution of non-European ancestry data to locus discovery 225 

In the trans-ancestry meta-analyses, we observed genome-wide significant associations at 235 trans-226 

ancestry loci, of which 59 contained trans-ancestry lead variants for more than one trait. In addition, 227 

we identified seven “single-ancestry loci” that did not contain any trans-ancestry lead variants. Six of 228 

these 7 single-ancestry loci were novel. Three were associated in individuals of non-European 229 

ancestry: (i) an African American association for FG (lead variant rs61909476) near the gene ETS1 230 

(Supplementary Figure 30), (ii) an African American association for FI (lead variant rs12056334) near 231 

the gene LOC100128993 (an uncharacterized RNA gene; Supplementary Figure 31), and (iii) a Hispanic 232 

association for FG (lead variant rs12315677) within the gene PIK3C2G (Supplementary Figure 32). 233 

Forest plots show these three single-ancestry loci are corroborated by data from multiple cohorts in 234 

the respective populations (Supplementary Figures 30- 32). The remaining three single-ancestry loci 235 

(Supplementary Figures 33-35) were only detected in European ancestry individuals although this 236 

could also be due to increased power in this ancestry compared to the others.  237 
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 238 

Supplementary Figure 30. Forest plot of FG-associated variant rs61909476. The p-value on the right side is from 239 
the two-side test without multiple testing corrections. Novel FG locus identified near ETS1 in African Americans. Results 240 
were not significant in other ancestry populations. Among the African American cohorts, sample sizes ranged from 319 241 
(CFS) to 6,519 (WHI) with a minimum imputation score of r2=0.56 and Phet=0.40. 242 
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 243 
Supplementary Figure 31. Forest plot of FI-associated variant rs12056334. The p-value on the right side is from 244 
the two-side test without multiple testing corrections. Novel FI locus identified near LOC100128993 in African Americans. 245 
Results were not significant in other ancestry populations. Among the African American cohorts, sample sizes ranged from 246 
318 (CFS) to 2,075 (ARIC) with a minimum imputation score of r2=0.978 and Phet=0.57. 247 
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 248 
Supplementary Figure 32. Forest plot of FG-associated variant rs12315677. The p-value on the right side is from 249 
the two-side test without multiple testing corrections. Novel FG locus identified near PIK3C2G in Hispanics. Results were 250 
not significant in other ancestry populations. Among the Hispanic cohorts, sample sizes ranged from 130 (TRIPOD) to 251 
10,065 (SOL) with a minimum imputation score of r2=0.69 and Phet=0.43. 252 
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 253 
Supplementary Figure 33. Forest plot of FI-associated variant rs13258890. The p-value on the right side is from 254 
the two-side test without multiple testing corrections. Novel FI locus identified near NKX2-6 in Europeans. Results were not 255 
significant in other ancestry populations. Among the European cohorts, sample sizes ranged from 155 (HELICPomak) to 256 
8,518 (METSIM) with a minimum imputation score of r2=0.76 and Phet=0.53. 257 
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 258 
Supplementary Figure 34. Forest plot of FI-associated variant rs200678953. The p-value on the right side is from 259 
the two-side test without multiple testing corrections. Novel FI locus identified near D21S2088E in Europeans. Results were 260 
not significant in other ancestry populations. Among the European cohorts, sample sizes ranged from 155 (HELICPomak) to 261 
8,518 (METSIM) with a minimum imputation score of r2=0.44 and Phet=0.96. 262 
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 263 
Supplementary Figure 35. Forest plot of HbA1c-associated variant rs184506746. The p-value on the right side is 264 
from the two-side test without multiple testing corrections. Novel HbA1c locus identified near CD99L2 in Europeans. 265 
Results were not significant in other ancestry populations. 266 
Among the European cohorts, sample sizes ranged from 496 (BioMe) to 4,289 (SardiNIA) with a minimum imputation score 267 
of r2=0.47 and Phet=0.37. 268 
 269 
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In addition, sixteen of the novel loci have P > 10-5 in the European-only meta-analyses which comprises 270 

the largest fraction of the data, suggesting their discovery was enabled by the power of the additional 271 

non-European samples. To test this hypothesis, we investigated each of the 242 loci assuming the 272 

sample size of the trans-ancestry analysis had been achieved in the European data alone. To do this, 273 

we scaled the standard error from the European analysis by multiplying the standard error by the 274 

square root of the ratio of the sample size from trans-ancestry analysis and the European analysis 275 

(Supplementary Table N2). We identified a total of 30 loci (21 novel; Supplementary Table 3) that 276 

were detected in the trans-ancestry meta-analyses that would not have achieved genome-wide 277 

significance in a similarly sized dataset of only European samples, highlighting the importance of 278 

diverse ancestries for novel locus discovery (Supplementary Table N2). For all 30 loci, their discovery 279 

in the trans-ancestry set is due to either higher EAFs or larger effect sizes in non-European populations 280 

(Supplementary Table N3). 281 

 282 

Supplementary Table N2 – Summary of loci detected in trans-ancestry meta-analysis that would not have achieved 283 
genome-wide significance (log10BF > 6) if the sample size had been comprised only of European ancestry individuals. Note 284 
that there is one overlapping locus (22) between FG and HbA1c so overall there are 30 loci detected due to contribution 285 
from non-European ancestry samples. “# TA loci” shows the number of loci that are associated with the trait in the trans-286 
ancestry meta-analysis log10BF > 6, “# TA loci with log10BFEUR ≤ 6.0” shows the number of loci with log10BF > 6 in trans-ancestry 287 
meta-analysis but log10BF ≤ 6 in European meta-analysis, “# TA loci with log10BFEUR ≤ 6.0 when using TA sample size” shows 288 
the number of loci that are genome-wide significant in trans-ancestry analysis (log10BF > 6) that would not have reached 289 
genome-wide significance log10BF > 6 in European meta-analysis mimicking the same sample size used in trans-ancestry 290 
meta-analysis. 291 

Trait # TA loci # TA loci with 

log10BFEUR   6 
TA loci with log10BFEUR   6.0 when 
using TA sample size 

FG 100 18 8 

2hGlu 21 5 4 

FI 62 18 8 

HbA1c 126 32 11 

 292 

Supplementary Table N3 – Results for 30 loci that were detected in the trans-ancestry meta-analyses that would 293 
not have achieved genome-wide significance in a similarly sized dataset of only European samples, highlighting the 294 
importance of diverse ancestries for novel locus discovery. Abbreviations: BF, Bayes factor; bp, base pair; EAF, effect allele 295 
frequency; TA, trans-ancestry. 296 

Trait Locus 
ID 

Lead TA 
variant 

Closest Gene(s):Distance 
to closest gene 

European Non-European Ancestry(s) with log10BF > 
6.0 

EAF Effect size Ancestry EAF Effect size 

Fasting glucose        

 1 rs12142172 PRDM16: 0 0.20 -0.008 AA 0.46 -0.021 

 22 rs12712928 SIX3: 18,864 0.16 0.010 EAS 0.40 0.040 

 32 rs7572235 EPHA4: 214,144 0.78 -0.008 SAS 0.67 -0.023 

 47 rs189651013 FGF12: 0 0.007 0.110 HISP 0.002 0.150 

 67 rs3733977 FBLL1: 0 0.16 0.010 EAS 0.49 0.007 

 114 rs60405463 KANK1: 0 0.09 0.009 EAS 0.53 0.018 

 182 rs10781829 NA 0.95 -0.016 AA 0.62 -0.036 

 187 rs182584439 PTGDR: 12,851 NA NA AA 0.006 0.233 

2 hour glucose        

 69 rs34499031 CDKAL1: 0 0.72 -0.038 AA 
EAS 
HISP 

0.41 
0.53 
0.69 

-0.081 
-0.111 
-0.072 

 129 rs35696875 HKDC1: 0; LOC101928994: 
0 

0.32 -0.039 AA 
HISP 

0.75 
0.50 

-0.132 
-0.066 

 198 rs115880135 PEX11A: 0 NA NA HISP 0.9991 1.838 

 237 rs184389108 RRP7A: 0; SERHL:0 0.99 -0.308 HISP 0.993 -0.618 

Fasting insulin        
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 25 rs2252867 CEP68: 0 0.64 0.007 SAS 0.58 0.015 

 81 rs5875762 FOXP4: 0 0.31 -0.008 EAS 0.31 -0.011 

 128 rs10761762 JMJD1C: 0 0.51 0.008 AA 0.69 0.023 

 135 rs7071062 MIR5694: 123,574 0.97 0.019 SAS 0.96 0.084 

 155 rs3781926 PDE2A: 0 0.36 0.009 AA 0.34 0.022 

 163 rs12369443 PDE3A: 0 0.78 0.010 SAS 0.92 0.036 

 170 rs73343765 SYT1: 100,219 0.006 -0.190 HISP 0.003 0.327 

 224 rs339525 MAP3K10: 1,137 0.26 -0.007 EAS 0.31 -0.022 

HbA1c        

 22 rs12712928 SIX3: 18,864 0.16 0.008 EAS 0.39 0.023 

 48 rs9846651 LINC00885: 0 0.11 0.007 EAS 0.49 0.017 

 53 rs139577195 LOC101927282: 267,587 0.0005 -0.069 HISP 0.005 -0.150 

 57 rs13164333 MIR4278: 74,681 0.05 0.001 AA 0.14 0.069 

 63 rs144559191 AQPEP: 0 NA NA AA 0.01 -0.175 

 91 rs137954340 AGR2: 5,617 NA NA AFR 0.008 0.237 

 139 rs73388897 OR51E2: 0 0.0006 -0.178 HISP 0.01 -0.118 

 140 rs77121243 HBB: 0 0.003 -0.081 AA 
HISP 

0.07 
0.02 

-0.108 
-0.225 

 141 rs116006800 OR52N2: 6,041 NA NA AA 0.02 -0.145 

 196 rs114189680 ADAMTS7: 0 0.006 0.041 AA 0.03 -0.143 

 228 rs6113722 LINC00261: 0 0.04 -0.012 EAS 0.16 -0.015 

 297 

2. Allelic architecture of glycemic traits 298 

 a. Complexity of association signals at a locus 299 

Trans-ancestry and single-ancestry loci comprised a range of association patterns, with most loci 300 

harboring one single-ancestry signal for any given trait. However, 29 loci contained multiple, distinct 301 

single-ancestry index variants that did not fully overlap between ancestries (Supplementary Table 302 

N4).  303 

The most complex locus we observed was in the region spanning G6PC2, which contained 14 distinct 304 

FG index variants in the European single-ancestry meta-analysis. Of these, four are shared (P<5x10-8) 305 

with South Asian ancestry, two with East Asian ancestry, and two with Hispanic ancestry 306 

(Supplementary Figure 36). The complexity of association signals at this locus is consistent with 307 

previous work that also reported common variant (MAF>5%) association signals and multiple rare 308 

variant (MAF≤1%) associations at this locus that influenced protein function by multiple mechanisms4. 309 

 310 

Supplementary Table N4 - Table showing the distribution of single-ancestry index and lead variants per locus by trait 311 
and ancestry. Loci regions IDs map to those in Supplementary Table 2. 312 

Trait Ancestry # of loci 

Minimum # of 
single-ancestry 
index and lead 
variants at a locus 

Median # of 
single-ancestry 
index and lead 
variants at a 
locus 

Maximum # of 
single-ancestry 
index and lead 
variants at a 
locus Loci regions with > 1 signal 

Fasting glucose      

 EUR 68 1 1 14 1, 25, 28, 68, 80, 90, 93, 103, 116, 133, 
149, 156 

 EAS 11 1 1 4 28, 90 

 HISP 7 1 1 2 28 

 AA 6 1 1 1 NA 

 SAS 4 1 1 4 28 

 TA 100 1 1 2 28, 149 

2h glucose      

 EUR 14 1 1 1 NA 

 HISP 1 1 1 1 NA 

 TA 21 1 1 1 NA 
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Fasting insulin      

 EUR 36 1 1 3 27, 35, 59, 79, 82, 103, 172 

 HISP 3 1 1 1 NA 

 AA 1 1 1 1 NA 

 TA 62 1 1 1 NA 

HbA1c      

 EUR 77 1 1 5 15, 28, 44, 54, 72, 93, 107, 129, 166, 
184, 207, 216, 222, 242 

 EAS 19 1 1 3 28 

 HISP 9 1 1 4 242 

 SAS 2 1 1 1 NA 

 AFR 2 1 1 1 NA 

 TA 126 1 1 4 54, 242 
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 313 
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Supplementary Figure 36. Locus zoom plot of FG-associated locus G6PC2. Figure includes top five panels to show 314 
the associations in five ancestries and one bottom panel to show the genes and MAFs. On each of top five panels, points 315 
present the -log10(p-value) from the two-side test without multiple testing corrections and are coloured by their LD level 316 
with the trans-ancestry lead variant in purple diamond. The colourful par labelled by R2 shows and maximum LD level of 317 
each variant with the single-ancestry signals in the black circles. The colourful par labelled by LDscore shows the 318 
summation of R2 between each variant and all the other variants divided by the maximum of the summations. 319 

b. Detection of previously established loci/signals 320 

We compared the current discovery effort against previously established glycemic and type 2 diabetes 321 

associated signals for each trait. Loci were considered novel for a specific trait if no trait-associated 322 

signal within the locus mapped within 500 kb of a previously reported association for any glycemic 323 

trait2-4 or variants mapping to established type 2 diabetes5,6 loci at the time of first analysis (November 324 

2017). Overall, we identified novel loci for each trait in both the single-ancestry and trans-ancestry 325 

meta-analyses: 53 FG, 49 FI, 11 2hGlu, and 62 HbA1c (Supplementary Table N5), and identified 70-326 

88% of previously established signals at genome-wide significance (P < 5x10-8) (Supplementary Table 327 

6). However, there were 44 previously established signals that did not reach genome-wide significance 328 

in our analysis (i.e. did not reach BF > 6 in the trans-ancestry analysis or did not achieve P < 5x10-8 329 

threshold in any of the single-ancestry meta-analyses). 330 

 331 

Supplementary Table N5 - Table summarizing the number of known and novel loci and number of signals detected 332 
in this effort by trait. 333 

Trait # of signals # of loci # of novel loci 

FG 182 102 53 

2hGlu 28 21 11 

FI 95 66 49 

HbA1c 218 127 62 

 334 

To investigate why established signals were not observed in our analyses, we performed a lookup of 335 

all established signals in our current effort (Supplementary Table 6) and summarized the results in 336 

Supplementary Table N6 below. Overall, the vast majority of previously reported association signals 337 

are at least nominally significant (P < 0.05 or log10BF > 0) for the corresponding trait in our analysis (n 338 

= 290). The remaining seven established signals were not observed in our study for the following 339 

reasons: (i) rs6947345 was previously identified to be female-specific [FG7] and our analyses were 340 

limited to sex-combined models; (ii) two variants did not pass our QC stage (rs141203811, FI and 341 

rs1135071, HbA1c); (iii) rs7077836 was previously associated with FI in a smaller sample of 1,497 342 

African American and African samples8 but is not observed in our analysis with over 8,101 African 343 

American samples (P=0.25) suggesting this prior association could be a false-positive; (iv) rs1421085 344 

was previously associated with FI without BMI adjustment, suggesting its association with FI is due to 345 

an effect on BMI (rs1421085 has been shown to be significantly associated with BMI, P = 8.83x10-151)9; 346 

(v) rs213676 was previously detected in a FI analysis of 14,043 African American participants10 but not 347 

in our smaller analysis of 1,692 African American participants who contributed data for this variant 348 

(chr X), suggesting our analysis had less power to detect the association; and (vi) rs146779637 is a rare 349 

protein truncating variant in G6PC2 (HbA1c4) for which we only had data on 22,617 European ancestry 350 

participants. 351 

 352 
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Supplementary Table N6 – Examination of the associations of established signals in our current analyses. The p-353 
value is from the two-side test without multiple testing corrections. 354 

Trait Total 

P ≤ 5x10-8 
or 
log10BF ≥ 6 

5x10-8 < P ≤ 5x10-4  
or 
2 ≤ log10BF < 6 

5x10-4 <P ≤ 5x10-2  
or 
0 ≤ log10BF < 2 

P > 5x10-2 

 or 
log10BF < 0 

FG 102 90 8 3 1 

2hGlu 28 24 4 0 0 

FI 43 30 6 3 4 

HbA1c 124 109 10 3 2 

c. Collider bias 355 

There have been previous concerns regarding the possible effect of adjusting phenotypes for 356 

correlated heritable traits, leading to possible collider bias11. As we have conducted analyses of FG, FI, 357 

and 2hGlu adjusted for BMI, we investigated the possibility that our results were due to collider bias 358 

(i.e. that they were due to association with BMI only, and not with the trait in question). To evaluate 359 

this, we focused on all trans-ancestry lead variants and European index and lead variants (as these 360 

comprised the larger datasets and we had previous data available for traits adjusted and unadjusted 361 

for BMI) where the European meta-analysis results for FG adjusted for BMI (FGadjBMI), FI adjusted 362 

for BMI (FIadjBMI), and 2hGlu adjusted for BMI (2hGluadjBMI) reached P ≤ 1x10-5. We compared the 363 

effect size and significance of association between the variants and each of these traits with 364 

association results for the same variant and BMI. Where signals had evidence of potential collider bias 365 

[i.e. they were significantly associated with BMI (P ≤ 0.05 after Bonferroni correction) but in the 366 

opposite direction to that of their effect on the glycemic trait], we assessed their association in 367 

analyses of glycemic traits without adjustment for BMI. Results from unadjusted traits were available 368 

from previous MAGIC efforts, including results based on Metabochip analysis for FG, FI, and 2hGlu12, 369 

GWAS data for FG and FI13,14 and 2hGlu15, and unpublished results from MAGIC 370 

(https://www.magicinvestigators.org/). BMI data was obtained from publicly available results in the 371 

UK Biobank (http://www.nealelab.is/uk-biobank/). If variants were available in both Metabochip and 372 

GWAS datasets of traits without BMI adjustment, we used results from the larger sample size to 373 

achieve greater power; if variants were missing in data for unadjusted traits or BMI, we used LD proxy 374 

variants (EUR LD r2 > 0.8). 375 

Results from these analyses demonstrated that the vast majority of the signals (85.6%) have no 376 

evidence of collider bias (Supplementary Table N7). However, 36 signals associated with glycemic 377 

traits adjusted for BMI were also significantly (P ≤ 2.1×10-4) associated with BMI with opposite 378 

directions of effect, suggesting they may result from potential collider bias. Of the eight 2hGlu-379 

associated signals with potential collider bias, all were nominally associated (P ≤ 0.05) with 2hGlu 380 

unadjusted for BMI and six had P ≤ 0.00625 (Bonferroni corrected P = 0.05/8). Of the 28 FG- and FI-381 

associated signals with potential collider bias, 25 were nominally associated with FG or FI (P ≤ 0.05) 382 

unadjusted for BMI. For these 25 variants, we tested the difference in effect size before and after BMI 383 

adjustment using the same data resource14. Effect sizes for 23 of 25 were not significantly different (P 384 

> 0.002, Bonferroni corrected P = 0.05/25) (Supplementary Table N8; Supplementary Figure 37). 385 

These results suggested that of the 240 signals we were able to test for collider bias, at most four 386 

signals have some evidence of collider bias (two 2hGlu signals, one FG signal, and one FI signal). 387 

 388 

 389 

https://www.magicinvestigators.org/
http://www.nealelab.is/uk-biobank/
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Supplementary Table N7 – Of the 250 signals, 243 had available BMI association results. Table shows the total 390 
number of signals associated with 2hGlu, FG, and FI adjusted for BMI from this study (2nd column), the number of signals 391 
with missing data from the BMI analysis (3rd column), the number of signals with association results for BMI but where the 392 
association with BMI does not meet significance (P > 2.1×10-4, 4th column), the number of signals associated with BMI at P ≤ 393 
2.1×10-4 with the same direction of effect as the glycemic trait (5th column), the number of signals associated with BMI at P 394 
≤ 2.1×10-4 but with opposite directions of effect as the glycemic trait (6th column). The p-value is from the two-side test 395 
without multiple testing corrections. 396 

 397 

 398 

 399 

 400 

 401 

Supplementary Table N8 – Comparison of effect sizes for variants with suspected collider bias in glycemic traits 402 
adjusted and unadjusted for BMI. Paired difference test was used to detect differences in the effect sizes. The genetic 403 
correlation between models with and without BMI adjustment is 0.9257 (P = 3.3×10-527) for FG and 0.7043 (P = 2.8×10-68) for 404 
FI based on the same data14 using LD score regression16,17, where the p-value is from the two-side test without multiple 405 
testing corrections. Signals with difference test P ≤ 0.002 are in bold. 406 

 407 

Trait Total Missing 
BMI assoc  P > 
2.1×10-4 

P ≤ 2.1×10-4 with glycemic 
trait and BMI; same effect 
direction 

P ≤ 2.1×10-4 with 
glycemic trait and BMI; 
opposite effect 
direction 

2hGluadjBMI 24 1 15 0 8 

FGadjBMI 147 5 121 11 10 

FIadjBMI 79 1 57 3 18 

Trait rsID EA OA Proxy r2 
Without BMI adjustment With BMI adjustment 

Peff diff 
Effect SE P Effect SE P 

Fasting glucose            

 rs1604038 T C - - -0.020 0.003 2×10-9 -0.023 0.004 2.3×10-11 0.024 

 rs1635852 T C - - 0.005 0.003 0.13 0.008 0.003 0.012 0.0074 

 rs1820176 T C rs7713317 0.96 0.016 0.003 1.8×10-6 0.020 0.004 7.6×10-9 0.0027 

 rs2238435 C G rs879620 1.00 -0.012 0.003 0.00079 -0.013 0.003 0.00017 0.45 

 rs2657879 A G - - -0.013 0.004 
0.0017 

-0.017 0.004 0.00005
3 

0.014 

 rs34872471 T C rs7903146 0.99 -0.021 0.004 1.1×10-9 -0.025 0.004 9.5×10-13 0.0036 

 rs3764400 T C - - 0.010 0.005 0.039 0.017 0.005 0.00089 0.00023 

 rs6876986 C G rs10476552 1.00 -0.017 0.003 5.9×10-7 -0.020 0.003 6.4×10-9 0.022 

 rs7903146 T C - - 0.021 0.004 1.1×10-9 0.025 0.004 9.5×10-13 0.0036 

Fasting insulin              

 rs1023667 A G - - -0.003 0.004 0.00044 -0.006 0.003 0.037 0.16 

 rs1128249 T G - - -0.013 0.003 0.000032 -0.018 0.003 7.1×10-11 0.031 

 rs12454712 T C - - 0.018 0.005 
0.00069 

0.020 0.005 0.00001
3 

0.61 

 rs12541800 A G - - 0.003 0.003 0.31 0.009 0.003 0.00091 0.012 

 rs13234269 A T - - -0.011 0.003 
0.00048 

-0.012 0.003 0.00001
5 

0.67 

 rs13389219 T C - - -0.013 0.003 0.000033 -0.018 0.003 7.2×10-11 0.031 

 rs330945 T C rs330944 0.95 -0.009 0.008 0.29 -0.005 0.007 0.47 0.56 

 rs7133378 A G - - -0.004 0.003 0.26 -0.008 0.003 0.0089 0.12 

 rs75265117 C G rs12328675 0.99 0.020 0.005 0.000034 0.029 0.004 1.5×10-12 0.0098 

 rs7654571 A G - - 0.002 0.004 0.59 0.008 0.003 0.023 0.054 

 rs77935490 A T rs5017303 0.91 -0.012 0.004 0.0036 0.003 0.004 0.35 2.7×10-7 

 rs7975482 A G - - 0.004 0.003 0.27 0.007 0.003 0.0096 0.12 

 rs848494 A G - - 0.013 0.004 0.00041 0.011 0.003 0.00026 0.44 

 rs972283 A G - - -0.012 0.003 
0.00016 

-0.013 0.003 0.00000
44 

0.67 

 rs979012 T C - - 0.003 0.003 0.42 0.008 0.003 0.0081 0.05 

 rs998584 A C - - 0.004 0.004 0.34 0.006 0.003 0.043 0.28 
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 408 

Supplementary Figure 37 - Comparison of effect sizes between glycemic traits and BMI for variants associated 409 
with each of the glycemic traits. Effect sizes are shown for signals associated with each glycemic trait identified in trans-410 
ancestry and European meta-analyses. Error bars are the 95% confidence intervals from two-side test without multiple 411 
testing corrections. a. Effect sizes for BMI (x-axis) and FG adjusted for BMI (y-axis). Signals associated with BMI in UK Biobank 412 
at P ≤ 2.1×10-4 in the opposite direction are highlighted in orange b. Effect sizes for BMI (x-axis) and FI adjusted for BMI (y-413 
axis). Signals associated with BMI in UK Biobank at P ≤ 2.1×10-4 in the opposite direction are highlighted in blue. c. Effect sizes 414 
for BMI (x-axis) and 2hrGlu adjusted for BMI (y-axis). Signals associated with BMI in UK Biobank at P ≤ 2.1×10-4 in the opposite 415 
direction are highlighted in green. d. Effect sizes for the 28 glycemic trait signals with suspected collider bias (BMI association 416 
P ≤ 2.1×10-4 and opposite directions of effect; colored orange, blue, and green in panels a, b, and c) from analyses without 417 
BMI adjustment (x-axis) and with BMI adjustment (y-axis) are shown for highlighted signals on figures a, b and c. 418 

 419 

 420 

 421 
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3. Characterization of trans-ancestry lead variants and European index 422 

variants across ancestries 423 

To compare association signals across all ancestries, we first took the trans-ancestry lead variant 424 

and evaluated the fraction of the times the same lead variant demonstrated at least nominal 425 

evidence of association (P ≤ 0.05) in all available ancestries. We found that between 0.8% (HbA1c) 426 

and 16% (FG) of the lead trans-ancestry variants had supportive evidence across all ancestries. 427 

This small percentage is likely due to differences in LD across the populations and/or because the 428 

trans-ancestry lead variant may not be the best representative of the signal within each ancestry 429 

(Supplementary Table N9). These analyses may also be hampered by the different sample sizes 430 

across ancestries, allelic heterogeneity, and/or stochastic variation. We therefore investigated the 431 

pairwise EAF correlation between ancestries (Methods). This demonstrated considerable EAF 432 

correlation (r2 > 0.7) between Europeans and Hispanics, Europeans and South Asians, and 433 

Hispanics and South Asians consistent across all four traits, and between African Americans and 434 

Ugandans for HbA1c. We also investigated the pairwise summarized heterogeneity of effect sizes 435 

between ancestries18 (Methods, Extended Data Figure 5), and found that, despite significant EAF 436 

correlation, there was strong evidence for effect size heterogeneity among some pairwise 437 

comparisons, which was more variable between traits (Extended Data Figure 5). For example, for 438 

HbA1c and FI, there is strong heterogeneity of effect sizes between Europeans and Hispanics (P < 439 

2.63x10-6), despite high EAF correlation (r2 > 0.8). Overall, there are 41 pairwise trait-ancestry 440 

comparisons, 17 of which demonstrate evidence of significant heterogeneity [P < 0.00122 441 

(Bonferroni correction = 0.05/41); Supplementary Table N10]. However, sensitivity analyses 442 

sequentially removing signals with evidence of between-ancestry heterogeneity (up to all with P 443 

< 0.05), demonstrated that a relatively small number of signals (range 7-23 per trait) were 444 

responsible for the heterogeneity (Supplementary Table N10). 445 

Supplementary Table N9 - Table showing number of trans-ancestry loci per trait, as well as the number where the 446 
TA lead variant is also the lead variant in that locus across all ancestries, or the number of loci where there is at least nominal 447 
evidence of association (P < 0.05) for the trans-ancestry lead variant in each ancestry even if it does not represent the lead 448 
variant in a particular ancestry. 449 

 FG 2hGlu FI HbA1c 

# of TA loci 100 21 62 126 

# loci where TA lead is also the lead variant across all ancestries 1 0 0 0 

# loci where TA lead P<0.05 in other ancestries, but not necessarily the lead variant 15 1 4 1 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 
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Supplementary Table N10 – Results from a sensitivity analyses sequentially removing signals with evidence of 458 
between-ancestry heterogeneity. The Phet is from the one-side heterogeneity test without multiple testing corrections. 459 

Trait 

Ancestry 
Comparison EAF Correlation Effect Correlation 

# of 
signals Overall Phet 

# signals 
with Phet  
≤ 1×10-6 

Overall 
Phet after 
removing 
signals 
with Phet  
≤ 1×10-6 

# 
signa
ls 
with 
Phet  
≤ 
0.05 

Overall 
Phet 

excludi
ng 
signals 
with 
Phet  ≤ 
0.05 

1 2 r P r P       

Fasting glucose           

 EUR AA 0.36 0.00027 0.63 1.6×10-12 100 0.000012 1 0.0086 13 0.97 

 EUR EAS 0.36 0.00025 0.42 0.00002 98 2.7×10-11 2 0.16 7 0.85 

 EUR HISP 0.79 1×10-22 0.71 9.9×10-17 101 0.016 0 0.016 10 0.71 

 EUR SAS 0.82 1×10-25 0.75 9.6×10-20 101 0.16 0 0.16 7 0.93 

 EAS AA 0.31 0.002 0.41 0.000028 98 0.026 0 0.026 6 0.77 

 EAS HISP 0.58 4×10-10 0.44 4.5×10-6 98 0.00059 0 0.00059 10 0.86 

 EAS SAS 0.65 6.8×10-13 0.37 0.00017 98 0.00075 0 0.00075 14 0.97 

 HISP AA 0.60 4.7×10-11 0.87 1.5×10-31 101 0.057 0 0.057 8 0.98 

 HISP SAS 0.79 8.3×10-23 0.55 2.8×10-9 101 0.032 0 0.032 6 0.55 

 AA SAS 0.48 4.8×10-7 0.23 0.021 100 0.085 0 0.085 9 0.91 

2h glucose                  

 EUR AA 0.21 0.36 -0.51 0.023 20 0.098 0 0.098 3 0.86 

 EUR EAS 0.19 0.45 0.63 0.0054 18 0.35 0 0.35 1 0.6 

 EUR HISP 0.86 8.8×10-7 0.95 3.1×10-10 20 0.84 0 0.84 0 0.84 

 EAS AA -0.03 0.91 0.35 0.15 18 0.083 0 0.083 3 0.74 

 EAS HISP 0.40 0.097 0.56 0.015 18 0.53 0 0.53 2 0.97 

 HISP AA 0.37 0.095 0.54 0.012 21 0.056 0 0.056 3 0.62 

Fasting insulin                  

 EUR AA 0.53 7.6×10-6 0.51 0.000028 62 0.35 0 0.35 3 0.88 

 EUR EAS 0.34 0.0076 -0.08 0.54 60 1.1×10-6 0 1.3×10-6 11 0.51 

 EUR HISP 0.83 8.4×10-17 -0.6 2.4×10-7 62 0.00017 1 0.13 7 0.97 

 EUR SAS 0.82 1.5×10-15 0.8 3.7×10-14 59 0.3 0 0.3 4 0.86 

 EAS AA 0.09 0.51 -0.21 0.11 60 0.22 0 0.22 3 0.71 

 EAS HISP 0.57 2.5×10-6 0.17 0.21 60 0.001 0 0.001 7 0.39 

 EAS SAS 0.41 0.0016 -0.11 0.42 57 0.014 0 0.014 5 0.83 

 HISP AA 0.59 5.5×10-7 0.08 0.53 62 0.044 0 0.044 4 0.81 

 HISP SAS 0.74 2.8×10-11 0.64 4.2×10-8 59 0.62 0 0.62 3 0.98 

 AA SAS 0.54 0.000011 0.66 1.3×10-08 59 0.42 0 0.42 3 0.93 

HbA1c                  

 EUR AA 0.41 1.9×10-6 0.46 9×10-8 124 <2.2×10-16 2 1×10-13 23 0.87 

 EUR AFR 0.21 0.031 0.41 0.000012 107 8.9×10-07 0 8.9×10-7 14 0.9 

 EUR EAS 0.35 0.000097 -0.13 0.15 119 1.6×10-15 2 0.0001 15 0.96 

 EUR HISP 0.88 3.6×10-42 0.52 5.6×10-10 125 2×10-7 2 0.025 12 0.93 

 EUR SAS 0.80 4.4×10-28 0.44 4.3×10-7 120 0.017 0 0.017 13 0.95 

 EAS AA 0.37 0.000035 -0.11 0.23 118 9.2×10-8 0 9.2×10-8 15 0.62 

 EAS AFR 0.24 0.015 -0.17 0.094 103 0.00001 0 0.00001 16 0.87 

 EAS HISP 0.55 7×10-11 0.06 0.54 119 0.0099 0 0.0099 8 0.82 

 EAS SAS 0.63 2.1×10-14 0.37 0.000056 116 0.057 0 0.057 8 0.96 

 HISP AA 0.67 7.8×10-18 0.89 2.6×10-46 129 0.000002 0 0.000002 15 0.89 

 HISP AFR 0.50 1.7×10-8 0.56 1.1×10-10 111 <2.2×10-16 5 0.000098 19 0.97 

 HISP SAS 0.82 2×10-30 0.4 4.7×10-6 120 0.53 0 0.53 5 0.99 

 AA AFR 0.98 4.9×10-78 0.45 9.4×10-7 111 <2.2×10-16 5 0.000026 16 0.78 

 AA SAS 0.50 5.5×10-9 -0.21 0.021 120 8.9×10-6 0 8.9×10-6 11 0.34 

 SAS AFR 0.30 0.0018 0.6 1.2×10-11 104 0.046 0 0.046 9 0.97 

 460 

Next, for each trait, we undertook concordance analyses to investigate whether we observed a greater 461 

proportion of independent variants with the same direction of effect than we would expect by chance 462 

(50%) between Europeans and each other ancestry. To ensure independence of association signals, 463 

variants reported in each ancestry were LD clumped in 1 Mb windows. The variants were then 464 

partitioned into five bins of P-values from the European meta-analysis (P<5x10-8; 5x10-8≤P<5x10-6; 465 

5x10-6≤P<5x10-4; 5x10-4≤P<0.05; and P≥0.05). We calculated the number of variants within each bin, 466 
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determined the proportion of those variants with the same direction of effect between ancestries, 467 

and used a binomial test (one-sided) of excess directional concordance over that expected by chance 468 

(Supplementary Table N11).  469 

Supplementary Table N11 – Concordance in the direction of effect of variants for each trait between Europeans 470 
and each other ancestry. Variants are binned according to P-values from the European meta-analysis. Each cell provides: 471 
number of variants with the same direction of effect for each trait between European and each other ancestry/total number 472 
of variants in the p-value bin, (the proportion of those variants with the same direction of effect, and the one-side binomial 473 
test p-value for excess concordance). Binomial test P-values are highlighted in bold if significant after Bonferroni correction 474 
for the number of traits, ancestries, and P-value bins considered, P<6.25E-4). Abbreviations: AA, African American; EAS, East 475 
Asian; HISP, Hispanic; SAS, South Asian 476 

Trait Ancestry 

P-value bin (from European meta-analysis) 

0<P≤5×10-8 5×10-8<P≤5×10-6 5×10-6<P≤5×10-4 5×10-4<P≤0.05 0.05<P≤1 

Fasting glucose 

  AA 
68/92 144/236 1,312/2,548 2,176/4,240 2,164/4,290 

(0.74, 2.5×10-6) (0.61, 4.3×10-4) (0.51, 0.069) (0.51, 0.044) (0.50, 0.29) 

  EAS 
84/102 147/217 1,226/2,207 2,148/4,211 2,175/4,272 

(0.82, 1.1×10-11) (0.68, 9.3×10-8) (0.56, 1×10-7) (0.51, 0.098) (0.51, 0.12) 

  HISP 
86/95 170/267 1,457/2,741 2,214/4,265 2,128/4,284 

(0.91, <2.2×10-16) (0.64, 4.7×10-6) (0.53, 5.1×10-4) (0.52, 6.6×10-3) (0.50, 0.67) 

  SAS 
72/95 159/241 1,304/2,506 2,052/4,008 2,033/4,059 

(0.76, 2.4×10-7) (0.66, 4×10-7) (0.52, 0.022) (0.51, 0.067) (0.50, 0.46) 

2 hour glucose 

  AA 
12/17 52/85 1,002/1,996 2,065/4,236 2,148/4,267 

(0.71, 0.072) (0.61, 0.025) (0.50, 0.44) (0.49, 0.95) (0.50, 0.33) 

  EAS 
11/14 36/54 558/1,045 2,062/4,029 2,116/4,207 

(0.79, 0.029) (0.67, 9.9×10-3) (0.53, 0.015) (0.51, 0.069) (0.50, 0.36) 

  HISP 
16/18 63/102 1,176/2,281 2,149/4,238 2,129/4,277 

(0.89 ,6.6×10-4) (0.62, 0.011) (0.52, 0.071) (0.51, 0.18) (0.50, 0.62) 

Fasting insulin 

  AA 
44/49 159/24 1,299/2,461 2,208/4,246 2,113/4,267 

(0.90, 3.8×10-9) 1(0.66, 4×10-7) (0.53, 3.1×10-3) (0.52, 4.7×10-3) (0.50, 0.74) 

  EAS 
36/51 124/198 1,161/2,140 2,175/4,234 2,159/4,278 

(0.71, 2.3×10-3) (0.63, 2.3×10-4) (0.54, 4.5×10-5) (0.51, 0.039) (0.50, 0.28) 

  HISP 
43/53 142/223 1,374/2,627 2,172/4,241 2,215/4,287 

(0.81, 2.8×10-6) (0.64, 2.7×10-5) (0.52, 9.6×10-3) (0.51, 0.059) (0.52, 0.015) 

  SAS 
37/47 130/206 1,316/2,485 2,035/4,013 2,017/4,040 

(0.79, 4.9×10-5) (0.63, 1×10-4) (0.53, 1.7×10-3) (0.51, 0.19) (0.50, 0.54) 

HbA1c 

  AA 
58/95 122/225 1191/2363 2159/4231 2113/4277 

(0.61, 0.02) (0.54, 0.12) (0.50, 0.36) (0.51, 0.093) (0.49, 0.79) 

  AFR 
57/85 95/203 941/1939 2147/4212 2128/4267 

(0.67, 0.0011) (0.47, 0.84) (0.49, 0.91) (0.51, 0.11) (0.50, 0.57) 

  EAS 
80/95 150/214 1086/2055 2191/4247 2195/4261 

(0.84, 3.4×10-12) (0.70, 1.9×10-9) (0.53, 5.2×10-3) (0.52, 0.02) (0.52, 0.025) 

  HISP 
88/100 167/243 1453/2678 2184/4217 2229/4264 

(0.88, 9.6×10-16) (0.69, 2.6×10-9) (0.54, 5.7×10-6) (0.52, 0.01) (0.52, 1.6×10-3) 

  SAS 
75/92 137/223 1231/2400 2084/3997 2029/4005 

(0.82, 3.6×10-10) (0.61, 3.9×10-4) (0.51, 0.11) (0.52, 3.6×10-3) (0.51, 0.21) 

 477 



34 
 

Among variants with the strongest association signals for FG and FI in Europeans (P < 5×10-4), there is 478 

strong concordance in the direction of effect between Europeans and all other ancestry groups. The 479 

concordance becomes weaker for less significant P-value bins. Among variants with the strongest 480 

association signals for 2hGlu (P < 5×10-4 in Europeans), there is also strong concordance in the 481 

direction of effect between European and all other ancestry groups, but the excess is not significant 482 

in the binomial test, reflecting the lower power of our analyses for this trait. Results for variants with 483 

the strongest association signals for HbA1c (P < 5×10-4 in Europeans) show a similar pattern of 484 

concordance as for FG and FI, except when considering the direction of effects into African Americans 485 

and Ugandans.  486 

We hypothesized that the relatively low concordance of direction of effect observed between 487 

Europeans and African ancestry groups for HbA1c might be reflecting the different pathways (glycemic 488 

and non-glycemic) through which variants can affect HbA1c levels, particularly effects mediated 489 

through the red blood cell where balancing selection can lead to different associations in individuals 490 

of African ancestry2. To investigate this assertion, we classified European lead variants attaining 491 

genome-wide significance as acting through glycemic and/or red blood cell pathways (see 492 

Supplementary note section 6a). In both African American and Ugandan ancestries, we observed 493 

greater concordance of the direction of effect with Europeans for signals classified as glycemic, 494 

although the excess in concordance was not significant, likely due to the low numbers of variants in 495 

each stratum (Supplementary Table N12).  496 

Supplementary Table N12 - Concordance in the direction of effect of independent HbA1c-associated variants 497 
between Europeans and African Americans (AA) or Ugandans (AFR). Variants are stratified according to the classification of 498 
association signals acting through glycemic and red blood cell pathways. For each stratum, the total number of variants 499 
attaining genome-wide significance in European is presented, together with the proportion of those variants with the same 500 
direction of effect. For example, there are 95 distance-clumped variants with P < 5×10-8 in EUR, of which 58 (61%) have the 501 
same effect direction between EUR and AA. We can find 79 of the 95 in LD (EUR r2 > 0.8) with signals included in the HbA1c 502 
signal classification, of which 64 are in the red blood cell cluster (soft) and 15 are in the glycemic pathway. The two-side 503 
binomial test P-value without multiple testing corrections for excess concordance is also presented for the glycemic stratum 504 
of variants. 505 

Ancestry Distance-clumped 
signal 

Classification proxy 
(r2 > 0.8) 

Red blood cell 
pathway 

Glycemic pathway P-value of 
proportion test 

AA 58/95 (0.61) 50/79 (0.63) 39/64 (0.61) 11/15 (0.73) 0.12 

AFR 57/85 (0.67) 47/70 (0.67) 39/60 (0.65) 8/10 (0.8) 0.11 

4. Trait variance explained by associated loci 506 

To determine how much of the phenotypic variance of each trait could be explained by the trait-507 

associated (genome-wide significant) loci identified in the GWAS, variants were combined in weighted 508 

genetic scores (GS). The association between the GS and traits was tested in a linear regression 509 

framework both in cohorts included in the discovery GWAS and in a smaller number of independent 510 

cohorts. The cohorts that contributed to this analysis are identified in the Supplementary Table 1. 511 

Identification of variants to include in GS: GS were generated using up to three different variant lists 512 

for each trait and ancestry: List A - Single-ancestry only - single-ancestry index and lead variants 513 

selected by the approximate conditional analysis in GCTA and LD-pruned (by ordering the variants 514 

from most to least significant and keeping each subsequent variant if the ancestry LD r2 < 0.1) 515 

(Supplementary Table 7, lists 3, 7, 10, 13, 16, 19); List B - Single-ancestry plus trans-ancestry - 516 

variants from the single-ancestry list plus trans-ancestry lead variants that achieved P < 1x10-5 within 517 



35 
 

that ancestry and LD-pruned (by ordering the trans-ancestry variants from most to least significant 518 

and keeping each subsequent variant if the LD r2 < 0.1 between itself and any of the single-ancestry 519 

variants or trans-ancestry variants already included) (Supplementary Table 7, lists 2, 6, 9 ,12, 15, 520 

18); List C - Complete list – all trans-ancestry lead variants based on the MANTRA results that have P 521 

< 0.1 in the given ancestry, plus all single-ancestry lead and index variants that are not in LD with the 522 

trans-ancestry variants (LD r2 < 0.1) (Supplementary Table 7, lists 5, 8, 11, 14, 17, 20). In all cases, P-523 

values were taken from the inverse normal analysis and betas from the analysis of raw (or log 524 

transformed in the case of FI) trait values within the relevant ancestry. LD was estimated from the 525 

collected cohort pairwise LD information, where available, or from the European samples in 1000G 526 

Phase 3. A list of the variants used to make the GS can be found in Supplementary Table 7. Betas 527 

were extracted for these variants from the single-ancestry GWAS analysis of the raw traits (or log 528 

transformed in the case of FI). 529 

Adjustment of betas for non-independent cohorts: To obtain unbiased estimates of the variance 530 

explained by the GS, the cohort for the variance explained analysis should be independent of the 531 

GWAS sample. However, this was not practical in this case since the majority of cohorts with the 532 

genotypic and phenotypic data required for the analysis were included in the discovery GWAS. 533 

Therefore, in the case of the European ancestry cohorts, we employed the method of Nolte et al.19 to 534 

adjust the effect sizes (betas) from the GWAS for the contribution of each cohort, providing sets of 535 

cohort-specific effect sizes that were then used to generate the GS. This adjustment involves 536 

recalculating the variant’s effect sizes and standard errors using inverse versions of the formula for an 537 

inverse-variance fixed-effects meta-analysis. We used a pre-release version of the R package 538 

MetaSubtract [https://cran.r-project.org/web/packages/MetaSubtract/index.html] to carry out this 539 

adjustment. All variants in the initial list for that ancestry and trait were retained, regardless of 540 

whether the recalculated P-value reached the significance threshold used in the GWAS; therefore, the 541 

list of variants contributing to the GS in each cohort were the same (subject to exclusions during 542 

cohort-level quality control). No such adjustment was made in the case of the non-European 543 

ancestries because each cohort contributed a relatively large proportion of samples to the single-544 

ancestry GWAS (up to 75%) as opposed to the European cohorts each of whose contribution was 545 

generally less than 5%. This meant that in the case of the non-European ancestries, the adjusted betas 546 

would have been very imprecise. No adjustment of the effect sizes was required in the independent 547 

cohorts (i.e. those which did not contribute data to the discovery GWAS). 548 

Cohort-level quality control (QC) of variants: Variant-level QC was applied to variants in the GS lists 549 

within each cohort and in-line with QC criteria applied in the GWAS. Imputed variants were excluded 550 

if the imputation quality was r2 < 0.4 (for minimac/University of Michigan imputation) or INFO < 0.4 551 

(for IMPUTE/Sanger imputation). Genotyped variants were excluded if they had a call rate < 95%.  552 

Calculation of GS: GS were generated in Plink v1.9 using the --score function and dosage format 553 

genotype data20. The --sum and --double-dosage options were employed such that the betas were 554 

multiplied by diploid allele counts and summed across all loci. Betas used were either those taken 555 

directly from the GWAS results (in the case of non-European ancestry cohorts and all independent 556 

cohorts) or those adjusted as described above (for European ancestry cohorts included in the 557 

discovery meta-GWAS). 558 

Calculation of variance explained: Phenotypes used were defined as described in the discovery GWAS 559 

(with the same sample exclusion criteria applied). A linear model was fit with the raw trait (or natural 560 

https://cran.r-project.org/web/packages/MetaSubtract/index.html
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log transformed in the case of FI) as the dependent variable and the GS as the predictor (or 561 

independent variable). To determine the percentage of variance in the trait explained by the GS, we 562 

extracted the adjusted R2 from the model. Where cohorts included related individuals, relatives were 563 

either excluded or appropriate adjustments made. Results are presented for between eight (2hGlu) 564 

to 27 (FG) cohorts (Supplementary Tables 8-11). 565 

Comparison with previous estimates: Our results showed the expected increase in variance explained 566 

relative to earlier estimates by the same methodology but with fewer contributing variants19. 567 

However, previously reported variance explained estimates by Scott et al12 of 4.8%, 1.2%, and 1.7% 568 

for FG (36 variants), FI (19 variants), and 2hGlu (9 variants), respectively, are in excess of our estimates. 569 

We hypothesise that this is likely to be at least partly attributable to a difference in statistical 570 

approaches. In Scott et al12, the variance explained by the associated loci was estimated by fitting 571 

genotypes for all associated loci simultaneously as predictors in a model where the trait of interest is 572 

the dependent variable. This approach is likely to over-estimate the variance explained since it allows 573 

the re-estimation of the effect sizes of selected SNPs in the validation sample21. To explore this 574 

hypothesis, we also estimated the variance explained by fitting genotypes for the trait-associated loci 575 

directly in the linear model (as opposed to generating a GS) (Supplementary Tables 8-11). This analysis 576 

was performed in two cohorts: ALSPACmothers and FENLAND-OMICS. The variance explained by this 577 

alternative method tended to be higher than by the GS method presented here as the main result. 578 

The biggest difference was observed in the ALSPACmothers cohort for FG. Here, the variance 579 

explained using the best performing GS was 5.26% whereas the estimate from the linear model with 580 

the SNP genotypes fitted individually was 9.47% based on the R2 and 5.71% based on the adjusted R2.  581 

5. Fine-mapping 582 

Of the 242 identified loci, 231 were autosomal trans-ancestry loci and six were autosomal single-583 

ancestry loci, which we took forward for fine-mapping (Supplementary Table 2) across 4 traits using 584 

FINEMAP to attempt to identify plausible causal variants within each locus (Methods). Due to the 585 

absence of LD maps from adequately sized populations, fine-mapping was not attempted for the 5 586 

loci (4 trans-ancestry and 1 single-ancestry) mapping to the X chromosome. 587 

 588 

For all 237 autosomal loci, we performed single-ancestry and trans-ancestry fine-mapping 589 

Supplementary Figure 38 (Methods). Trans-ancestry lead variants from MANTRA were taken forward 590 

for the trans-ancestry effort. For the single-ancestry fine-mapping, we incuded meta-analysis 591 

summary statistics from all relevant GWAS cohorts. TA lead variants were kept in the analysis 592 

irrespective of sample size, while other variants were kept in the analysis as long as they were present 593 

in at least 90% of the samples within any given ancestry. 594 
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 595 

Supplementary Figure 38 - Flow chart depicting the pipeline used for single-ancestry and trans-ancestry fine 596 
mapping  597 

In each case, we used FINEMAP to construct 99% credible sets (99% CS), sets of variants that jointly 598 

account for 99% of the posterior probability of driving association at that locus. Credible sets 599 

containing fewer numbers of variants, and/or spanning a smaller chromosome region correspond to 600 

improved fine-mapping resolution.  601 

To directly compare single-ancestry and trans-ancestry results, we focused on 98 loci with evidence 602 

for a single causal variant from both analyses, of which 8 had a single variant in the CS from both 603 

analyses and were excluded from the comparison. In 72/90 (80%) loci with a single causal variant, 604 

trans-ancestry fine-mapping yielded smaller 99% CS than the single-ancestry fine-mapping, reducing 605 

the size of the CS from a median of 36 variants to 20.5 variants (an average reduction of 43.1%, with 606 

a maximum reduction of 39 variants down to 1 variant, and minimum reduction of 169 variants to 607 

167). In the remaining 18 loci (20%), fine-mapping resolution was not improved by trans-ancestry 608 

analyses (the median number of variants in the credible set was increased by 76.5%, from 8.5 variants 609 

to 15 variants). The poorer resolution was due to inconsistent directions of effect sizes across 610 

ancestries.  611 

The improved resolution could be due to either the larger sample size available in the trans-ancestry 612 

effort, LD between ancestries, or both. To directly assess the contribution of LD differences between 613 

ancestries to improve fine-mapping resolution, we repeated the analysis emulating the same sample 614 

size in the trans-ancestry and single-ancestry fine-mapping (Methods). In this analysis, 47% of loci 615 

(34/72) yielded smaller credible sets in the trans-ancestry compared to the single-ancestry fine-616 

mapping due to LD differences, reducing the size of the CS from a median of 24 to 15 variants (an 617 

average reduction of 37.5%, with a maximum reduction of 10 variants to 1, and minimum of 68 618 
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variants to 67), highlighting the importance of conducting genetic studies in diverse ancestries. In the 619 

remaining 38 loci, both the increased sample size and/or diverse LD structure contributed to the 620 

improvement.  621 

There are several examples in which the trans-ancestry fine-mapping yielded known causal variants 622 

at established loci. At one locus near MTNR1B, rs10830963 (PPA>0.999, for both HbA1c and FG), 623 

located in an MTNR1B intron, has shown allelic differences in enhancer activity and transcription 624 

factor binding 22. An additional FG-associated locus near SIX3, the 99% CS is reduced from 5 variants 625 

(EAS) to a single variant, rs12712928 (Supplementary Figure 39), likely due to increased sample size 626 

in trans-ancestry fine-mapping. rs12712928 (PPA=0.997) has shown allelic differences in 627 

transcriptional activity, transcription factor binding, and association with islet expression levels of 628 

nearby genes SIX3 and SIX2 23,24. The EAF and effect size of this variant is larger in EAS than in other 629 

ancestries (heterogeneity p-value=7.2x10-8), which is driving the association at this locus. 630 

At locus 228 (Chr20: 22,057,099-23,067,608), the European 99% CS contained 27 variants and the East 631 

Asian 99% CS contained 23 variants. In the trans-ancestry fine-mapping, the 99% CS was reduced to 3 632 

variants, including rs1974, a 3’UTR variant in the gene FOXA2. The improved resolution from the 633 

European 99% CS was due to the incorporation of other ancestries with different LD structures, 634 

including the East Asian samples. In contrast, the improved resolution from the East Asian 99% CS was 635 

driven by the increased sample size (Supplementary Table N13). 636 

At a locus near PFKM associated with HbA1c, trans-ancestry fine-mapping identified rs12819124 637 

(PPA>0.999) as the likely causal variant. This variant has been previously associated with mean 638 

corpuscular hemoglobin25, suggesting an effect of this locus on HbA1c is via the RBC. We note that this 639 

locus also harbours an association with FI in European and trans-ancestry meta-analyses, although it 640 

appears to be distinct from the HbA1c signal based on distance and LD. Fine-mapping of the nearby FI 641 

signal in European ancestry populations identified rs111264094 (PPA=0.994) as the likely causal 642 

variant (Supplementary Figures 40-41). rs111264094 is a low frequency variant in Europeans 643 

(EAF=0.025) that is monomorphic or rare in other ancestries, is located >600 kb from HbA1c-644 

associated variant rs12819124, and is in low LD with rs12819124 in European ancestry populations 645 

(r2<0.1), which supports the hypothesis of two distinct signals (one for FI and one HbA1c) at this locus. 646 

  647 
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 648 

Supplementary Figure 39- On this locus zoom plot of locus 22, HbA1c association significance in EAS meta-analysis, 649 
PPA in EAS fine-mapping, HbA1c association significance in TA meta-analysis, PPA in TA fine-mapping and genes are present 650 
from the top to the bottom. The p-value is from the two-side test without multiple testing corrections. 651 

 652 

 653 

 654 

 655 
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Supplementary Table N13 - Comparison of fine-mapping resolutions at FG-associated locus 228. The resolution of 656 
TA-fine-mapping (fifth row) is improved compared with the resolutions of EAS (first row) and EUR (third row) fine-mapping. 657 
On the second and fourth rows, the contribution of TA elements is investigated by mimicking the sample size in the TA fine-658 
mapping to match the single-ancestry fine-mapping. 659 

Ancestry Sample Size 
Predicted 
Causal Variant 

Posterior 
Probability 

# variants 
in region 

# variants 
in 99% CS 

EAS 31,669 rs1337918 0.31 1,775 23 

TA 31,669 rs1974 0.12 1,775 82 

EUR 165,515 rs6036152 0.22 1,775 27 

TA 165,515 rs1974 0.81 1,775 6 

TA 242,353 rs1974 0.94 1,775 3 
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Supplementary Figure 40. Locus zoom plot of FI-associated locus HDAC7. Figure includes top five panels to show 661 
the associations in five ancestries and one bottom panel to show the genes and MAFs. On each of top five panels, points 662 
present the -log10(p-value) from the two-side test without multiple testing corrections and are coloured by their LD level 663 
with the trans-ancestry lead variant in purple diamond. The colourful par labelled by R2 shows and maximum LD level of 664 
each variant with the single-ancestry signals in the black circles. The colourful par labelled by LDscore shows the 665 
summation of R2 between each variant and all the other variants divided by the maximum of the summations. 666 
 667 

 668 
 669 
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Supplementary Figure 41. Forest plot of FI-associated variant rs111264094. The p-value on the right side is from 670 
the two-side test without multiple testing corrections. Established FI locus identified near HDAC7 in Europeans. Results 671 
were not significant in other ancestry populations. Among the European cohorts, sample sizes ranged from 155 672 
(HELICPomak) to 8,518 (METSIM) with a minimum imputation score of r2=0.42 and Phet=0.78. 673 

6. Biological signatures of glycemic trait associated loci 674 

a. HbA1c signal classification 675 

Based on results from trans-ancestry and single-ancestry analyses, we had 218 HbA1c-associated 676 

signals. To classify these signals in terms of their likely mode of action, i.e., glycemic, erythrocytic, or 677 

other2, we made use of association summary statistics for a number of traits from other large 678 

European datasets from four broad groups: glycemic (this effort), mature red blood cell (RBC) traits 679 

and reticulocyte traits from Astle et al.26 and Gene ATLAS26 and iron traits from a meta-analysis of 680 

published results27 with additional data from the Fenland Study (1,355 participants with age between 681 

29 and 65 years old and 56% females), EPIC-Norfolk (16,344 participants with age between 39 and 79 682 

years old and 54% females) & EPIC-InterAct (14,137participants with age between 20 and 77 years old 683 

and 60% females). Lookups of X chromosome variants missing in Astle et al.26 were extracted from 684 

Gene ATLAS26 using the UK Biobank data. Lookups were available for 191 (183 direct, 8 proxies) of the 685 

218 signals, leaving 27 signals with insufficient data for classification (Methods).  686 

Before classifying our signals, we first confirmed that our glycemic and additional traits would cluster 687 

together in a biologically meaningful way. For this, we used hierarchical clustering of the traits using 688 

the squared Pearson correlation of each trait based on the allele frequencies adjusted effect sizes of 689 

LD pruned signals. To avoid double counting across traits, the 191 signals were LD pruned, keeping 690 

132 signals with low pairwise LD (r2 < 0.1) in Europeans. This demonstrated that related sets of traits 691 

did cluster together. For example, the glycemic traits formed a tight cluster, while the reticulocyte, 692 

mature red blood cell, and iron traits were grouped into distinct clusters (Supplementary Figure 42).  693 
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  694 

Supplementary Figure 42 - Hierarchical clustering of selected traits. Glycemic traits (G) are in orange, iron traits (I) 695 
are in brown, mature red blood cell traits (mR) are in light blue, and reticulocyte traits (R) are in purple. 696 

 697 

Next, we obtained uncorrelated trait estimates by conditioning each trait on the other traits, as this is 698 

a requirement of Pearson correlation used in the non-negative matrix factorization (NMF)28 process 699 

used to cluster signals. Identification of the best number of clusters was determined by the 700 

unsupervised fuzzy evaluation criterion (UFEC)28 , which suggested that our signals would be best 701 

clustered into 8 different clusters (Supplementary Figure 43). This clustering approach provides an 702 

estimate of the probability of each signal belonging to a given cluster. 703 
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 704 

Supplementary Figure 43 - Medians and interquartile ranges of UFEC (y-axis) for different ranks. 705 

 706 

To understand what each of these 10 clusters represented biologically, we next calculated a statistic 707 

corresponding to the sum of the MAF-adjusted effect sizes, weighted by the probability that a given 708 

signal belongs to a stated cluster. A cluster was named as glycemic, reticulocyte, mature RBC, or iron 709 

related if the statistic for a given cluster-trait combination was nominally significant (P<0.05) and 710 

significantly larger than the mean compared to other traits. Bootstrap was used to evaluate the 711 

significance of the test. These results suggested that the 10 clusters could in fact be combined into 712 

five clusters, each exerting their effects on HbA1c through a specific mechanism, namely clusters 5 713 

and 9 were merged into a glycemic cluster; 3 and 8 into a mature RBC cluster; 2 and 4 into a 714 

reticulocyte cluster; 6, 7 and 10 is unknown; and 1 corresponded to an iron cluster (Supplementary 715 

Table N14). 716 

Supplementary Table N14 – P-value was obtained from one-side test using Bootstrap without multiple testing 717 
corrections, and the most significant cluster is highlighted in bold. G: glycemic, mR: mature RBC; R: reticulocyte; I: iron; 718 
U:unknown 719 

Trait 1: I 2: R 3: mR 4: R 5: G 6: U 7: U 8: mR 9: G 10: U 

2hGlu 0.977 0.942 0.882 0.711 0.164 0.981 0.99 0.806 5E-26 0.983 

FG 0.982 0.985 0.979 0.919 3E-57 0.984 0.933 0.912 0.037 0.976 

FI 0.841 0.937 0.554 0.886 0.004 0.881 0.987 0.757 0.177 0.963 

HLSRc 0.749 0.096 0.513 0.036 0.977 0.906 0.852 0.905 0.986 0.815 

HLSRp 0.673 0.186 0.43 0.041 0.978 0.924 0.859 0.849 0.987 0.856 

IRF 0.847 0.651 0.625 3E-05 0.95 0.917 0.937 0.573 0.98 0.882 

RETc 0.481 0.009 0.554 0.305 0.987 0.916 0.769 0.933 0.989 0.819 

RETp 0.326 0.04 0.468 0.357 0.988 0.931 0.775 0.889 0.989 0.864 

HCT 0.022 0.369 0.866 0.781 0.944 0.171 0.981 0.822 0.964 0.903 

HGB 3E-06 0.377 0.883 0.74 0.973 0.525 0.975 0.761 0.984 0.921 

MCH 3E-11 0.959 0.757 0.63 0.98 0.917 0.973 0.027 0.986 0.958 

MCHC 2E-04 0.012 0.753 0.812 0.99 0.971 0.91 0.486 0.986 0.958 

MCV 5E-06 0.646 0.687 0.597 0.99 0.934 0.974 0.074 0.988 0.957 

RBC 0.779 0.582 0.518 0.383 0.98 0.436 0.974 0.13 0.981 0.882 

RDW 1E-04 0.489 0.036 0.433 0.992 0.982 0.977 0.857 0.993 0.832 

Iron 9E-37 0.921 0.907 0.878 0.906 0.937 0.958 0.797 0.92 0.962 

Ferritin 5E-13 0.794 0.772 0.577 0.86 0.925 0.975 0.942 0.901 0.957 

Transferrin 5E-33 0.876 0.842 0.902 0.897 0.917 0.967 0.944 0.873 0.943 

TSAT 5E-54 0.93 0.928 0.891 0.91 0.94 0.958 0.863 0.944 0.95 

 720 

Finally, we classified signals as belonging to a given cluster. We performed hard clustering (a signal 721 
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was only allowed in a single cluster) and soft clustering (a signal could belong to more than one 722 

cluster). Signals were classified into clusters if their probability of belonging to a given cluster was 723 

greater than the null expectation (1/number of clusters) or it was the largest probability (hard 724 

clustering, Supplementary Table 20). We used association results of HbA1c conditioned on FG, HbA1c 725 

conditioned on iron traits, and type 2 diabetes association results to verify the naming of each of the 726 

clusters. Clusters where the average effect size of signals in that cluster were significantly reduced 727 

when adjusted for FG or iron were confirmed as glycemic and iron, respectively. The glycemic cluster 728 

also had a high average risk of type 2 diabetes, as expected for variants affecting HbA1c through a 729 

glycemic mechanism (Supplementary Table N15; Supplementary Figure 44). 730 

Supplementary Table N15 - Verification of the labels for each cluster. “Is glycemic” tests whether the impact on 731 
HbA1c (adjusted effect size) reduces more than 0 after adjusting for FG; “Is iron” tests whether the impact on HbA1c reduces 732 
more than 0 after adjusting for iron traits in cohorts InterAct and EPIC-Norfolk; “T2D” tests whether the impact on T2D 733 
association of signals in each cluster is greater than those not in that cluster. 734 

Cluster Is glycemic Is iron (EPIC-InterAct) Is iron (EPIC-Norfolk) T2D 

G 2.34E-05 0.492 0.287 3.62E-05 

mR 0.405 0.556 0.039 0.991 

R 0.442 0.061 0.327 0.995 

I 0.261 0.003 0.006 1.000 

U 0.617 0.612 0.617 0.995 

     
     

 735 

Supplementary Figure 44- Percent of HbA1c signals that fall into each classification based on results from hard 736 
clustering. 737 

Next, we compared the results from the current signal classification procedure to that done previously 738 

by Wheeler et al2. Previously, there were 60 established signals for HbA1c, of which we have data for 739 

21 exact variant matches, 19 with proxies (LD r2 ≥ 0.8), 16 with poor proxies (0.4 < r2 <0.8 or within 740 

500 Kb), and four with no data in this effort (three on autosome and one on chromosome X that did 741 

not have appropriate proxies). Overall, there was strong consistency in the classification results 742 

between the two analyses with 82.1% of exact variants or proxy variants being in agreement 743 

(P=4.6x10-4). Even when only poor proxies could be found based on distance (0.4 < r2 <0.8 or within 744 

500 Kb), most of the results were consistent (Supplementary Table N16). Of the signals that shifted 745 

into a different classification, three previous RBC signals (rs1800562, rs198846 and rs4820268) have 746 

now moved into the iron cluster (which was not included in the previous effort), two previous RBC 747 

signals (rs12132919 and rs857691) are unknown when using our hard clustering but fall into the 748 
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unknown/reticulocyte/iron/mature RBC and unknown/reticulocyte clusters, respectively, in our soft 749 

clustering. Two previously-clustered glycemic signals (rs13134327and rs11619319) are now classified 750 

as reticulocytes or mature RBC. Lastly, three variants (rs13387347, rs174577 and rs11603334) 751 

previously classified as glycemic are now unknown in the hard clustering but fall into the 752 

unknown/mature RBC/glycemic, unknown/reticulocyte and unknown/reticulocyte/iron clusters, 753 

respectively, in our soft clustering (Supplementary Table N16). Notably, we are now able to classify 754 

16 of the 19 previously unknown signals, the majority (15/18) of which are now classified as either 755 

mature RBC or reticulocyte and one is classified as iron according to our hard clustering 756 

(Supplementary Table N16). 757 

 758 

Supplementary Table N16 - Comparison of HbA1c classifications between this project and prior classifications. 759 
Prior classification and updated variants come from Wheeler et al. 2. Chromosome and position based on hg19. ‘*’ indicates 760 
variants classified as “probably RBC” and ‘#’ indicates variants classified as “probably glycemic” in Wheeler et al. 761 
Abbreviations: I, iron; mR, mature red blood cell; R, reticulocyte; RBC, red blood cell; U, unknown. 762 

Prior 
Classification 

Updated 
Variant Chr Position Nearest gene 

Current 
Variant 

LD (EUR r2) or 
distance (bp) Soft cluster 

 Hard 
cluster 

Erythrocytic / RBC        

 rs12132919 1 156,318,141 CCT3 (TMEM79) rs12127403 0.97 U/R/I/mR U 

 rs857691 1 158,626,378 SPTA1 rs857725 0.78 U/R U 

 rs7616006 3 12,267,648 SYN2 rs12491937 0.99 R R 

 rs1800562 6 26,093,141 HIST1H4A, HFE rs1800562 1.00 I I 

 rs198846 6 26,107,463 HIST1H4A rs1799945 0.96 I I 

 rs11964178 6 109,562,035 C6orf183 rs13195517 174,218 mR/U/R mR 

 rs9494142 6 135,431,640 HBS1L (MYB) rs9389268 0.78 mR mR 

 rs592423 6 139,840,693 CITED2 rs9389268 4,421,062 mR mR 

 rs4737009 8 41,630,405 ANK1 rs4737009 1.00 R/U R 

 rs6980507 8 42,383,084 SLC20A2 rs6980507 1.00 mR/R mR 

 rs7040409* 9 91,503,236 C9orf47 rs61750929 0.90 R/G/mR R 

 rs4745982* 10 71,089,843 HK1 rs4745982 1.00 mR/R mR 

 rs11224302* 11 100,456,604 CNTN5 rs11224302 1.00 R/mR/U R 

 rs2408955* 12 48,499,131 SENP1 rs76261711 12,435 R/mR/U R 

 rs10774625 12 111,910,219 ATXN2 rs10774624 0.86 mR/U mR 

 rs11248914 16 293,562 ITFG3 rs11248914 1.00 mR mR 

 rs4783565* 16 68,750,190 CDH3 rs7198799 0.88 mR/U mR 

 rs837763 16 88,853,729 CDT1 rs837763 1.00 R/mR/U R 

 rs9914988 17 27,183,104 ERAL1 rs9914988 1.00 R/mR R 

 rs17533903* 19 17,256,523 MYO9B rs17533945 0.40 R/mR/U R 

 rs4820268 22 37,469,591 TMPRSS6 rs855791 0.77 I/mR I 

 rs1050828 23 153,533,569 G6PD - - - - 

Glycemic        

 rs13387347 2 169,754,846 G6PC2 rs540524 0.56 U/mR/G U 

 rs560887 2 169,763,148 G6PC2 rs560887 1.00 G G 

 rs11708067 3 123,065,778 ADCY5 rs11719201 0.97 G/mR G 

 rs8192675 3 170,724,883 SLC2A2 rs1604038 0.97 G/R G 

 rs13134327# 4 144,659,795 FREM3 rs13134327 1.00 R R 

 rs7756992 6 20,679,709 CDKAL1 rs34499031 0.98 G G 

 rs2191349 7 15,064,309 DGKB rs2191349 1.00 G G 

 rs4607517 7 44,235,668 YKT6 (GCK) rs2908286 0.99 G G 

 rs3824065 7 44,247,258 YKT6 (GCK) rs3757840 0.73 G G 

 rs11558471 8 118,185,733 SLC30A8 rs11558471 1.00 G/mR G 

 rs2383208 9 22,132,076 MTAP rs10811661 0.95 G/mR/U G 

 rs17747324 10 114,752,503 TCF7L2 rs7903146 0.69 G/mR G 

 rs2237896# 11 2,858,440 KCNQ1 rs2237896 1.00 G G 

 rs174577 11 61,604,814 FADS2 rs174559 0.65 U/R U 

 rs11603334 11 72,432,985 ARAP1 rs174584 10,822,235 U/R/I U 

 rs10830963 11 92,708,710 MTNR1B rs10830963 1.00 G/U G 

 rs11619319 13 28,487,599 PDX1 rs11619319 1.00 mR/G mR 

 rs576674 13 33,554,302 KL rs576674 1.00 G/R G 

Erythrocytic/RBC and Glycemic       
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 rs579459 9 136,154,168 ABO rs649129 1.00 R/mR/G R 

Unknown        

 rs2375278 1 25,529,038 SYF2 rs2375278 1.00 U/mR U 

 rs267737 1 150,940,625 LASS2 (CERS2) rs267738 1.00 U/G/mR U 

 rs17509001 2 24,021,231 ATAD2B rs12612492 0.91 R/U R 

 rs12621844 2 48,414,735 FOXN2 rs17037289 172,463 mR/R/U/I mR 

 rs17256082 2 175,292,364 SCRN3 rs17256082 1.00 U/mR/G U 

 rs9818758 3 49,382,925 USP4 rs9818758 1.00 R/mR/I R 

 rs4874799 3 171,795,540 FNDC3B rs7632281 0.74 I/mR/U/G I 

 rs11954649 5 157,055,491 SOX30 rs1948759 612,834 mR/R/U mR 

 rs6474359 8 41,549,194 ANK1 rs34664882 0.88 R/G/U R 

 rs1467311 9 110,536,932 KLF4 rs1467311 1.00 mR/R/G mR 

 rs10823343 10 71,091,013 HK1 rs150705486 2,203 R/mR R 

 rs3782123 11 205,198 BET1L rs4980325 29,253 mR/U mR 

 rs2110073 12 7,075,882 PHB2 rs2110073 1.00 R/mR/U R 

 rs282587 13 113,351,662 ATP11A rs76533333 0.63 mR/U mR 

 rs9604573 13 114,542,858 GAS6 rs7994900 0.92 mR/U/I mR 

 rs1558902 16 53,803,574 FTO rs56137030 0.92 mR/I/R/U mR 

 rs2073285 17 76,117,361 TMC6 rs2748427 4,503 mR/I/R mR 

 rs1046896 17 80,685,533 FN3KRP rs9909940 1.00 mR mR 

 rs11086054 19 17,246,737 MYO9B rs12982956 0.90 R/mR/U R 

b. HbA1c clusters and T2D genetic risk score (GRS) 763 

Next, we tested whether the GRS built with variants in each of the HbA1c clusters had different effects 764 

on T2D risk. To do this, we first performed LD pruning of the signals (Methods). This pruning left 132 765 

signals (five with missing lookups in T2D and rs11964178, rs592423, rs2408955, rs11603334 and 766 

rs2073285 from Wheeler et al. 2) associated with HbA1c to examine for association with T2D, of which 767 

37 were glycemic, 38 were mature red blood cell, 38 were reticulocyte, 7 were iron, and 12 were 768 

unknown. The GRS comprised of all 132 signals was strongly associated with increased odds for T2D 769 

(OR = 2.4, 95% CI 2.3-2.5; P = 2.7x10-298), which was primarily driven by signals in the glycemic class 770 

(glycemic class variants alone: OR = 2.6, 95% CI 2.5-2.8; P = 2.3x10-250). The GRS of the variants from 771 

the non-glycemic classes was also associated with increased odds for T2D (OR = 1.8, 95% CI 1.6-1.9; P 772 

= 4.9x10-40) as well, which were mainly driven by signals in the mature RBC (OR = 1.9, 95% CI 1.6-2.2; 773 

P = 6.7x10-18) and reticulocyte (OR = 1.8, 95% CI 1.6-2.1; P = 1.4x10-19) classes. In sensitivity analysis, 774 

we found the RBC and reticulocyte GRS associations with T2D were mainly driven by 19 signals 775 

belonging to both mature RBC and glycemic classes (OR = 2.3, 95% CI 1.8-2.8; P = 6.5x10-13) and 18 776 

signals belonging to both reticulocyte and glycemic class (OR = 2.2, 95% CI 1.99-2.5; P = 1.4x10-19). 777 

However, 19 signals belonging to mature RBC GRS and that were not glycemic (i.e., P > 0.05 with FG, 778 

FI, and 2hGlu) were still associated with T2D risk (OR = 1.4, 95% CI 1.2-1.7; P = 4.7x10-4). These results 779 

could be partly driven by T2D cases being diagnosed based on HbA1c levels that may be influenced by 780 

the non-glycemic signals, or by glycemic effects not captured by FI, 2hGlu or FG measures. 781 

Unfortunately, since T2D diabetes cases were derived from UK biobank (Methods) it is not possible to 782 

know what test was used to diagnose cases (Extended Data Figure 6). 783 

c. Epigenomic landscape of trait-associated variants 784 

We included ‘static’ annotations, implying annotations that don’t vary across cell types such as coding 785 

gene regions, intronic regions, or those created by merging epigenomic data such as histone 786 

modification peaks across cell types. We utilized 29 total static annotation bed files supplied by29 787 

(https://data.broadinstitute.org/alkesgroup/LDSCORE/baseline_bedfiles.tgz). These annotations 788 

included: coding, un-translated regions (UTRs), promoter, and intronic regions obtained from UCSC30; 789 

marks indicating the monomethylation (H3K4me1) and trimethylation (H3K4me3) of histone H3 at 790 

lysine 4, acetylation of histone H3 at lysine 9 (H3K9ac)30-32, and acetylation of histone H3 at lysine 27 791 

(H3K27ac)33,34; open chromatin, as reflected by DNase I hypersensitivity sites (DHSs)32,35; combined 792 

https://data.broadinstitute.org/alkesgroup/LDSCORE/baseline_bedfiles.tgz
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chromHMM and Segway predictions36, which partition the genome based on distinct and recurring 793 

patterns of histone marks into seven underlying chromatin states; regions that are conserved in 794 

mammals37,38; super-enhancers, which are large clusters of highly active enhancers34; and enhancers 795 

with balanced bidirectional capped transcripts identified using cap analysis of gene expression (CAGE) 796 

in the FANTOM5 panel of samples, which we call FANTOM5 enhancers39. Histone marks included in 797 

the static annotation set included merged histone mark data from different cell types into a single 798 

annotation.  799 

We also included ‘stretch’ enhancer annotations defined previously in 31 individual cell or tissue types 800 

as enhancer chromatin states equal to or longer than 3 Kb24. The chromatin states were generated 801 

with chromHMM using ChIP-seq data for five histone modifications (H3K4me1, H3K4me3, H3K27ac, 802 

H3K36me3, H3K27me3) in each of the 31 cell types.  803 

GREGOR analysis: GREGOR computes enrichment for GWAS loci to overlap genomic annotations by 804 

taking as input a pruned list of independent and significant GWAS variants. It then considers proxy 805 

variants for each lead input variant, since the causal variant(s) are not known. An overlap is reported 806 

if the feature overlaps any input lead variant or its LD proxies. For each input variant, GREGOR selects 807 

~500 control variants matched for MAF, distance to the gene, and number of variants in LD with r2 ≥ 808 

0.8. Fold enrichment is calculated as the number of unique overlaps over the mean number of loci at 809 

which the matched control variants (or their LD proxies) overlap the same feature. This process 810 

accounts for the length of the features, as longer features will have more overlap, by chance, with 811 

control variant sets. 812 

fGWAS analysis: We utilized fGWAS40 as an orthogonal approach of calculating enrichment of glycemic 813 

trait loci in annotations. fGWAS uses summary level GWAS data in a Bayesian hierarchical model to 814 

determine shared properties of loci affecting a trait. The method divides the genome into windows 815 

generally larger than the expected LD patterns in the population, containing ~5,000 variants. The 816 

method assumes that there is either a single causal variant in a window or none. The model defines 817 

the prior probabilities that an association lies in a genomic window and that a variant within the 818 

genomic window is causal. These prior probabilities are allowed to depend on overlaps of variants 819 

with the user supplied genomic annotations, and are estimated using a Bayes approach based on 820 

enrichment patterns of annotations across the genome. We show the log2(max likelihood enrichment 821 

parameter estimate) (log2(enrichment)) of each individual annotation for each trait in Extended Data 822 

Figure 8. We observed consistent patterns of enrichment compared to GREGOR, which uses a pruned 823 

list of TA lead variants and EUR index and lead variants, and fGWAS, which uses summary statistics, in 824 

that Islet stretch enhancers were most enriched for FG loci (Extended Data Figures 7-8; 825 

Supplementary Tables 15-16). Coding regions were also enriched while repressed chromatin state 826 

regions across cell types were depleted (Extended Data Figures 7-8; Supplementary Tables 15-16). FI 827 

loci were also significantly enriched in adipose and skeletal muscle stretch enhancers across the two 828 

methods.  829 

GARFIELD analysis: GARFIELD41 is another approach to calculate enrichment of GWAS loci in 830 

annotations. It uses summary level GWAS data and selects independent variants based on user 831 

supplied P-value thresholds by LD pruning. For each independent signal, it then fetches proxy variants 832 

in high LD (r2 ≥ 0.8) and considers overlaps of user-supplied annotations with the selected set of 833 

variants. A generalized linear model (logistic regression) is then fitted that tests for enrichment while 834 

accounting for features such as variant distance to known transcription start sites (TSS) and number 835 
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of proxy variants. Different GWAS significance thresholds can be used to calculate enrichment. We 836 

calculated enrichment at two GWAS P-value thresholds of 1x10-5 and 1x10-8 (Extended Data Figure 9).  837 

While performing multiple testing correction across the different annotations tested for each trait, it 838 

is notable that a number of input annotations might be correlated. Therefore, taking the total N for 839 

multiple testing results in a stringent significance threshold. To address this, the method can estimate 840 

the effective number of independent tests performed or effective number of annotations (Neff). This 841 

is done by taking an independent subsample of variants and computing the eigenvalues of the 842 

correlation matrix between all considered annotations, and then the effective number of independent 843 

tests from the Galwey method42. We used the effective number of annotations for each trait to 844 

determine the enrichment significance thresholds after Bonferroni correction. We observed more 845 

significant enrichments at the lower GWAS threshold of 1x10-5, especially for the 2-hour glucose trait, 846 

likely because a more lenient threshold allows for higher power due to more signals. We again 847 

observed consistent enrichment patterns across all four traits with the three methods (Extended Data  848 

Figures 7-9; Supplementary Tables 15-16, 18). 849 
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