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Target genes, variants, tissues and transcriptional 
pathways influencing human serum urate levels
Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We 
performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 
previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed 
significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role 
for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tis-
sues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including 
the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A 
transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a 
functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed 
pleiotropy between urate and cardiometabolic traits.

Serum urate levels reflect a balance between uric acid produc-
tion and its renal and intestinal excretion. Elevated serum urate 
levels define hyperuricemia, which is associated with meta-

bolic, cardiovascular and kidney-related conditions. Hyperuricemia 
can cause kidney stones and gout, the most common inflammatory 
arthritis1,2. Gout attacks are a highly painful response to the deposi-
tion of urate crystals and are a significant cause of morbidity and 
related healthcare costs3. Although gout has become a major pub-
lic health issue, it is undertreated because of low awareness, poor 
patient adherence4 and inappropriate prescription practices of the 
most commonly used drug, allopurinol5. A better understanding of 
the mechanisms controlling serum urate may help to develop medi-
cations for gout treatment and prevention and provide insights into 
the regulatory mechanisms shared between urate and cardiometa-
bolic traits.

Heritability of serum urate varies between 30 and 60% (refs. 6–11). 
Candidate gene and genome-wide associations studies (GWAS) 
have identified three genes as major determinants of urate lev-
els: SLC2A9, ABCG2 and SLC22A12 (refs. 7,12–18). While SLC2A9 
and ABCG2 harbor common variants of relatively large effect15,19, 
SLC22A12 contains many rare or low-frequency variants18,20. The 
largest GWAS meta-analyses performed to date have identified 28 
loci among European ancestry21 and 27 among Japanese individu-
als22. Many genes in the associated loci encode renal and intestinal 
urate transporters or their regulators, while others are relevant to 
glucose and lipid metabolism, functions of the liver, where uric acid 
is generated. With increased public availability of large annotation 
and gene expression datasets, fine-mapping of associated loci to 
prioritize target tissues, pathways and potentially causal genes and 
variants has become possible23,24.

In this study, we perform a trans-ancestry meta-analysis of 
GWAS of serum urate in 457,690 individuals and identify 183 asso-
ciated loci that improve gout risk prediction in an independent sam-
ple of 334,880 UK Biobank (UKBB) participants. We evaluate the 
genetic correlation of serum urate with hundreds of cardiometabolic 
traits and diseases and use a recently developed latent causal vari-
able model to examine the contribution of causality versus pleiot-
ropy. We prioritize target variants, genes, tissues and pathways that 
contribute to the complex regulation of urate levels through com-
prehensive data integration. Lastly, we conduct proof-of-principle  

experimental studies showing that HNF4A, a transcriptional mas-
ter regulator in the liver and kidney proximal tubule, can regulate 
transcription of the gene encoding the major urate transporter 
ABCG2 in kidney cells and that the fine-mapped HNF4A variant 
p.Thr139Ile is functional. Transcriptional coregulation of processes 
linked to energy metabolism within and across organs may underlie 
the pleiotropy observed between urate levels and numerous cardio-
metabolic traits.

Results
Trans-ancestry meta-analysis identifies 183 urate-associated 
loci. Trans-ancestry meta-analyses were conducted to maximize 
the sample size for locus discovery and European ancestry-specific 
analyses were used where population-specific linkage disequilib-
rium (LD) was required to characterize loci (Supplementary Fig. 1).  
The primary trans-ancestry meta-analysis included 457,690 indi-
viduals (European ancestry, n = 288,649; East Asian ancestry, 
n = 125,725; African Americans, n = 33,671; South Asian ancestry, 
n = 9,037; and Hispanics, n = 608) from 74 studies. Mean urate lev-
els ranged from 4.2 to 7.2 mg dl−1 (Supplementary Table 1). GWAS 
were performed based on genotypes imputed using the 1000 
Genomes Project or Haplotype Reference Consortium reference 
panels (Methods and Supplementary Table 2). Results were com-
bined through fixed-effect inverse-variance weighted meta-analysis 
after central study-specific quality control. There was no evidence of 
inflation due to unmodeled population structure (LD score regres-
sion intercept = 1.01; genomic control inflation factor λGC = 1.04). 
Post-meta-analysis variant filtering left 8,249,849 high-quality SNPs 
for downstream analyses (Methods).

We identified 183 loci that contained at least one genome-wide 
significant SNP (P ≤ 5 × 10−8; Fig. 1 and Supplementary Table 3). Of 
these, 36 contained an index SNP reported in previous GWAS of 
serum urate13,15,17,18,21,22,25,26; 147 were previously unknown (Fig. 1).  
Allelic effects on serum urate ranged from 0.28 to 0.017 mg dl−1 
(mean = 0.038 mg dl−1, s.d. = 0.033). Regional association plots are 
shown in the Supplementary Dataset.

The index SNPs at all 183 loci explained 7.7% of the serum urate 
variance (Methods), compared to 5.3% explained by the index SNPs 
previously reported from GWAS in European ancestry popula-
tions21. In a large participating general population-based pedigree 
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study, the 183 index SNPs explained 17% of serum urate genetic 
heritability (h2 = 37.5%, 95% credible interval: 29.5, 45.3%), with 
5% attributed to the index SNPs at SLC2A9, ABCG2 and SLC22A12 
(Supplementary Fig. 2 and Methods).

Characterization of ancestry-related heterogeneity. For the 
183 index SNPs, we observed no evidence of systematic between-
study heterogeneity (median I2 = 2%, interquartile range 0–14%; 
Supplementary Table 3). Fourteen index SNPs showed sig-
nificant evidence of ancestry-associated heterogeneity (Panc-het  
< 2.7 × 10−4 = 0.05/183) when tested using meta-regression 
(Methods), which is consistent with their higher measures of 
between-study heterogeneity (I2 > 25%; Fig. 1, Supplementary 
Table 3 and Supplementary Fig. 3). The most significant ancestry-
associated heterogeneity was observed for rs3775947 at SLC2A9 
(Panc-het = 1.5 × 10−127, allelic effect 0.34 (European ancestry), 0.26 
(African Americans), 0.17 (East Asian ancestry), 0.41 (Hispanics) 
and 0.21 (South Asian ancestry) mg dl−1), consistent with previous 
reports of population heterogeneity at this locus27. Nine genome-
wide significant loci identified through meta-regression did not 
overlap with the 183 loci, including SLC2A2 and KCNQ1, which 
were genome-wide significant in East Asian ancestry individu-
als (Supplementary Table 4). Ancestry-specific meta-analyses of 
European, African American, East Asians and South Asian popu-
lations are summarized in Supplementary Tables 5–8, respectively, 
and in the Supplementary Note.

Sex-stratified meta-analyses of serum urate GWAS. Mean serum 
urate levels and gout risk are higher in men than women28. Therefore, 
we tested whether the 183 urate-associated index SNPs showed sex-
specific differences. Six SNPs showed significant effect differences 
(Pdiff < 2.7 × 10−4 = 0.05/183), at SLC2A9, ABCG2, CAPN1, GCKR, 
IDH2 and SLC22A12 (Supplementary Table 9). The genome-wide 
test for differences in genetic effects on urate levels between men and 
women identified only SNPs at SLC2A9 and ABCG2 (Pdiff < 5 × 10−8; 
Methods and Supplementary Fig. 4), consistent with previous  
reports7,14,15,21, and several suggestive loci (Pdiff < 1 × 10−5; Supple
mentary Table 10).

Urate index SNPs are associated with gout. We next assessed the 
association of the 183 trans-ancestry urate index SNPs with gout in a 
trans-ancestry meta-analysis of 20 studies comprising 763,813 par-
ticipants with 13,179 gout cases (Methods, Fig. 1 and Supplementary 
Table 1). Consistent with the causal role of hyperuricemia in gout, 
genetic effects were highly correlated (Spearman rank correlation 
coefficient = 0.87, Supplementary Fig. 5a; 0.82 for SNPs with urate 
association P values between 5 × 10−8 and 1 × 10−8). Fifty-five SNPs 
were significantly associated with gout (P < 2.7 × 10−4 = 0.05/183). 
In agreement with previous findings21,29, the largest odds ratio 
(OR) for gout was observed at ABCG2 (OR = 2.04, 95% confidence  
interval (CI) 1.96–2.12, P = 7.7 × 10−299). Genetic effects were  
generally larger in index SNPs with lower minor allele frequency, 
with the exception of a few common large-effect SNPs in the 
known major urate loci SLC2A9, ABCG2 and SLC22A12 (refs. 21,30; 
Supplementary Fig. 5b).

A genetic risk score (GRS) for urate improves gout risk predic-
tion. We evaluated whether a weighted urate GRS improved gout 
risk prediction when added to demographic information in a large, 
independent sample of 334,880 UKBB participants, including 4,908 
gout cases (Methods). Across categories of the GRS, gout prevalence 
increased from 0.1 to 12.9% (Fig. 2a and Supplementary Table 11).  
Compared to the most common GRS category, the age- and 
sex-adjusted ORs of gout ranged from 0.09 (95% CI 0.02–0.37, 
P = 7.8 × 10−4) in the lowest to 13.6 (95% CI 7.2–25.8, P = 1.4 × 10−15) 
in the highest GRS category (Fig. 2b and Supplementary Table 11). 

The 3.5% of individuals in the three highest GRS categories had a 
greater than threefold increase in gout risk compared to individu-
als in the most common GRS category. This risk is comparable to a 
monogenic disease of modest effect size31, but affects a higher pro-
portion of the population.

We additionally constructed gout risk prediction models in 
the UKBB sample, which was not part of the discovery analysis of 
serum urate-associated variants. Gout status was regressed on the 
GRS alone (genetic model), on age and sex (demographic model) 
and on the GRS, age and sex (combined model) in a model develop-
ment subset of 90% of the individuals to obtain precise estimates. 
These models were then used to predict gout status in the remain-
ing 10%, the validation sample. The genetic model was a weaker 
predictor (area under the receiver operating characteristic curve 
(AUROC) = 0.67) than the demographic model (AUROC = 0.80). 
Addition of the GRS (combined model) significantly increased  
prediction accuracy (AUROC = 0.84, DeLong test P < 2.2 × 10−16;  
Fig. 2c) and achieved a sensitivity of 84% and specificity of 68%. 
Tenfold cross-validation of the regression models provided 
mean AUROCs of 0.67 (s.d. = 0.011), 0.78 (s.d. = 0.006) and 0.83 
(s.d. = 0.008) for the genetic, demographic and combined models, 
respectively (Methods). The GRS represents a lifelong predisposition 
to higher urate levels and can be calculated at birth. Thus, the GRS 
may help to identify individuals with a high genetic predisposition  
for gout, allowing for compensatory lifestyle choices to reduce the 
risk of gout.

High genetic correlations of serum urate with cardiometa-
bolic traits. Serum urate is positively correlated with many 
cardiometabolic risk factors and diseases32. We assessed genetic 
correlations between urate and 748 complex traits using cross-
trait LD score regression (Methods). Serum urate levels were sig-
nificantly (P < 6.7 × 10−5 = 0.05/748) genetically correlated with 
214 complex traits and diseases (Supplementary Table 12). The 
highest positive genetic correlation (rg) was with gout (rg = 0.92, 
P = 3.3 × 10−70), followed by traits representing components of  
the metabolic syndrome, such as the homeostatic model assess-
ment for insulin resistance (HOMA-IR) (rg = 0.49) and fasting 
insulin (rg = 0.45; Fig. 3). The largest negative correlations were 
observed with high-density lipoprotein (HDL) cholesterol-related 
measurements (rg up to −0.46) and with estimated glomerular  
filtration rate (eGFR) rg = −0.38 and −0.26 for cystatin C and  
creatinine-based eGFR, respectively, consistent with the known 
role of the kidneys in urate excretion. Overall, the genetic corre
lations were consistent with observational associations from epi-
demiological studies32.

To examine whether these genetic correlations reflect causal 
relationships or pleiotropy, we applied a recently developed latent 
causal variable (LCV) model to estimate the genetic causality 
proportion (GCP) for seven commonly studied cardiometabolic 
traits (Methods). As a positive control, we analyzed gout, con-
firming a genetically causal effect of urate on gout (GCP = 0.79; 
Supplementary Table 13), consistent with Mendelian randomiza-
tion studies33,34. The seven cardiometabolic traits showed a GCP 
range consistent with mostly or partially genetically causal effects 
on serum urate. The largest GCP estimates were observed for 
adiposity-related traits (for example, GCP = −0.84 for waist cir-
cumference; Supplementary Table 13), where higher cell numbers 
should result in higher purine and consequently urate produc-
tion. A bidirectional Mendelian randomization study reported 
a causal effect of adiposity on serum urate levels35. While the 
GCP and Mendelian randomization methods estimate differ-
ent quantities to assess causality, the direction of effect can be 
compared and was consistent with a positive causal effect of obe-
sity on serum urate. On the other hand, smaller GCP estimates  
for HDL cholesterol levels (GCP < 0.5; Supplementary Table 13) 
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suggest the existence of a genetic process with a causal effect on 
both HDL cholesterol and serum urate, for example, coregulated 
metabolic processes in the liver. These processes may explain a 
large fraction of heritability for cholesterol levels and a modest 
fraction for urate, a type of asymmetry expected to produce a 
partially genetically causal relationship consistent with the one 
observed. Mendelian randomization studies did not support a 
causal relationship between cholesterol levels and serum urate36.

Enriched tissues and pathways. To identify tissues and molecu-
lar mechanisms relevant for urate metabolism and handling, and 
to provide potential clues to the observed genetic correlations, we 
investigated which tissues, cell types and systems were significantly 
enriched for the expression of genes mapping to urate-associated 
loci (Methods). Based on all SNPs with P < 1 × 10−5, we identified 
significant enrichment (false discovery rate (FDR) < 0.01) for 19 
physiological systems, 3 tissues and 2 cell types (Supplementary 
Table 14). The strongest enrichment was observed for the kidney 
(P = 9.5 × 10−9) and urinary tract (P = 9.9 × 10−9), consistent with 
the kidney’s prominent role in controlling urate levels. Additional 
significant enrichments were observed for endocrine and diges-
tive systems, including the liver, the major site of urate production. 
Interestingly, a previously unknown significant enrichment was  
also observed in the musculoskeletal system, specifically for the 
synovial membrane, joint capsule and joints (Fig. 4a), the sites of 
gout attacks.

Next, we tested for cell type groups with evidence for enriched 
heritability based on cell type-specific functional genomic elements 
using stratified LD score regression (Methods). The strongest 
enrichment was observed for the kidney (11.5-fold), followed by the 
liver (5.39-fold; Supplementary Table 15).

Lastly, we tested whether any gene sets were enriched for vari-
ants associated with urate at P < 10−5 (Methods). Significant enrich-
ment (FDR < 0.01) was observed for 383 reconstituted gene sets 
(Supplementary Table 16). Since many of these contained overlap-
ping groups of genes, we used affinity propagation clustering to 
identify 57 metagene sets (Methods and Supplementary Table 17), 
including a prominent group of intercorrelated gene sets related to 
kidney and liver development, morphology and function (Fig. 4b). 
Together, these results underscore the prominent roles of the kidney 
and liver in regulating serum urate levels and implicate the kidney 
as a major target organ for lowering serum urate.

Prioritization via fine-mapping, functional annotation and gene 
expression. We established a workflow that combined fine-map-
ping of urate-associated loci with functional annotation and a sys-
tematic evaluation of tissue-specific differential gene expression to 
prioritize target SNPs and genes for translational research.

Statistical fine-mapping prioritizes candidate SNPs. Statistical fine-
mapping was performed starting from the 123 genome-wide signifi-
cant loci identified in the European ancestry-specific meta-analysis 
because the workflow included methods that used LD estimates from 
an ancestry-matched reference panel (Methods)37. After LD-based 
combination into 99 larger genomic regions, stepwise model selec-
tion in each region identified 114 independent SNPs (r2 < 0.01; 
Methods). Overall, 87 regions contained 1 independent SNP, 10 
contained 2 independent SNPs, the ABCG2 locus contained 3 and 
the SLC2A9 locus 4 independent SNPs (Supplementary Table 18).  
We computed 99% credible sets representing the smallest set of 
SNPs that collectively account for 99% posterior probability of con-
taining the variant(s) driving the association signal (PPA)38. The 
99% credible sets contained a median of 16 SNPs (Q1, Q3: 6, 57), 
and 6 of them only a single SNP, mapping in or near INSR, RBM8A, 
MPPED2, HNF4A, CPT1C and SLC2A9 (Supplementary Table 18). 
Among 28 small credible sets (≤5 SNPs), several mapped in or near 
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genes with an established role in urate handling such as SLC2A9, 
PDZK1, ABCG2, SLC22A11 and SLC16A9 (ref. 20). These credible 
sets contain the most supported SNPs and greatly reduce the num-
ber of candidate variants for experimental follow-up.

Credible set SNPs were annotated for their functional conse-
quence and regulatory potential (Methods). Missense SNPs with 
PPA > 50% or belonging to small credible sets were identified 
in ABCG2, UNC5CL, HNF1A, HNF4A, CPS1 and GCKR (Fig. 5a 
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Fig. 3 | Serum urate shows widespread genetic correlations with cardiometabolic risk factors and diseases. The Circos plot shows significant 
genome-wide genetic correlations between serum urate and 214 complex traits or diseases (genetic correlation P < 6.7 × 10−5 = 0.05/748 traits 
tested), with the bar height proportional to the genetic correlation coefficient (rg) estimate for each trait and colored according to its direction (dark 
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and Supplementary Table 19). All missense SNPs except the one in 
GCKR had a combined annotation-dependent depletion (CADD) 
score > 15, supporting them as potentially deleterious. Indeed, 
functional effects have already been demonstrated experimentally 
for rs2231142 (p.Gln141Lys, r2 = 1 to the index SNP rs74904971) 
in ABCG2, rs742493 (p.Arg432Gly) in UNC5CL and rs1260326 
(p.Leu446Pro) in GCKR (Table 1). Nonexonic variants with a 
PAA > 90% and mapping into open chromatin in enriched tis-
sues were identified in RBM8A, SLC2A9, INSR, HNF4A, PDZK1, 
NRG4, UNC5CL and AAK1 (Methods, Supplementary Fig. 6 and 
Supplementary Table 19). When complemented by evidence of gene 

expression colocalization, these SNPs may represent causal regula-
tory variants and highlight their potential effector genes.

We compared our fine-mapping workflow (‘Wakefield’), estab-
lished in previous studies39,40, to an alternative approach imple-
mented in FINEMAP v.1.3 (Methods)41. FINEMAP identified 152 
credible sets (median of 7 SNPs). With regard to known causal 
variants in ABCG2 (rs2231142), GCKR (rs1260326), HNF4A 
(rs1800961) and PDZK1 (rs1967017), the Wakefield approach iden-
tified the causal variants in ABCG2, GCKR and HNF4A as cred-
ible set members, whereas FINEMAP found those in ABCG2 and 
HNF4A. A comparison of all SNPs mapping into small credible sets 
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Fig. 4 | Genes expressed in urate-associated loci are enriched in kidney tissue and pathways. a, Grouped physiological systems (x axis) that were tested 
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(≤5 SNPs) identified through both approaches found highly corre-
lated posterior probabilities (Pearson correlation coefficient = 0.86).

Gene prioritization via gene expression colocalization analyses. The 
urate association signals were next tested for colocalization with 
expression quantitative trait loci (eQTLs) in cis across three kidney 
tissue resources and 44 Genotype-Tissue Expression (GTEx) tissues 

(Methods). High posterior probability of colocalization (H4 ≥ 0.8; 
Methods) supports a trait-associated variant acting through gene 
expression in the tissue where colocalization is identified. We iden-
tified colocalization with the expression of 13 genes in the kidney 
(Fig. 6), the organ with the strongest enrichment for urate-associated 
variants. Whereas colocalization of some genes was only observed 
in the kidney (SLC17A4, BICC1, UMOD, GALNTL5, NCOA7),  
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Table 1 | Genes implicated as causal via identification of missense variants with high probability of driving the urate association 
signal

Gene SNP No. of 
SNPs 
in set

SNP  
posterior 
probability

Consequence CADDa DHS Gout meta-
analysis P 
(European 
ancestry)

Brief summary of literature and gene function

ABCG2 rs2231142 4 0.41 p.Gln141Lys 
(NP_004818.2)

18.2 ENCODE 
epithelial

1.21 × 10−290 Encodes a xenobiotic and high-capacity urate 
membrane transporter expressed in the kidney, 
liver and gut. Causal variants have been reported 
for gout susceptibility (MIM 138900) and the 
Junior Jr(a−) blood group phenotype (MIM 
614490). The locus was first identified in 
association with serum urate through GWAS15 
and confirmed in many studies since. The 
common causal variant encoding p.Gln141Lys has 
been experimentally confirmed19 as a partial loss 
of function.

UNC5CL rs742493 4 0.95 p.Arg432Gly 
(NP_775832.2) 
(within death 
domain)

21.0 ENCODE 
epithelial

2.73 × 10−1 Encodes for the death domain-containing 
UNC-5 family C terminal-like membrane-
bound protein. Suggested as a candidate gene 
for mucosal diseases, with a role in epithelial 
inflammation and immunity61. In human HEK 293 
cells, UNC5CL can transduce proinflammatory 
programs via activation of NF-κB, with  
the p.Gly432 variant less potent than the 
p.Arg432 one61.

HNF1A rs1800574 2 0.92 p.Ala98Val 
(NP_000536.5)

23.4 1.83 × 10−2 Encodes a transcription factor with strong 
expression in the liver, gut and kidney. Rare 
mutations cause autosomal-dominant MODY3 
(MIM 600496). Locus found in GWAS of 
type 2 diabetes62 and blood urea nitrogen22. 
Together with HNF4A, it was first recognized 
as the master regulator of hepatocyte and islet 
transcription. Knockout mice show proximal 
tubular dysfunction (Fanconi syndrome). HNF1A 
enhanced the promoter activity of PDZK1, 
URAT1, NPT4 and OAT4 in human renal proximal 
tubule cell-based assays45, supporting a role in 
the coordinated expression of components of the 
urate ‘transportosome’.

HNF4A rs1800961 1 1.00 p.Thr139Ile 
(NP_000448.3)

24.7 ENCODE 
pancreas

7.43 × 10−3 Encodes another nuclear receptor and 
transcription factor that controls expression 
of many genes, including HNF1A and other 
overlapping target genes. Rare mutations 
cause autosomal-dominant MODY1 (MIM 
125850) and autosomal-dominant renal Fanconi 
syndrome 4 (MIM 616026). Shown to regulate 
the expression of SLC2A9 and other members 
of the ukrate ‘transportosome’ in cell-based 
assays54,55. The GWAS locus has been reported 
for multiple cardiometabolic traits and type 2 
diabetes63.

CPS1 rs1047891 84 0.84 p.Thr1412Asn 
(NP_001116105.1)

22.1 5.66 × 10−2 Encodes mitochondrial carbamoyl phosphate 
synthetase I, which catalyzes the first committed 
step of the urea cycle. Rare mutations cause 
autosomal-recessive carbamoylphosphate 
synthetase I deficiency (MIM 237300). In 
addition to hyperammonemia, this disease 
features increased synthesis of glutamine, 
a precursor of purines. Elevated uric acid 
excretion has been reported in patients 
with hyperammonemia64. GWAS locus for 
eGFR65, homocysteine66 and urinary glycine 
concentrations67.

Continued
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others showed colocalization in several tissues (for example, 
ARL6IP5). The direction of change in gene expression with higher 
urate levels could vary for the same gene across tissues. For instance, 
the allele associated with higher serum urate at SLC16A9 was asso-
ciated with higher gene expression in the kidney, which is consistent 
with a regulatory variant in a transporter mediating the reabsorption 
of urate. This same allele was associated with lower gene expression 
in other tissues, such as the aorta, pointing toward tissue-specific 
regulatory mechanisms42. Details of the 13 genes with evidence for 
colocalization with gene expression in the kidney are summarized 
in Supplementary Table 20. Significant colocalizations across all 47 
tissues (Supplementary Fig. 7) revealed additional insights such as 
colocalization of the urate association signal with NFAT5 expression 
in subcutaneous adipose tissue, emphasizing its role in adipogen-
esis43, or PDZK1 expression in the colon and ileum, important sites 
of urate excretion.

Lastly, we investigated whether any trans-ancestry index SNPs 
or their proxies (r2 > 0.8) were reproducibly associated with gene 
expression in trans in several large eQTL studies (Supplementary 
Table 21 and Supplementary Note). We identified interchromo-
somal associations between 5 index SNPs and 16 transcripts that 
were enriched in the cardiovascular-disease-related term ‘heart 
disease’ based on the Human Disease Ontology database (release 
datestamp 20150323, sub-version 2806, Supplementary Note and 
Supplementary Table 22).

HNF4A activates ABCG2 transcription, and HNF4A p.Thr139Ile 
is a functional variant. The gene and variant prioritization work-
flow was validated using the identified candidates HNF1A and 
HNF4A. Coregulation of target genes by these transcriptional mas-
ter regulators in the kidney proximal tubule and liver could poten-
tially explain the observed genetic correlations44.

We first tested whether HNF1A and HNF4A affect transcrip-
tion of ABCG2, which encodes for a major human urate trans-
porter and represents the locus with the highest gout risk in our 
screen. The ABCG2 promoter region contains several predicted 
HNF1A and HNF4A binding sites (Fig. 5b). A luciferase reporter 
assay in the HEK 293 cell line was used to assess transactivation  
of the human ABCG2 promoter by the HNF4A and HNF1A pro-
teins (Methods and Supplementary Fig. 8a). Coexpression of 
HNF4A significantly increased the ABCG2 promoter-driven lucif-
erase activity in a transfection dose-dependent and HNF4A pro-
tein abundance-dependent manner (Fig. 5c and Supplementary 
Fig. 8b). No increase in luciferase activity occurred with the  
negative control vector devoid of the ABCG2 promoter (Supple
mentary Fig. 8d,e). Results for HNF1A indicated that the observed 

association with serum urate probably does not occur via activa-
tion of ABCG2 in kidney cells (Fig. 5c); however, HNF1A has been 
reported to activate the transcription of PDZK1, which encodes a 
regulatory protein for several other renal urate transporters45,46 
also identified in this study.

Next, we tested the functional relevance of the prioritized 
p.Thr139Ile allele in HNF4A (NM_178849.2, isoform 1; Methods). 
Its location within the hinge/DNA binding domain (Fig. 5d and 
Supplementary Fig. 8f) supports potentially altered interactions 
with targeted promoter regions. The isoleucine substitution at posi-
tion 139 significantly increased the transactivation of the ABCG2 
promoter compared to the wild-type threonine (Fig. 5e), without 
altering HNF4A protein abundance (Supplementary Fig. 8c). Thus, 
HNF4A can activate ABCG2 transcription in a kidney cell line and 
HNFA4 p.Thr139Ile is a functional variant. Increased activation of 
the urate excretory protein ABCG2 by the allele encoding the iso-
leucine residue should result in lower serum urate levels, consistent 
with the observed negative association in our GWAS.

Discussion
This trans-ancestry GWAS meta-analysis of serum urate based 
on 457,690 individuals represents a fourfold increase in sample 
size over previous studies21,22,47 and identified 183 urate-associated 
loci, 147 of which were previously unknown. A genetic urate risk 
score led to significant improvements in gout risk prediction in 
334,880 UKBB participants: 3.5% had a risk of gout comparable to 
a Mendelian disease effect size. Genetic correlation and causality 
analyses confirmed the causal effect of urate on gout and were con-
sistent with transcriptional coregulation as a source of pleiotropy  
in the widespread genetic correlations between serum urate and  
cardiometabolic traits. Tissue and cell type-specific enrich-
ment analyses supported the notion that the kidney and liver, 
the sites of urate excretion and generation, are key target tissues. 
Comprehensive fine-mapping and colocalization analyses with 
gene expression across 47 tissues delivered an extensive list of target 
genes and SNPs for follow-up studies, of which we experimentally 
confirmed HNF4A p.Thr139Ile as a functional allele involved in 
transcriptional regulation of urate homeostasis.

Major challenges of GWAS are to pinpoint causal genes and 
variants and provide actionable insights into disease-relevant 
mechanisms. This study developed a comprehensive resource of 
urate-related candidate SNPs, genes, tissues and pathways that 
will enable a wide range of follow-up studies. Out of the many and 
biologically plausible findings, we highlight two instances where 
colocalization analyses provided new insights. First, colocaliza-
tion helped to prioritize genes in association peaks that previous 

Gene SNP No. of 
SNPs 
in set

SNP  
posterior 
probability

Consequence CADDa DHS Gout meta-
analysis P 
(European 
ancestry)

Brief summary of literature and gene function

GCKR rs1260326 2 0.67 p.Leu446Pro 
(NP_001477.2)

0.1 ENCODE 
kidney

4.09 × 10−41 Encodes a regulatory protein prominently 
expressed in the liver that inhibits glucokinase. 
Identified in a previous GWAS of urate21 and 
multiple other cardiometabolic traits. The 
p.Leu446 protein was shown to be less activated 
than p.Pro446 by physiological concentrations 
of fructose 6-phosphate, leading to reduced 
glucokinase inhibitory ability68.

aCADD, combined annotation dependent depletion phred score. Gout meta-analysis P values were two-sided (n = 763,813). Posterior probabilities were estimated from statistical fine-mapping using the 
Wakefield approach (Methods). The DHS column contains an entry only when the SNP mapped into a DHS in a target tissue. Genes were included if they contained a missense variant with a posterior 
PPA > 50% or mapped into a small credible set (≤5 SNPs).

Table 1 | Genes implicated as causal via identification of missense variants with high probability of driving the urate  
association signal (continued)
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GWAS could not resolve. For example, the locus at chromosome 
6p22.2 contains genes encoding for four members of the SLC17 
transporter family (SLC17A1–SLC17A4). Systematic testing of 
colocalization across genes and tissues identified evidence only 
for SLC17A4 in the kidney, with higher expression associated 
with higher serum urate. Previous experimental studies have 
implicated SLC17A4 as a urate exporter in the intestine48 and our 
data support its yet unappreciated role in renal urate transport. 
Second, colocalization with MUC1, BICC1 and UMOD expres-
sion in the kidney suggests a shared biological mechanism. Rare 
mutations in all three genes underlie monogenic cystic kidney 
diseases49–51.

Another noteworthy finding is the significant genetic correla-
tions with many cardiometabolic traits, consistent with observa-
tional associations52. Many of these traits are influenced by liver 
metabolism. The estimated GCPs supported their genetic correla-
tions to be partly driven by overlapping or coregulated metabolic 
pathways and not only by a fully causal effect of, for example, cho-
lesterol or insulin levels on urate. Likewise, significant genetic cor-
relations with kidney-related traits such as eGFR may reflect shared 
regulatory processes in the kidney. The observed pleiotropic effects 
of many urate-associated variants could thus be the potential mani-
festation of coregulation of processes that occur within and across 
tissues relevant to the implicated traits, a mechanism probably pre-
vailing in metabolic but also other traits.

In the kidney, nuclear HNF4A is exclusively detected in the prox-
imal tubule53, where it has been reported to regulate the expression 
of SLC2A9 isoform 1 (ref. 54) and PDZK1 (ref. 55). Kidney-specific 

deletion of Hnf4a in mice phenocopies Fanconi renotubular syn-
drome56. Transcriptomic analyses support HNF4A to drive a proxi-
mal tubule signature cluster of 221 coexpressed genes, including 
many candidate genes for urate metabolism and transport53. In addi-
tion to HNF4A, HNF4G and HNF1A, ten genes in this cluster also 
map to the urate-associated loci we identified (A1CF, CUBN, LRP2, 
PDZK1, SERPINF2, SLC2A9, SLC16A9, SLC17A1, SLC22A12 and 
SLC47A1). In addition, our study establishes that HNF4A can trans-
activate transcription of ABCG2 in a kidney cell line, the key urate 
secretory transporter in gut and kidney epithelium57. The genetic 
variant encoding the p.Thr139Ile substitution is located in a region 
of the HNF4A protein harboring many causative mutations for 
monogenic maturity-onset diabetes of the young type 1 (MODY1)58. 
Yet, unlike the severe MODY1 missense mutations p.Arg127Trp, 
p.Asp126Tyr and p.Arg125Trp,59 p.Thr139Ile has not been reported 
to cause MODY1. Instead, it has been reported to increase the risk 
of type 2 diabetes, possibly through a liver-specific loss of HNF4A 
phosphorylation at p.Thr139, and to associate with HDL choles-
terol levels58,60. These data point to additional complexities when 
interpreting pleiotropic effects because there may be several tissue-
specific mechanisms by which genetic variants in transcriptional 
regulators influence metabolic pathways and urate homeostasis.

Some limitations warrant mention. The numbers of individuals 
of ancestries other than European or East Asian were small and the 
generalizability of the gout prediction models should be assessed in 
future independent studies of non-European ancestry. Focusing on 
SNPs present in the majority of studies emphasizes those that may 
be of greatest importance globally over population-specific variants. 
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Fig. 6 | Colocalization of urate association signals with gene expression in cis in kidney tissues. The serum urate association signals identified in 
European ancestry individuals (n = 288,649) were tested for colocalization with all eQTLs where the eQTL cis-window overlapped (±100 kb) the index 
SNP. Genes with ≥1 positive colocalization (posterior probability of one common causal variant, H4, ≥0.80) in a kidney tissue are illustrated with the 
respective index SNP and gene (y axis). Colocalizations across all tissues (x axis) are illustrated as dots, where the size of the dot indicates the posterior 
probability of the colocalization. Negative colocalizations (posterior probability of H4 <0.80) are marked in gray, while positive colocalizations are  
color-coded relative to the change in expression with a color gradient as indicated in the key to the figure.
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General limitations of the field include that statistical fine-mapping 
approaches based on meta-analysis summary statistics cannot clearly 
prioritize functional variants in regions of tight LD, and that they are 
influenced by the availability and imputation quality of SNPs in the 
contributing studies. Only few regulatory maps from important tar-
get tissues such as the synovial membrane and kidney are available, 
but we evaluated differential gene expression in three kidney datas-
ets. Generating additional regulatory and expression datasets across 
disease states, developmental stages and additional cell types in the 
kidney and other metabolically active organs constitutes an impor-
tant future research avenue. Lastly, a large independent sample for 
adequately powered replication testing was unavailable and repre-
sents a future endeavor. However, high correlations between genetic 
effects on serum urate and gout even for SNPs with the weakest 
significant urate associations, as well as no indication of significant 
heterogeneity, reduce concerns about false positives.

In summary, this large-scale study generated an atlas of candi-
date SNPs, genes, tissues and pathways involved in urate metabo-
lism and its shared regulation with multiple cardiometabolic traits 
that will enable a wide range of follow-up studies.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41588-019-0504-x.
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Methods
Phenotype definition, genotyping and imputation in participating studies.  
The primary study outcome was serum urate in mg dl−1. The laboratory methods 
for measuring serum urate in each study are reported in Supplementary Table 1.  
Prevalent gout was analyzed as a secondary outcome to examine whether 
urate-associated SNPs conferred gout risk. Gout cases were ascertained based 
on self-report, intake of urate-lowering medications or International Statistical 
Classification of Diseases and Related Health Problems (ICD) codes for gout 
(Supplementary Table 1). The participants of all studies provided written informed 
consent. Each study had its research protocol approved by the corresponding local 
ethics committee.

Each study performed genotyping separately and imputed the genotypes to 
the reference panels of the Haplotype Reference Consortium v.1.1 (ref. 69), 1000 
Genomes Project phase 3 v.5 ALL or the 1000 Genomes Project phase 1 v.3 ALL70. 
Study-specific quality filters and software used for phasing and imputation are 
provided in Supplementary Table 2 and the Supplementary Note. Variants were 
annotated using NCBI b37 (hg19).

Study-specific association analysis. Phenotype generation was standardized 
across studies using a common script; study-specific association analyses followed 
a centrally developed analysis plan. GWAS summary statistics were checked 
centrally using GWAtoolbox v.2.2.4-7 (ref. 71) and custom scripts (Supplementary 
Note). Each study performed ancestry-specific association analysis of serum urate 
by generating age- and sex-adjusted residuals of serum urate and regressing the 
residuals on SNP dosage levels, adjusting for study-specific covariates, such as 
study centers and genetic principal components, assuming an additive genetic 
model. Gout was analyzed as a binary outcome adjusting for age, sex, genetic 
principal components and study-specific covariates. The software programs 
used for these regression analyses were: EPACTS (q.emmax for family-based 
studies and q.linear otherwise; https://genome.sph.umich.edu/wiki/EPACTS); 
SNPTEST72; RegScan73; RVTESTS74; PLINK 1.90 (ref. 75); ProbABEL76; GWAF77; 
GEMMA78; mach2qtl79; and R. Family-based studies used methods that accounted 
for relatedness.

Trans-ancestry, ancestry-specific and sex-stratified meta-analyses. GWAS 
results from each study were prefiltered to retain biallelic SNPs with an imputation 
quality score >0.6 and minor allele count (MAC) > 10 before inclusion into the 
meta-analysis. Fixed-effect inverse-variance weighted meta-analysis was performed 
using METAL80 (released 25 March 2011) with modifications to output higher 
precision (six decimal places). Genomic control was applied for each study. The 
genomic control inflation factor λGC (ref. 81) was calculated to assess inflation of the 
test statistics. For each meta-analysis result (trans-ancestry, ancestry-specific and 
sex-specific), we excluded SNPs that were present in <50% of the studies and with 
a total MAC < 400. For ancestry-specific meta-analysis, we additionally excluded 
SNPs with a heterogeneity I2-statistic82 >95%. Genome-wide significance was 
defined as P < 5 × 10−8. The LD score regression intercept was calculated to assess 
the evidence for associations driven by population structure83. For downstream 
characterization, 8,249,849 and 8,217,339 autosomal SNPs were retained in the 
trans-ancestry and European ancestry meta-analysis, respectively. Ancestry-
specific meta-analyses were conducted for European, African American, East 
Asian and South Asian ancestries using the same methods and variant filters as the 
trans-ancestry meta-analysis.

Secondary meta-analyses were performed separately in men and women, using 
the same analytical approaches. To test for significant difference of association 
between men and women, we used a two-sample t-test:

t ¼ βM � βFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE2

M þ SE2
F

p

where βM and βF are the β coefficients in men and women, respectively, and SEM and 
SEF were the standard errors of the β coefficients in men and women, respectively.

Initial determination and annotation of genome-wide significant loci. For each 
meta-analysis result, the SNP with the lowest P per chromosome was selected as an 
initial index SNP; along with the ±500 kilobases (kb) surrounding, it was defined as 
one 1-Mb locus. This procedure was repeated with the SNP with the lowest P not 
yet assigned to a locus, until no genome-wide significant SNPs outside the 1-Mb 
loci remained. To visualize the loci, the genomic region ±500 kb around each index 
SNP was plotted and could contain two index SNPs when the index SNPs were 
>500 kb but <1 Mb apart. An ancestry-specific locus was defined as a genome-
wide significant locus in an ancestry-specific meta-analysis where the index SNP 
did not map to within the ±500 kb intervals of any genome-wide significant loci in 
the trans-ancestry meta-analysis. Index SNPs were annotated using their position 
and the nearest gene based on hg19, RefSeq genes and dbSNP database (build 147) 
downloaded from ftp://hgdownload.soe.ucsc.edu/mysql/hg19/ on 23 March 2017.

Proportion of phenotypic variance explained and estimated heritability. The 
proportion of phenotypic variance explained by index SNPs was calculated as 
the sum of the variance explained by each index SNP based on this formula: 

β2 2p 1�pð Þ
var

� �

I

, where β is the β coefficient, p is the minor allele frequency of the SNP 
and var is the phenotypic variance. For this study, we used the variance of the 
age- and sex-adjusted residuals of serum urate in European ancestry participants 
of the Atherosclerosis Risk in Communities (ARIC) study as the estimate of the 
phenotypic variance (var = 1.767).

The genetic heritability of age- and sex-adjusted urate levels was estimated 
using the R package MCMCglmm v.2.26 (ref. 84) in the Cooperative Health 
Research In South Tyrol (CHRIS) study85, a participating European ancestry 
study with 4,373 individuals split into 186 up to 5 generation pedigrees86. Genetic 
heritability was estimated overall, after accounting for the index SNPs of the three 
major urate loci (SLC2A9, ABCG2 and SLC22A12), and after accounting for the 
index SNPs of all genome-wide significant loci for both the trans-ancestry and 
European ancestry-specific meta-analyses. Estimates were obtained by running 
1,000,000 Markov chain Monte Carlo iterations (burn in = 500,000) based on 
previously described settings86. The difference between overall heritability and 
heritability excluding the index SNPs represents the heritability explained by the 
identified loci.

Trans-ancestry meta-regression. Before conducting the trans-ancestry meta-
regression, we applied the same study-specific SNP filters as those applied to the 
fixed effects trans-ancestry meta-analysis (imputation quality score > 0.6 and 
MAC > 10). An additional filter for minor allele frequency > 0.0025 was also 
applied to reduce the influence of rare SNPs that passed the MAC filter in very 
large studies. Trans-ancestry meta-regression was conducted using the MR-MEGA 
software package v.0.1.2 (ref. 87), which models ancestry-associated heterogeneity 
in the allelic effect as a function of principal components generated from a matrix 
of mean pairwise allele frequency differences between studies. Three principal 
components generated from a matrix of mean pairwise allele frequency differences 
between studies were sufficient to separate the self-reported ancestry groups. Due 
to software requirements, the minimum number of cohorts for each SNP had to 
be greater than the number of principal components plus two, resulting in the 
exclusion of SNPs present in five or fewer cohorts. In addition to genome-wide 
SNP associations with urate, MR-MEGA reports ancestry-associated (Panc-het) 
and residual (Pres-het) heterogeneity. Index SNPs from the fixed effects meta-
analysis with Panc-het < 2.7 × 10−4 (0.05/183) in MR-MEGA were considered to have 
significant ancestry-associated heterogeneity.

Effect of urate-associated index SNPs on gout and risk prediction for gout. To 
evaluate the association of the trans-ancestry urate-associated index SNPs with 
gout, we conducted a trans-ancestry meta-analysis of gout with the same study-
specific filtering criteria as for the urate trans-ancestry meta-analysis.

The association between a genetic urate risk score constructed from the 114 
independent serum urate-associated SNPs identified in European individuals 
(see Statistical fine-mapping of genome-wide significant loci in European 
ancestry section) and gout was assessed in a large, independent sample from 
the UKBB (project nos. 19655 and 20272)88. We selected 334,880 unrelated 
individuals (pairwise kinship coefficient < 0.0313) of white British ancestry with 
sex chromosome euploidy and concordance of phenotypic and genotypic sex, 
including 4,908 with gout identified by self-report at the inclusion visit. Individuals 
with an ICD-10 for gout (M10) in hospital admissions who did not self-report 
gout were excluded from the analysis. A GRS was constructed as the sum of the 
imputed dosage of the allele associated with higher urate levels (risk alleles) over 
all SNPs, multiplied by the genetic effect of the risk allele on serum urate levels. 
The GRS distribution was divided into ten evenly spaced categories and individuals 
were assigned to a category based on their GRS. The category with the lowest GRS 
did not contain any gout cases and was thus combined with its adjacent category. 
Gout status was regressed on GRS category in a logistic model, including age and 
sex as covariates, with the category containing the largest number of individuals 
(genetically predicted mean urate levels 4.74–5.02 mg dl−1 higher compared to 
individuals without any urate-increasing alleles) as the reference group.

The performance of the GRS for risk prediction of gout was first evaluated in a 
randomly selected model development sample comprising 90% of the participants 
to obtain precise estimates and tested in a validation sample of the remaining 
10%. Logistic regression was used to regress gout on the GRS alone (genetic 
model), age and sex (demographic model) and GRS with age and sex (combined 
model) in the model development sample. Each of these models was then used 
to predict gout status in the validation sample. Model performance was assessed 
by comparing predicted and true gout status using the AUROC curve. A cutoff 
of the AUROC curve to report the sensitivity and specificity of a combined GRS-
based diagnostic test was determined by the maximum of the Youden’s index 
(sensitivity + specificity − 1). Tenfold cross-validation of the models was performed 
by randomly dividing the UKBB sample into ten equally sized groups. Each group 
in turn was used as the validation sample for the estimates developed on the 
remaining data. The AUROC curve was calculated for each of the three models for 
all ten validation samples and the means and s.d. are reported.

Genetic correlation. To assess the genetic correlation between serum urate and 
other traits in the European ancestry group, we conducted cross-trait LD score 
regression89 using LD Hub v.1.3 (ref. 90) with the European ancestry-specific urate 

Nature Genetics | www.nature.com/naturegenetics

https://genome.sph.umich.edu/wiki/EPACTS
ftp://hgdownload.soe.ucsc.edu/mysql/hg19/
http://www.nature.com/naturegenetics


Articles NATurE GEnETIcS

meta-analysis results as input. Genetic correlation estimates with 746 traits were 
obtained from LD Hub, excluding two previous serum urate GWAS results. For 
presentation, the 212 significantly correlated traits (P < 6.7 × 10−5 = 0.05/746) were 
grouped into 9 categories based on the trait names and labels and presented in a 
circos plot.

To determine whether the observed genetic correlations between serum urate 
and cardiometabolic traits represented causal relationships, we used the recently 
developed LCV method to estimate the GCP between serum urate and another 
trait91. Compared to multiple regression, the LCV method produces fewer false 
positive results in the setting of high genetic correlation and large sample sizes, a 
situation applicable to our analysis91. The GCP describes what proportion of the 
genetic component of one trait also affects the other trait; a positive GCP value 
indicates that a proportion of the genetic component of urate affects the other 
trait, and vice versa for a negative GCP value. LCV produces posterior mean and 
s.d. estimates of the GCP using mixed fourth moments of the bivariate effect size 
distribution, based on GWAS summary statistics and LD scores. When using 
the summary statistics of cardiometabolic traits generated from the UKBB, we 
assumed nonoverlapping populations, and overlapping populations otherwise. 
We selected six unique continuous cardiometabolic traits commonly examined in 
epidemiological studies with high genetic correlation with serum urate (rg > 0.35). 
We additionally included gout as a positive control and creatinine-based GFR. 
European ancestry-specific GWAS summary statistics were used as input to match 
the ancestry of the LD scores used with the method (https://data.broadinstitute.
org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2).

Functional enrichment. To assess gene set and tissue enrichment, we used the 
Data-driven Expression Prioritized Integration for Complex Traits (DEPICT) 
analysis v.1 release 194 (ref. 92), which performed gene set enrichment analysis 
by testing whether genes in 14,461 reconstituted gene sets were enriched for 
urate-associated SNPs (P < 1 × 10−5) from the trans-ancestry meta-analysis results. 
Affinity propagation clustering93, implemented in the R package APCluster v.1.4.5 
(ref. 94), was applied to all urate-associated reconstituted gene sets with an FDR-
corrected enrichment P < 0.01 to cluster gene sets containing similar combinations 
of genes. More details on the methods of DEPICT and affinity propagation 
clustering are provided in the Supplementary Note. The methods for using 
stratified LD score regression89 based on cell type-specific genomic annotations to 
identify cell type- and tissue-specific enrichments of serum urate heritability are 
reported in the Supplementary Note.

Statistical fine-mapping of genome-wide significant loci in European ancestry. 
Statistical fine-mapping to identify potentially causal variants was performed 
for the genome-wide significant loci from the European ancestry-specific meta-
analysis. LD was estimated based on 16,969,363 SNPs from 13,558 unrelated 
UKBB participants after quality control (Supplementary Note). The analyses were 
based on a previously described workflow39,40,95 using genome-wide complex trait 
analysis (cojo-slct option) to identify independent index SNPs in each region, 
followed by using genome-wide complex trait analysis (cojo-cond option) to obtain 
conditional β and s.e.m. for regions with >1 independent signal. Next, approximate 
Bayes factors were calculated using Wakefield’s formula38, as implemented in 
the R package gtx v.2.1.0. (https://github.com/tobyjohnson/gtx). The posterior 
probability for a variant being the driver of the association signal was calculated as 
the approximate Bayes factors of the variant divided by the sum of the approximate 
Bayes factors in the region. The 99% credible sets of a region were derived by 
summing the posterior probabilities in descending order until the cumulative 
posterior probability was >99%. We prioritized variants in credible sets containing 
≤5 SNPs or SNPs with posterior probabilities >0.5. More details on statistical fine-
mapping are provided in the Supplementary Note.

Annotation of the variants in the credible sets. We annotated SNPs in the 
credible sets for their exonic effect, CADD score and mapping to DNaseI 
hypersensitive sites (DHS) from the Encyclopedia of DNA Elements (ENCODE) 
and Roadmap Epigenomics Consortium projects96,97. The exonic effect and CADD 
score were obtained using SNiPA v.3.2 (March 2017) (ref. 98). SNiPA presented 
the CADD score as Phred-like transformation of the C score, which was based on 
CADD v.1.3 downloaded from http://cadd.gs.washington.edu/download. A CADD 
score of 15 is used to distinguish potentially deleterious variants from background 
noise in clinical genetics and represents the median value of all nonsynonymous 
variants in CADD v.1.0 (refs. 99,100). As opposed to posterior probabilities causing 
the association signal, CADD scores represent an integrative measure of predicted 
deleteriousness based on an ensemble of variant annotations derived by contrasting 
common variants that survived natural selection with simulated mutations. Based 
on known pathogenic variants in the ClinVar database, the performance of the 
CADD score had an AUROC of 0.88 (ref. 101).

Colocalization analysis of cis-eQTL and urate-associated loci. Colocalization 
analysis of urate-associated loci with gene expression was conducted using the 
European ancestry meta-analysis results, cis-eQTL results from microdissected 
human glomerular and tubulointerstitial kidney portions from 187 individuals in 
the Nephrotic Syndrome Study Network (NEPTUNE) study102, as well as from 44 

tissues in the GTEx Project (version 6p)103. For each urate locus, we identified all 
transcripts and all tissue transcript pairs with reported eQTLs within ±100 kb of 
each GWAS index SNP. The region for each colocalization test was defined as the 
eQTL cis-window in the underlying studies102,103. We used the default parameters 
and prior definitions set in the coloc.fast function from the R package gtx v.2.1.0, 
which is an adapted implementation of the colocalization method outlined by 
Giambartolomei et al.24. Evidence for colocalization was defined as an H4 ≥ 0.8, 
which represents the posterior probability that the association with serum 
urate and gene expression is due to the same underlying variant. In addition, 
colocalization of urate-associated loci was also performed with gene expression 
quantified using RNA sequencing of the healthy tissue portion of 99 kidney cortex 
samples from The Cancer Genome Atlas (TCGA)104. First, all transcripts that 
shared eQTL variants with urate index SNPs within ±100 kb were extracted. Then, 
the posterior probability of colocalization was calculated including eQTLs within 
the cis-window (±1 Mb from the transcription start site) for each gene using the  
R coloc package v.3.1 (ref. 24) with default values for the three prior probabilities. 
The methods for trans-eQTL annotation are reported in the Supplementary Note.

Experimental study. Promoter binding site predictions. For promoter binding 
site predictions, we used the JASPAR 2018 database105,106. The frequency matrices 
were downloaded for transcription factor binding sites of both vertebrate and 
human sequences (HNF1A: MA0046.1 and MA0046.2; HNF4A: MA0114.1 
and MA0114.2). These matrices were then used to query the promoter region 
of ABCG2 (−1285/+362, or base pairs upstream of the transcription start site 
and/or downstream after the transcription start site)107 using the LASAGNA 2.0 
transcription factor binding site search tool with default parameters and a P cutoff 
of 0.01 (ref. 108).

Site-directed mutagenesis. HNF1A and HNF4A clones were purchased from 
GeneCopoeia (catalog nos. EX-A7792-M02 and EX-Z5283-M02, respectively) and 
were mutagenized using the QuikChange Lightning Site-Directed Mutagenesis 
Kit (catalog no. 210518; Agilent Technologies) according to the manufacturer’s 
instructions using polyacrylamide gel electrophoresis-purified primers, which are 
reported in the Supplementary Note.

Luciferase assay. HEK 293T cells were seeded in white-walled 96-well plates 
coated with Poly-l-lysine (Sigma P1274; 5 mg per 50 ml in water) at roughly 
12,500 cells per well. Cells were transfected 18 h later with either the ABCG2 
promoter (−1285/+362) upstream of a firefly luciferase in the pGL4.14 vector 
(a generous gift from D.D. Ross) or the pGL4.14 vector (catalog no. E699A; 
Promega Corporation) without promoter construct, as well as a green fluorescent 
protein (GFP)-expressing vector used as an internal negative control (pEGFP-C1; 
Clontech)109 using the X-tremeGENE 9 DNA Transfection Reagent (catalog 
no. 6365787001; Roche). Transfection cocktails were prepared according to the 
manufacturer’s specifications either with or without transcription factor using 
the following ratio: 0.6 μg promoter construct; 0.2, 0.1 or 0.05 μg transcription 
factor; and 0.05 μg GFP. When no transcription factor was used, pcDNA3.1 was 
substituted. Approximately 48 h after transfection, cells were rinsed with 1× PBS, 
then lysed using Passive Lysis Buffer (catalog no. E194A; Promega Corporation) 
for 15 min. During this incubation, GFP measurements were taken using a 
CLARIOstar Plus microplate reader (BMG Labtech). Next, 30 μl of luciferase 
reagent (catalog no. E297A&B; Promega Corporation) were added to each well 
and the plate was incubated for an additional 20 min at room temperature. Finally, 
luciferase activity was measured using the CLARIOstar Plus microplate reader 
taking the average over 6 s. To evaluate the significance of transactivation of the 
ABCG2 promoter, we compared cells expressing transcription factors to those 
transfected with the empty vector (pcDAN3.1); to evaluate transcription factor 
dose responses or differences in transcription factor variants, all experimental 
conditions from one plate were compared using an ordinary one-way analysis  
of variance (ANOVA), accounting for multiple comparisons with a Tukey’s 
multiple comparison test. Statistical analysis was performed using Prism 7 
(GraphPad Software).

Immunoblots. Equal volumes of deoxycholate-radioimmunoprecipitation 
assay buffer were added to wells containing the desired lysates following the 
luciferase assay; plates were then incubated at 4 °C overnight. Equal volumes 
of sample + 5× SDS loading dye + 10% 𝛽-mercaptoethanol were then loaded 
into 10% Mini-PROTEAN TGX Stain-Free Protein Gels (catalog no. 4568033; 
Bio-Rad Laboratories) and run according to the manufacturer’s specifications. 
Gels were then cross-linked for 45 s and imaged to reveal the total protein load, 
which was used as the loading control for each lane. Representative images of 
these protein gels are found in Supplementary Fig. 8. Gels were then transferred 
onto nitrocellulose membranes using the Trans-Blot Turbo Transfer System 
(Bio-Rad Laboratories), blocked for 2 h at room temperature in 5% milk in 
tris-buffered saline and Tween 20 (TBST) and incubated overnight at 4 °C with 
primary antibody. Membranes were then washed 3 times with TBST, incubated 
at room temperature for 1 h with goat anti-rabbit secondary antibody (catalog no. 
111-035-144; Jackson ImmunoResearch) diluted 1:5,000 in 2.5% milk in TBST. 
Membranes were then washed again and developed using SuperSignal West Pico 
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PLUS Chemiluminescent Substrate (catalog no. 34577; Thermo Fisher Scientific) 
and imaged on the ChemiDoc MP Imaging System (Bio-Rad Laboratories). All 
primary antibodies were diluted 1:1,000 in 2.5% milk in TBST. Antibodies used 
included HNF4A (catalog no. 3113S; Cell Signaling Technology) and HNF1A 
(catalog no. 89670S; Cell Signaling Technology). Antibodies were validated using 
lysates of overexpressing HEK 293T cells transfected with either HNF construct, 
demonstrating bands at the appropriate sizes (Supplementary Fig. 8).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Genome-wide summary statistics for this study are available at the CKDGen 
Consortium (http://ckdgen.imbi.uni-freiburg.de) and will be made publicly 
available through the database of Genotypes and Phenotypes accession no. 
phs000930.v6.p1.

References
	69.	 McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype 

imputation. Nat. Genet. 48, 1279–1283 (2016).
	70.	 Abecasis, G. R. et al. An integrated map of genetic variation from 1,092 

human genomes. Nature 491, 56–65 (2012).
	71.	 Fuchsberger, C., Taliun, D., Pramstaller, P. P. & Pattaro, C. GWAtoolbox: an 

R package for fast quality control and handling of genome-wide association 
studies meta-analysis data. Bioinformatics 28, 444–445 (2012).

	72.	 Marchini, J. & Howie, B. Genotype imputation for genome-wide association 
studies. Nat. Rev. Genet. 11, 499–511 (2010).

	73.	 Haller, T., Kals, M., Esko, T., Mägi, R. & Fischer, K. RegScan: a GWAS tool 
for quick estimation of allele effects on continuous traits and their 
combinations. Brief. Bioinform. 16, 39–44 (2015).

	74.	 Zhan, X., Hu, Y., Li, B., Abecasis, G. R. & Liu, D. J. RVTESTS: an efficient 
and comprehensive tool for rare variant association analysis using sequence 
data. Bioinformatics 32, 1423–1426 (2016).

	75.	 Chang, C. C. et al. Second-generation PLINK: rising to the challenge of 
larger and richer datasets. Gigascience 4, 7 (2015).

	76.	 Aulchenko, Y. S., Struchalin, M. V. & van Duijn, C. M. ProbABEL package 
for genome-wide association analysis of imputed data. BMC Bioinformatics 
11, 134 (2010).

	77.	 Chen, M. H. & Yang, Q. GWAF: an R package for genome-wide association 
analyses with family data. Bioinformatics 26, 580–581 (2010).

	78.	 Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for 
association studies. Nat. Genet. 44, 821–824 (2012).

	79.	 Li, Y., Willer, C. J., Ding, J., Scheet, P. & Abecasis, G. R. MaCH: using 
sequence and genotype data to estimate haplotypes and unobserved 
genotypes. Genet. Epidemiol. 34, 816–834 (2010).

	80.	 Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis 
of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

	81.	 Devlin, B., Roeder, K. & Wasserman, L. Genomic control,  
a new approach to genetic-based association studies. Theor. Popul. Biol. 60, 
155–166 (2001).

	82.	 Higgins, J. P. & Thompson, S. G. Quantifying heterogeneity in a meta-
analysis. Stat. Med. 21, 1539–1558 (2002).

	83.	 Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding 
from polygenicity in genome-wide association studies. Nat. Genet. 47, 
291–295 (2015).

	84.	 Hadfield, J. D. MCMC methods for multi-response generalized linear mixed 
models: the MCMCglmm R Package. J. Stat. Softw. 33, 1–22 (2010).

	85.	 Pattaro, C. et al. The Cooperative Health Research in South Tyrol (CHRIS) 
study: rationale, objectives, and preliminary results. J. Transl. Med. 13,  
348 (2015).

	86.	 Noce, D. et al. Sequential recruitment of study participants may inflate 
genetic heritability estimates. Hum. Genet. 136, 743–757 (2017).

	87.	 Mägi, R. et al. Trans-ethnic meta-regression of genome-wide association 
studies accounting for ancestry increases power for discovery and improves 
fine-mapping resolution. Hum. Mol. Genet. 26, 3639–3650 (2017).

	88.	 Sudlow, C. et al. UK biobank: an open access resource for identifying  
the causes of a wide range of complex diseases of middle and old age.  
PLoS Med. 12, e1001779 (2015).

	89.	 Bulik-Sullivan, B. et al. An atlas of genetic correlations across human 
diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

	90.	 Zheng, J. et al. LD Hub: a centralized database and web interface to 
perform LD score regression that maximizes the potential of summary  
level GWAS data for SNP heritability and genetic correlation analysis. 
Bioinformatics 33, 272–279 (2017).

	91.	 O’Connor, L. J. & Price, A. L. Distinguishing genetic correlation from 
causation across 52 diseases and complex traits. Nat. Genet. 50,  
1728–1734 (2018).

	92.	 Pers, T. H. et al. Biological interpretation of genome-wide association 
studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).

	93.	 Frey, B. J. & Dueck, D. Clustering by passing messages between data points. 
Science 315, 972–976 (2007).

	94.	 Bodenhofer, U., Kothmeier, A. & Hochreiter, S. APCluster: an R package for 
affinity propagation clustering. Bioinformatics 27, 2463–2464 (2011).

	95.	 Wuttke, M. et al. A catalog of genetic loci associated with  
kidney function from analyses of a million individuals. Nat. Genet. 51, 
957–972 (2019).

	96.	 Sheffield, N. C. et al. Patterns of regulatory activity across diverse human 
cell types predict tissue identity, transcription factor binding, and 
long-range interactions. Genome Res. 23, 777–788 (2013).

	97.	 Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. 
Nature 518, 317–330 (2015).

	98.	 Arnold, M., Raffler, J., Pfeufer, A., Suhre, K. & Kastenmüller, G. SNiPA: an 
interactive, genetic variant-centered annotation browser. Bioinformatics 31, 
1334–1336 (2015).

	99.	 Dong, C. et al. Comparison and integration of deleteriousness prediction 
methods for nonsynonymous SNVs in whole exome sequencing studies. 
Hum. Mol. Genet. 24, 2125–2137 (2015).

	100.	 Kircher, M. et al. A general framework for estimating the relative 
pathogenicity of human genetic variants. Nat. Genet. 46,  
310–315 (2014).

	101.	 Li, J. et al. Performance evaluation of pathogenicity-computation methods 
for missense variants. Nucleic Acids Res. 46, 7793–7804 (2018).

	102.	 Gillies, C. E. et al. An eQTL landscape of kidney tissue in human nephrotic 
syndrome. Am. J. Hum. Genet. 103, 232–244 (2018).

	103.	 Lonsdale, J. et al. The Genotype-Tissue Expression (GTEx) project.  
Nat. Genet. 45, 580–585 (2013).

	104.	 Ko, Y. A. et al. Genetic-variation-driven gene-expression changes highlight 
genes with important functions for kidney disease. Am. J. Hum. Genet. 100, 
940–953 (2017).

	105.	 Khan, A. et al. JASPAR 2018: update of the open-access database of 
transcription factor binding profiles and its web framework. Nucleic Acids 
Res. 46, D1284 (2018).

	106.	 Sandelin, A., Alkema, W., Engström, P., Wasserman, W. W. & Lenhard, B. 
JASPAR: an open-access database for eukaryotic transcription factor 
binding profiles. Nucleic Acids Res. 32, D91–D94 (2004).

	107.	 Xie, Y. et al. Functional cyclic AMP response element in the  
breast cancer resistance protein (BCRP/ABCG2) promoter modulates 
epidermal growth factor receptor pathway- or androgen withdrawal-
mediated BCRP/ABCG2 transcription in human cancer cells. Biochim. 
Biophys. Acta 1849, 317–327 (2015).

	108.	 Lee, C. & Huang, C. H. LASAGNA-Search 2.0: integrated transcription 
factor binding site search and visualization in a browser. Bioinformatics 30, 
1923–1925 (2014).

	109.	 Vesuna, F., Winnard, P. Jr. & Raman, V. Enhanced green fluorescent protein 
as an alternative control reporter to Renilla luciferase. Anal. Biochem. 342, 
345–347 (2005).

Nature Genetics | www.nature.com/naturegenetics

http://ckdgen.imbi.uni-freiburg.de
http://ncbi.nlm.nih.gov/gap/?term=phs000930.v6.p1
http://www.nature.com/naturegenetics


1

nature research  |  reporting sum
m

ary
April 2018

Corresponding author(s):
Adrienne Tin 
Anna Köttgen

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection To maximize phenotype standardization across studies, an analysis plan and a command line script (https://github.com/genepi-freiburg/
ckdgen-pheno) were created centrally and provided to all participating studies. Data processing, analysis and troubleshooting 
instructions were distributed to all studies via a Wiki system (https://ckdgen.eurac.edu/mediawiki/index.php/ 
CKDGen_Round_4_EPACTS_analysis_plan). Automatically generated summary files were checked centrally. Upon phenotype approval, 
studies run their GWAS and uploaded results and imputation quality (IQ) information to a common calculation server. GWAS QC was 
performed using GWAtoolbox and custom (R, Bash) scripts to assess ancestry-matched allele frequencies and variant positions. 

Data analysis • Software tools for imputation: Michigan imputation server, Minimac 3 or 4, IMPUTE2 v2.3.2 or v4, Mach v1. 0.16, Sanger server 
(reported in Supplementary Table 2)  
• Software tools for association analysis: probABEL, MMAP, SNPTEST v2, EPACTS v3.2.6, v2.5.2, mach2dat/mach2qtl, custom R code, 
RegScan v.02, PLINK 1.90, rvtest, GWAF, PLATO v0.0.1, BOLT-LMM v.2.3 (reported in Supplementary Table 2).  
• QC tool: GWAtoolbox - https://github.com/cran/GWAtoolbox 
• Meta-analysis: METAL - http://csg.sph.umich.edu/abecasis/metal/download/ 
• Meta-regression: MrMega - https://www.geenivaramu.ee/en/tools/mr-mega 
• Genetic heritability: MCMCglmm - https://cran.r-project.org/web/packages/MCMCglmm/index.html 
• LD Score regression: ldsc - http://ldsc.broadinstitute.org  
• Functional enrichment: DEPICT - https://data.broadinstitute.org/mpg/depict/documentation.html 
• Pathway visualization: Cytoscape - http://cytoscape.org 
• Enrichment by heritability: LDHub - http://ldsc.broadinstitute.org/ldhub/ 
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• Conditional analyses: GCTA - http://cnsgenomics.com/software/gcta/ 
• Colocalization: coloc.fast -  https://github.com/tobyjohnson/gtx 
• Genetic causal proportion: https://github.com/lukejoconnor/LCV 
• Functional annotation of variants in credible sets: SNiPA v3.2 (http://snipa.helmholtz-muenchen.de/snipa3/), CADD v1.3 (http://
cadd.gs.washington.edu/download) 
• Promoter Binding Site Predictions: JASPAR 2018 database - jaspar.genereg.net/ 
• Promoter Binding Site Predictions: LASAGNA 2.0 - https://biogrid-lasagna.engr.uconn.edu/lasagna_search/  
• Luciferase analysis of variance: Prism 7 (GraphPad Software Inc, USA) 
• Miscellanea of software: R, Perl, Bash

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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- Accession codes, unique identifiers, or web links for publicly available datasets 
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- A description of any restrictions on data availability

The following data availability statement is included: 
The meta-analysis summary statistics are made publicly available at https://ckdgen.imbi.uni-freiburg.de/ and will be submitted to dbGaP accession number 
phs000930.v6.p1
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Sample size The study sample size was of 457,690 individuals for trans-ethnic serum urate meta-analysis, 334,880 for gout prediction, and 763,813 for 
gout trans-ethnic meta-analysis. We sought to include as many individuals as possible to increase the potential for discovering new loci. With 
a larger sample size than the previous meta-analyses of GWAS of serum urate, we identified new loci and confirmed previous loci.

Data exclusions Pre-established exclusion criteria were set as: (1) for quantitative trait analysis, studies with <100 samples were excluded from analysis; (2) for 
binary trait analysis, studies with <100 cases or controls were excluded from analysis; (3) studies with no genome-wide SNP array data 
imputed based on the Haplotype Reference Consortium version 1.1 or the 1000 Genomes Project phase 3 version 5 ALL or phase 1 version 3 
ALL panels were excluded from analysis (e.g.: metabochip-based studies). The rationale for exclusion criteria were sufficient sample sizes for 
reliable estimation of test statistics, and to obtain similar coverage of genome-wide common genetic variants across studies. 

Replication The results are based on a meta-analysis and hence already on combined evidence from 74 studies with low evidence of heterogeneity.

Randomization Not relevant to this study because this is an observational study

Blinding Not relevant to this study because this is an observational study
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Materials & experimental systems
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Palaeontology
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Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used HNF4a (C11F12; lot 2) and HNF1a (D7Z2Q; lot 1); both from Cell Signaling. GAPDH (3E8AD9; A21994) from Invitrogen.

Validation Mock transfected lysates and transfected (either HNF1a or HNF4a) lysates were compared.  Both antibodies only detected a 
signal of any size in the transfected lysates (presented in Supplementary Figure 9).

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) HEK293T, GenHunter Corp, USA

Authentication N/A

Mycoplasma contamination N/A

Commonly misidentified lines
(See ICLAC register)

N/A

Human research participants
Policy information about studies involving human research participants

Population characteristics All but two cohorts were adult studies with mean age ranged from 37.6 years to 76.4 years. The mean age of the children 
cohorts were 12.9 and 15.4 years. One cohort was exclusively female, and 4 cohorts were exclusively male. The proportion of 
males in the other cohorts ranged from 33% to 93% with a median of 45%. Across studies, there were 288,649 participants of 
European-ancestry, 125,725 of East Asian ancestry, 33,671 African Americans, 9,037 of South Asian ancestry; and 608 Hispanics 
More details are prpvided in Supplementary Table 1. 

Recruitment The types of studies were: population-based cohort studies (n=43), studies of isolated populations (n=8), case-control studies 
(n=5), patient populations (n=5), convenience samples (n=2), family-based studies (n=2), veteran population (n=1). Given that 
most cohorts were population-based and we observed little heterogeneity among the identified loci of serum urate, we expect 
that the sample selection did not introduce major biases in our main findings. All studies were approved by their respective 
institutional review boards. Participants provided informed consent. More details are provided in Supplementary Table 2.
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