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A B S T R A C T

Objective: This study tests associations of DNA methylation-based (DNAm) measures of epigenetic age accel-
eration (EAA) with cross-sectional and longitudinal depressive symptoms in an urban sample of middle-aged
adults.
Methods: White and African–American adult participants in the Healthy Aging in Neighborhoods of Diversity
across the Life Span study for whom DNA samples were analyzed (baseline age: 30–65 years) we included. We
estimated three DNAm based EAA measures: (1) universal epigenetic age acceleration (AgeAccel); (2) intrinsic
epigenetic age acceleration (IEAA); and (3) extrinsic epigenetic age acceleration (EEAA). Depressive symptoms
were assessed using the 20-item Center for Epidemiological Studies-Depression scale total and sub-domain scores
at baseline (2004–2009) and follow-up visits (2009–2013). Linear mixed-effects regression models were con-
ducted, adjusting potentially confounding covariates, selection bias and multiple testing (N=329 participants,
∼52% men, k=1.9 observations/participant, mean follow-up time∼4.7 years).
Results: None of the epigenetic age acceleration measures were associated with total depressive symptom scores
at baseline or over time. IEAA – a measure of cellular epigenetic age acceleration irrespective of white blood cell
composition – was cross-sectionally associated with decrement in “positive affect” in the total population
(γ011± SE = −0.090 ± 0.030, P=0.003, Cohen's D: −0.16) and among Whites (γ011 ± SE=
−0.135 ± 0.048, P=0.005, Cohen's D:−0.23), after correction for multiple testing. Baseline “positive affect”
was similarly associated with AgeAccel.
Limitations: Limitations included small sample size, weak-moderate effects and measurement error.
Conclusions: IEAA and AgeAccel, two measures of EAA using Horvath algorithm, were linked to a reduced
“positive affect”, overall and among Whites. Future studies are needed to replicate our findings and test bi-
directional relationships.

1. Introduction

The global burden of major depressive disorder (MDD) is currently
estimated at 350 million people (Smith, 2014). This chronic condition is

ranked second worldwide in years lost due to disability (Smith, 2014;
Uchida et al., 2018). Despite its public health importance, researchers
have yet to uncover the causes of MDD and its associated elevation in
depressive symptoms. With a heritability not exceeding 37%
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(Uchida et al., 2018), MDD may indeed be a product of gene and en-
vironment interactions, with stressful life events as a key environmental
factor based on previous epidemiological evidence (Uchida et al.,
2018). Changes in neuronal plasticity triggers adaptation to chronic
stress and other environmental modifications (West and
Greenberg, 2011). In fact, neuronal synaptic structure is constantly
modified in response to the need for neuronal plasticity (Uchida et al.,
2018). The former is dependent on de novo gene expression, which is
regulated through various epigenetic mechanisms, including DNA me-
thylation (DNAm), covalent histone modifications and non-coding
RNAs (Uchida et al., 2018). Those epigenetic mechanisms have the
unique characteristics of altering gene expression through chromatin
structural changes without modifying DNA sequence per se
(Nestler, 2014).

DNAm has been associated with psychopathology, including post-
traumatic stress (Conrad et al., 2018; Mehta et al., 2017; Parade et al.,
2017) and major depressive disorder (Bustamante et al., 2018; Han
et al., 2018; Li et al., 2018; Saavedra et al., 2016), as well as cognitive
aging (Chouliaras et al., 2018; Levine et al., 2015; Marioni et al., 2018,
2015b; McCartney et al., 2018; Starnawska et al., 2017). With the help
of the Horvath and Hannum “epigenetic clocks” well-established epi-
genetic age algorithms, DNAm can be utilized to estimate biological
aging at the cellular level (Wolf et al., 2019). Despite differences in
those algorithms and loci, both approaches produce clocks that are
strongly associated with chronological age (Wolf et al., 2019). Gen-
erally speaking, an epigenetic age acceleration, or a faster “epigenetic
clock” has been linked to age-related health decline, including a higher
mortality risk (Chen et al., 2016; Marioni et al., 2015a; Perna et al.,
2016) and faster rates of cognitive decline (Chouliaras et al., 2018;
Levine et al., 2015; Marioni et al., 2018, 2015b; McCartney et al., 2018;
Starnawska et al., 2017). However, only a few epidemiological studies
have directly linked epigenetic clocks or DNAm in general to MDD
(Bustamante et al., 2018; Han et al., 2018; Li et al., 2018; Saavedra
et al., 2016) and only one has indirectly examined its association with
elevated depressive symptoms, by testing pathways between socio-
economic disadvantage and epigenetic cellular aging (Austin et al.,
2018). In fact, according to the Research Domain Criteria (RDoC) ap-
proach, “which encourages studies to focus on the neurobiological
mechanisms and core aspects of behavior rather than to rely on tradi-
tional diagnostic categories” (such as MDD), examining epigenetic
aging in relation to domains of depressive symptoms is of great im-
portance (Katahira and Yamashita, 2017). Moreover, previous studies
have reported higher rates of epigenetic aging among men compared to
women and that DNAm levels also differ by race/ethnicity in several
tissues including blood, saliva and brain (Horvath et al., 2016). More-
over, differences in depressive symptoms by sex and race have also been
detected (Beydoun et al., 2016). Thus, it is important to uncover the
relationship between epigenetic age acceleration and depressive
symptoms while stratifying by sex and race.

In the present study, we test relationships of 3 DNAm-based “epi-
genetic clocks” with cross-sectional and longitudinal elevation in de-
pressive symptoms in a socio-economically diverse sample of White and
African–American middle-aged adults. We hypothesize that a baseline
epigenetic age acceleration predicts higher baseline depressive symp-
toms or faster increase in those symptoms over time. Finally, we also
test whether those key relationships of interest differ across those two
socio-demographic factors.

2. Methods

2.1. Study design

HANDLS was initiated in 2004 as a prospective cohort study focused
on disparities pertaining to cardiovascular disease and cognitive aging.
Using an area probability sampling strategy, an ethnically and socio-
economically diverse sample of urban adults was recruited in HANDLS.

Middle-aged African American and White adults (baseline age: 30–64
years) residing in urban areas were sampled with widely ranging
household incomes (above and below poverty). Thirteen Baltimore city
neighborhoods were selected to define primary sampling units
(Evans et al., 2010). The current study analyzed data from visit 1
(2004–2009) in addition to the initial follow-up examination (visit 2:
2009–2013), with follow-up time between waves ranging between 1
year and∼8 years, mean± SD of 4.64± 0.93 years. HANDLS collected
data using several cognitive tests at the two waves of data; a sub-sample
of visit 1 included DNAm data from which three epigenetic clocks re-
flecting accelerated aging were estimated. Written informed consent
was obtained from all study participants who were provided with a
booklet and a video explaining key study procedures. The study pro-
tocol was approved by the National Institute on Environmental Health
Sciences Institutional Review Board of the National Institutes of Health.

2.2. Participants

The HANDLS consisted of N1=3720 participants (30–65 years, AA
and Whites, Phase I, visit 1). During Phase II of visit 1 (Medical
Research Vehicle (MRV) baseline visit), in-depth examinations were
performed including a fasting blood draw, a physical examination, a
DEXA scan, an EKG, a 24-h dietary recall and an assessment of de-
pressive symptoms severity. A second 24-h dietary recall telephone
interview was completed for most participants with one 24-h recall,
3–10 days following the MRV visit. The average of those two dietary
recalls was computed to evaluate dietary intakes. Subsequently, epi-
genetic analyses were performed using frozen peripheral blood mono-
nuclear cells (PBMC) on a sub-sample of Whites and AA participants.
The participant flowchart is detailed in Figure S1. In this study, we in-
cluded participants who had complete “epigenetic clock” data (visit 1:
N2b=470) who additionally had data on depressive symptoms scores at
either visit (visit 1: N3=465). The final analytic sample (N4=329)
excluded participants with missing data on several covariates, including
dietary, self-reported chronic conditions, use of non-steroidal anti-in-
flammatory drugs (NSAIDs), measured body mass index (BMI) among
others. Using a probit model with a binary outcome (1=selected,
0=unselected) and with predictors being the key socio-demographic
variables, it was determined that the selected group differed from the
remaining HANDLS participants by being older, less likely to be male
and less likely to be African-American or to fall in the above poverty
income category. Adjustment for sample selectivity was done using a 2-
stage Heckman selection model, as described later.

2.3. Depressive symptoms

At each visit, depressive symptoms were measured using the ori-
ginal version of the 20-item Center of Epidemiological Studies-
Depression (CES-D), a self-reported symptom rating scale assessing af-
fective and depressed mood (Radloff, 1977) with suitable psychometric
properties in various studies of older adults (Beekman et al., 1997). A
total CES-D (CES-Dtotal) score ≥16 reflects elevated depressive symp-
toms (EDS) (Beydoun et al., 2016). CES-Dtotal consists of meaningful
domains that exhibit invariant factor structure between the National
Health and Nutrition Examination Survey I and pilot HANDLS data
(Nguyen et al., 2004). Our hypotheses were tested using the total score
and domain-specific CES-D scores: (1) Somatic complaints (e.g., poor
sleep, poor appetite); (2) Depressive affect (e.g., feeling sad); (3) Po-
sitive affect (e.g., having positive thoughts) and (4) Interpersonal pro-
blems (e.g., having trouble in social settings) (Nguyen et al., 2004). The
raw sub-scores were used by summing up the scores on symptoms that
were shown to fall under each domain. Details regarding which items
(scored between 0 and 3) are used to construct each domain are pre-
viously described (Nguyen et al., 2004).
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2.4. DNA methylation and epigenetic clocks

A random sample of 508 participants was identified to examine
DNA methylation (DNAm), based on a factorial design defined across
sex, race and poverty status and available DNA samples. Further,

250 ng of DNA was extracted from blood and treated with sodium bi-
sulfite Zymo EZ-96 DNA Methylation kit as suggested in manufacturer's
protocol (Zymo Research, Orange, CA, USA). The Zymo DNA methy-
lation kit allows DNA bisulfite conversion directly from blood without
the prerequisite for DNA purification. It completes both DNA

Table 1
Characteristics of HANDLS study participants by sex, race and EDS status [based on CES-D score (mean across waves)]a.

By sex Pb Race Pb EDS status Pb
Men Women Men vs.

women
Whites African–Americans Whites vs.

African–Americans
EDS− EDS+ EDS− vs.

EDS+

% or Mean±SEM
(n=171) (n=158) (n=160) (n=169) (n=179) (n=150)

Depressive Symptoms
CES-D, Mean± SEM 14.3 ± 0.73 16.9 ± 0.88 0.020 16.2 ± 0.8 14.9 ± 0.8 0.23 7.82±0.31 24.7 ± 0.62 <0.001
Epigenetic clock (n=171) (n=158) (n=160) (n=169) (n=179) (n=150)
Epigenetic clock 1: AgeAccel +0.45± 0.36 −0.36± 0.37 0.12 −0.13± 0.35 +0.24± 0.37 0.47 +0.12± 0.35 −0.00± 0.38 0.81
Epigenetic clock 2: IEAA +0.14± 0.34 −0.09± 0.36 0.65 −0.16± 0.35 0.21±0.36 0.47 −0.00± 0.34 +0.07± 0.37 0.88
Epigenetic clock 3: EEAA +1.35± 0.47 −1.15± 0.46 0.0002 2.26± 0.38 −1.85± 0.51 <0.001 +0.27± 0.46 −0.00± 0.50 0.68
Sociodemographic

characteristics
(n=171) (n=158) (n=169) (n=160) 0.84 (n=179) (n=150) 0.83

Age (y), Mean±SEM 48.9 ± 0.7 48.9 ± 0.7 0.99 49.0 ± 0.7 48.8 ± 0.7 48.8 ± 0.7 49.1 ± 0.7
Sex, % men __ __ 51.3 52.7 0.79 34.8 26.9 0.12
African–American,% 52.1 50.6 0.80 __ __ 53.6 48.7 0.37
Education,% 0.031 0.14
<HS 9.9 7.6 0.37 5.3 12.5 8.4 9.3
HS 63.7 59.4 61.0 62.5 57.4 66.7
>HS 26.3 32.9 33.7 25.0 34.1 24.0
PIR≥125%, % 48.0 50.0 0.71 49.4 48.5 0.88 58.1 38.0 <0.001
Employed, % 0.31 <0.001 <0.001
Yes 49.1 44.3 48.3 47.3 55.9 36.0
Missing 14.0 20.3 25.6 8.9 17.3 16.7
Lifestyle and health-related factors
Current smoking status, % 0.16 0.29
Currently smoking 50.9 43.0 45.0 49.1 43.6 51.3 0.083
Missing 0.6 2.5 0.6 2.4 0.6 2.7
Current use of illicit drugs,

%
<0.001 0.23

Used any type 61.4 37.3 45.0 54.4 48.6 51.3 0.65
Missing 1.2 1.3 1.3 1.2 1.7 0.7

(n=171) (n=158) (n=169) (n=160) (n=179) (n=150)
Body mass index, kg/m2;

Mean± SEM
28.7 ± 0.50 31.1 ± 0.65 0.0048 29.9 ± 0.6 29.8 ± 0.6 0.89 29.3 ± 0.5 30.5 ± 0.6 0.13

Co-morbid conditions and
NSAIDs

(n=171) (n=158) (n=169) (n=160) (n=179) (n=150)

Diabetes, % 12.3 12.0 0.94 14.3 10.1 0.23 8.9 16.0 0.051
Hypertension,% 35.0 37.3 0.67 33.1 39.1 0.26 29.6 44.0 0.007
Dyslipidemia,% 20.5 23.4 0.52 25.0 18.9 0.18 19.0 25.3 0.17
Cardiovascular diseased, % 12.9 12.7 0.96 10.0 15.4 0.14 11.2 14.7 0.34
Inflammatory conditionse, % 8.2 18.4 0.006 11.3 14.8 0.34 8.4 18.7 0.006
NSAIDSf, % 24.0 15.8 0.065 23.8 16.6 0.10 19.0 21.3 0.60
Dietary factors, daily

intakes
(n=171) (n=158) (n=160) (n=169) (n=179) (n=150)

Energy, kcal 2402±83 1706±54 <0.001 2034±65 2099±85 0.55 2142±74 1980±80 0.13
Total carotenoids,

mg/1000 kcal
2998±293 4006±381 0.035 3145±269 3801±390 0.17 3557±315 3393±368 0.74

Vitamin A, RE/1000 kcal 309± 51 355±71 0.59 286±17 375±82 0.30 319±48 347±75 0.16
Vitamin C, mg/1000 kcal 30.1 ± 2.9 40.4 ± 4.2 0.044 28.9 ± 2.4 40.9 ± 4.3 0.018 38.3 ± 2.9 31.2 ± 4.4 0.16
Vitamin E, mg/1000 kcal 2.8 ± 0.1 3.4 ± 0.2 0.007 3.00± 0.13 3.19±0.20 0.44 3.31±0.19 2.86±0.12 0.06
Vitamin B-6, mg/1000 kcal 0.91± 0.04 0.89±0.05 0.75 0.89± 0.04 0.91±0.04 0.81 0.92±0.04 0.87±0.04 0.44
Vitamin B-12, μg/1000 kcal 3.27± 0.54 3.28±0.71 0.99 2.70± 0.15 3.82±0.85 0.20 3.00±0.51 3.60±0.76 0.50
Folate, μg/1000 kcal 175.9 ± 7.7 200.3 ± 10.2 0.055 197.4 ± 9.2 178.4 ± 8.8 0.14 189.3 ± 8.4 185.7 ± 9.7 0.77
n3 PUFA:n6 PUFA ratioc 0.108± 0.002 0.127±0.009 0.033 0.121±0.007 0.114±0.005 0.44 0.113±0.006 0.121±0.006 0.37
Healthy Eating Index-2010 39.7 ± 0.82 41.8 ± 1.00 0.094 40.1 ± 1.00 41.2 ± 0.84 0.39 42.6 ± 0.9 38.4 ± 0.8 0.0012

Abbreviations: AA=arachidonic acid; ALA=α-linolenic acid; CES-D=Center for Epidemiologic Studies-Depression scale; DHA=docosahexaenoic acid;
DPA=docosapentaenoic acid; EDS=elevated depressive symptoms; EPA=eicosapentaenoic acid; HANDLS=Healthy Aging in Neighborhoods of Diversity Across the
Lifespan; HDL-C]High-Density Lipoprotein-Cholesterol; HS=High School; LA=linoleic acid; n3=omega-3; n6=omega-6; PIR=Poverty Income Ratio;
PUFA=polyunsaturated fatty acids; SEM=standard error of the mean; TC=total cholesterol.
a Values are percent or Mean± SEM or %±SE.
b P-value was based on independent samples t-test when row variable is continuous and χ2 test when row variable is categorical.
c n3 PUFA included DHA+EPA+n3DPA +ALA. n6 PUFA included AA+LA.
d Cardiovascular disease include self-reported stroke, congestive heart failure, non-fatal myocardial infarction or atrial fibrillation.
e Inflammatory conditions include multiple sclerosis, systemic lupus, gout, rheumatoid arthritis, psoriasis, thyroid disorder and Crohn's disease.
f Non-steroidal anti-inflammatory drugs (NSAIDS) include over the counter and prescription drugs in that category.
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denaturation and bisulfite conversion processes in a single step.
Genome-wide DNAm was measured utilizing the Illumina Infinium
MethylationEPIC BeadChip (Illumina Inc., San Diego, CA, USA). Of
initial 508 participants, a total of 487 had DNAm measures, and quality
control was carried out on 12 technical replicates and performed at
sample and probe levels. Furthermore, 17 samples were excluded be-
cause they were outliers, had poor quality methylation values (i.e., a
mean detection p value ≥ 0.01) or an evidence of sex mismatch be-
tween self-report and methylation prediction. In terms of probe, we
excluded those of low quality (mean detection p value ≥ 0.01), with
overlapping single nucleotide polymorphisms (minor allele frequency
cut-off=0.05), cross-hybridizing probes, and probes mapping to sex
chromosomes. To identify an optimal method for DNAm data normal-
ization, we compared performance levels of different commonly uti-
lized data normalization and pre-processing algorithms in terms of their
reduction in technical variations, by using DNAmmeasured in technical
replicates. Selected algorithms were the following: Illumina Genome
Studio, normal-exponential out-of-band (NOOB) (Triche et al., 2013),
stratified quantile normalization (quantile) (Touleimat and Tost, 2012),
and subset-quantile within array normalization (SWAN)
(Maksimovic et al., 2012). Because it yielded the lowest probe variance
and highest correlation between technical replicates, NOOB method
was chosen for DNAm data normalization and background correction in
this study. Using DNAm data, proportions of multiple white blood cell
types (granulocytes, natural killer cells, monocytes, B cells, CD8+ naïve
T cells, CD4+ T cells, exhausted CD8+ T cells (CD8+CD28–CD45RA–),
plasmablasts, and the number (count) of naïve CD8+ T cells
(CD8+CD45RA+CCR7+)) were estimated (Houseman et al., 2012).

2.5. DNA methylation age (DNAm age) prediction and epigenetic age
acceleration (EAA) measures

DNAm age was calculated using the Horvath (Horvath, 2013) and
Hannum (Hannum et al., 2013) methods, both of which rely on me-
thylation beta values of 353 and 71 CpG sites, respectively, while ap-
plying the epigenetic clock algorithm. We selected participants with
variable genetic ancestries. Algorithms were trained and validated
while using DNA derived from different tissues that include blood DNA.
The DNAm age and epigenetic age acceleration estimation process is
available from Horvath's laboratory (https://dnamage.genetics.ucla.
edu/home). In brief, the Horvath method predicts age while being ag-
nostic to tissue type or DNA cell source. In contrast, Hannum method
was developed based on blood DNAm. Universal epigenetic age accel-
eration (AgeAccel or “Epigenetic clock1”) are the residuals obtained
from regressing DNAm age-predicted by the Horvath algorithm on
chronological age, with positive residual value suggesting faster aging
and negative value reflecting a slower aging. Moreover, two additional
epigenetic age acceleration (EAA) measures were used, reflecting in-
trinsic and extrinsic epigenetic age acceleration – IEAA (“Epigenetic
clock 2) and EEAA (“Epigenetic clock 3”), respectively. Believed to be a
measure of cellular epigenetic age acceleration irrespective of white
blood cell composition, IEAA is the residual from regressing DNAm age
(predicted by the Horvath algorithm) on chronological age and white
blood cell proportions (naive CD8+ T cells, exhausted CD8+ T cells,
plasmablasts, CD4+ T cells, natural killer cells, monocytes, and gran-
ulocytes). On the other hand, using the Hannum algorithm, EEAA based
on the DNAm age and is believed to be a measure of epigenetic age
acceleration combined with changes in white blood cell proportions,
and may indicate immune system cell aging (immunosenescence)
(Chen et al., 2016).

2.6. Covariates

2.6.1. Sociodemographic, lifestyle, and health-related potential confounders
All regression models were adjusted for sociodemographic factors,

age, sex, race (White vs. African American), educational attainment

categories (0 ≤ High School (HS); 1=HS and 2 ≥ HS) and poverty
status (below vs. above 125% the federal poverty line). Poverty status
was categorized as such by using the US Census Bureau poverty
thresholds for 2004 (Bureau, 2004) relying on income, and total family
size including children under age 18 years. Furthermore, all analyses
were adjusted for measured body mass index (kg/m2), current drug use
(“opiates, marijuana or cocaine”=1 vs. not=0) and current smoking
status (0: “never or former smoker” vs. 1 “current smoker”) without
evaluating exposure-covariate associations. These models were further
adjusted for visit 1 self-reported history of type 2 diabetes, hyperten-
sion, dyslipidemia, cardiovascular disease (stroke, congestive heart
failure, non-fatal myocardial infarction or atrial fibrillation), auto-
immune disease (multiple sclerosis, systemic lupus, gout, rheumatoid
arthritis, psoriasis, thyroid disorder and Crohn's disease) and use of
NSAIDs (prescription and over-the-counter) over the past two weeks, as
was done previously (Bettcher et al., 2012; Gimeno et al., 2009).

2.6.2. Dietary potential confounders
For all exposures, dietary covariates were considered as potential

confounders if they were linked to depression based on previous stu-
dies; these included vitamins B-6, folate and B-12, total carotenoids (α-
carotene, β-carotene, β-cryptoxanthin, lutein+zeaxanthin, lycopene),
vitamin C and α-tocopherol (all divided by total energy intake and
expressed per 1000 kcal) and ratio of n-3 PUFA:n-6 PUFA, as was done
in previous studies (Beydoun et al., 2015a). To emulate multivariable
nutrient density model, energy intake was entered as a covariate
(Willet, 1998). The Healthy Eating Index (HEI-2010) total score, A
measure of overall dietary quality, (http://appliedresearch.cancer.gov/
tools/hei/tools.html and http://handls.nih.gov/06Coll-dataDoc.htm)
was also considered. Noteworthy is the inclusion of alcohol intake in
component 12 of HEI-2010, a dietary factor known to influence DNA
methylation and epigenetic aging (Rosen et al., 2018).

2.7. Statistical analysis

Stata 15.0 (StataCorp, College Station, TX) was used to conduct all
analyses (STATA, 2017). First, baseline characteristics, including cov-
ariates and exposures, were compared by sex, race and EDS status
(based on mean score across waves), using t-tests and ANOVA for
continuous variables and χ2 tests for categorical variables. Second,
several mixed-effects regression models on continuous CES-D total or
on domain-specific score(s) were conducted to test associations with 3
“epigenetic clock” measures, while controlling for potential con-
founders. Sex- and race-specific associations were examined by adding
interaction terms to multivariable mixed-effects regressions and strati-
fying by sex and race, separately. The methodology used is outlined in
Supplemental Method 1 (Blackwell et al., 2006).

Non-random selection of participants from the initial HANDLS
sample (n=3720) may cause bias due to systematic differences in
baseline characteristics including age, sex, race and socio-economic
status between final analytic excluded samples. A 2-stage Heckman
selection process accounted for this potential bias in our final regression
models. At a first stage, a probit model with binary outcome variable
coded as selected=1 vs. unselected=0 was constructed from which an
inverse mills ratio (derived from the predicted probability of being
selected, conditional on the covariates baseline age, sex, race, poverty
status and education) was estimated. At a second stage, this inverse
mills ratio was entered into each mixed-effects regression model as a
covariate, as previously done (Beydoun et al., 2013). An inverse mills
ratio was computed for the sample with “epigenetic clock” measures.

A type I error of 0.05 was used, with 0.05 < p-values < 0.10 judged
as borderline significant for main effects and 2-way interaction terms
(Selvin, 2004) before family-wise Bonferroni correction for multiple
testing (Hochberg and Tamhane, 1987), assuming each of total CES-D
and sub-domains of CES-D are distinctive outcomes, while the 3 ex-
posures that are conceptually related. This approach was adopted in
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several previous studies (Beydoun et al., 2015a, 2015b). Accounting for
3 exposures, type I error was reduced to 0.05/3=0.0165 for main
effects and for interaction terms for the mixed-effects regression
models. 3-way interaction terms were deemed statistically significant at
an α-error level of 0.05. Raw p-values were presented and annotated for
significance upon correction for multiple testing. Those significant
findings were illustrated using predictive margins from mixed-effects
regression models. Moreover, Cohen's D was estimated by transforming
the related outcome (e.g., CES-D total score or domains of CES-D) and
the key exposures (e.g., Epigenetic clocks 1–3) into standardized z-
scores. Effect sizes were then obtained and determined to be weak if
below 0.20 and medium/moderate if between 0.2 and 0.8 and strong if
above 0.80. Finally, a sensitivity analysis was conducted for models that
passed correction for multiple testing for at least parameter in the full
model, whereby a series of reduced models were carried out and
compared to the full model. Specifically, a crude model with only the
inverse mills ratio (Model 0), followed by a model adding age, sex and
race (Model 1), a third model adding all socio-demographic and socio-
economic factors (Model 2). We then ran models that adjusted for
lifestyle factors (i.e., smoking, drug use, dietary factors). In addition to
the socio-demographic and socio-economic factors in Model 1 (Model
3) and a final model included health-related factors (BMI, co-morbid
conditions, NSAIDs) to Model 1 (Model 4).

3. Results

Based on descriptive findings outlined in Table 1, EEAA (“epigenetic
clock 3”) was higher among men compared to women (+1.35 vs.
−1.15, P=0.0002) and higher among Whites compared to African-
Americans (+2.26 vs. −1.85, P < 0.001), reflecting faster age accel-
eration that includes immunosenescence. On the other hand, women
had higher CES-D scores based on mean scores across waves (16.9 vs.
14.3, P=0.020). Other notable differences include lower educational
attainment among African–Americans, a lower proportion above pov-
erty or employed among depressed individuals. Moreover, depressed
individuals were likely to report hypertension and autoimmune con-
ditions. The latter was also more frequently reported among women
compared to men. While energy intake was higher on average among
men, adjusting for it, micronutrient intakes differed by sex (total car-
otenoids, vitamin C, vitamin E, n3 PUFA: n6 PUFA), race (vitamin C)
and depression status (HEI-2010).

Table 2 displays findings from the linear mixed-effects regression
models for depressive symptoms as predicted by the three epigenetic
clock exposures, adjusting for key confounders both at the levels of the
intercept and the slope. After adjustment for multiple testing, none of
the epigenetic clock of accelerated aging were associated with baseline
or rate of change in the total CES-D score. However, “epigenetic clock2”
or IEAA which is measured using the Horvath algorithm while adjusting
for while blood cell count, was inversely associated with baseline CES-D
domain 3, which reflects “positive affect” (higher score→ lower de-
pressive symptoms), both in the total population
(γ011± SE=−0.090±0.030, P=0.003; Cohen's D: −0.16) and
among Whites (γ011± SE=−0.135±0.048, P=0.005, Cohen's D:
−0.23). This association in the total population is illustrated in Fig. 1
showing no divergence in the trajectories but rather a significant dif-
ference in baseline positive affect at increasing levels of epigenetic
clock 2. Moreover, baseline “epigenetic clock 1” (Horvath algorithm,
AgeAccel) had a similar inverse relationship with the positive affect
domain of the CES-D at baseline, both in the total population
(γ011± SE=−0.071±0.030, P=0.016; Cohen's D: −0.13) and
among Whites (γ011± SE=−0.012± 0.047, P=0.011; Cohen's
D:−0.21). Other associations deemed non-significant after correction
for multiple testing showed some inconsistencies across sex and race,
and between cross-sectional and longitudinal effects. Thus, even though
associations were generally weak, they were stronger among Whites
compared to the overall population. In fact, in the sensitivity analysis,Ta
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the crude model as well as models 1–3 (adding socio-demographic
factors, lifestyle and health-related factors) retained statistical sig-
nificance to a greater extent among Whites as opposed to the total
population. For instance, IEAA (“epigenetic clock 2”) was associated
with lower positive affect among Whites in all models, particularly
those adjusting for all socio-demographic and socio-economic factors in
addition to health-related and/or dietary factors (data not shown).

4. Discussion

This study comprehensively tested the relationship between DNAm
epigenetic age acceleration and depressive symptoms in a prospective
bi-racial cohort of urban adults. Our findings indicated that in the total
population and among Whites, there was a cross-sectional relationship
between two measures of epigenetic age acceleration utilizing the
Horvath algorithm and the domain of positive affect, indicating that
accelerated aging may influence this specific domain of depressive
symptoms in an adverse manner. No longitudinal associations were
detected in our present analyses, indicating that this relationship was
for the most part a contemporaneous one, whereby epigenetic age ac-
celeration can trigger depressive symptoms or vice versa. Nevertheless,
reverse causality whereby CES-D total and domain-specific scores can
alter the trajectory of any of the three DNAm epigenetic clock measure
cannot be ruled out.

Previously, methods such as candidate gene approaches and me-
thylome-wide association studies (MWAS) were used to study MDD-
associated and stress-induced alterations in DNA methylation
(Pishva et al., 2017). Herein, we tested the associations of three DNAm
measures of EAA in a socio-economically diverse sample of White and
African–American middle-aged adults which may provide a clue for
MDD biomarker identification. Previous reports have shown the epi-
genetic aging in individuals with Werner's syndrome (Maierhofer et al.,
2017), HIV infection (Chen et al., 2019), Post-traumatic Stress Disorder
(Verhoeven et al., 2018), cognitive impairment (White et al., 2017) and
frailty (Breitling et al., 2016).

Only a few studies have previously examined the relationship be-
tween epigenetic aging and MDD. One key study detected no significant
age or Post-Mortem Interval differences between MDD cases and con-
trols, though this difference was found between suicide cases and
controls (Bustamante et al., 2018). In this study, they have used the
publicly available dataset which is a cross-sectional study containing
the DNAm patterns associated with glial and neuronal cell types in 58
post-mortem brain prefrontal cortex tissue samples collected from the
National Institute of Child Health and Human Development (NICHD)

Brain and Tissue Bank for Developmental Disorders and the University
of Maryland, Baltimore (Bustamante et al., 2018). Among the 58 (30
females, 28 males) tissue samples they have selected for their study, 29
were with MDD with an age group around 32.5 ± 15.9 years. They
showed that 4 probes for Interleukin 1 Receptor Accessory Protein-Like
1 (IL1RAPL1) i.e., cg06927864, cg18230558, cg20350671, and
cg26791231 has higher methylation in MDD cases compared to the
controls. Limitations included the use of postmortem brain tissue and
small sample size with a resulting reduced statistical power to detect
meaningful differences between MDD cases and controls. In our present
study, we overcome these pitfalls by selecting a larger sample size
(N=329) and by implementing stringent statistical procedures.

In contrast to Bustamante et al. study, Han et al. reported sig-
nificantly higher epigenetic aging in patients with MDD compared to
controls (Han et al., 2018). The study participants selected by Han et al.
group were from the Netherlands Study of Depression and Anxiety
(NESDA), which is an ongoing longitudinal multicenter cohort study
designed to investigate the long-term course and consequences of de-
pressive and anxiety related disorders (Han et al., 2018). Among the
cohort samples of 1130 participants, they selected the samples with no
lifetime psychiatric disorders and low depressive symptoms with a
score <14 as controls (N=319) and samples with a score≥14 as MDD
(N=811) based on the Inventory of Depressive Symptomology with a
follow up of 4 years (Han et al., 2018). The mean age of their selected
sample controls was 41.6 years and MDD samples was 41.5 years
(Han et al., 2018). Their results suggested that higher epigenetic aging
in MDD may be driven largely by severity of illness (Han et al., 2018).
They did not identify any additional relationships between higher
epigenetic aging and cumulative clinical characteristics (Han et al.,
2018). Our findings of a cross-sectional association between two epi-
genetic clocks and lower positive affect was most robust among Whites.
Despite that neither one of those two epigenetic clocks differed by race,
we found that being White was associated with a reduction in positive
affect by 0.28 SD compared to AAs, even after adjusting for age, sex,
and poverty status (P=0.007). Thus, White urban adults may be more
affected by epigenetic age acceleration due to their reduced level of
positive affect at baseline.

While our understanding of the pathophysiology of depression has
been dominated by theories such as the monoamine hypothesis for
decades, it is not without some significant limitations. In addition,
hypothalamic–pituitary–adrenal (HPA) axis dysfunctions
(Anacker et al., 2011), inflammation and neuroimmune processes
(Miller) have also been linked to the pathophysiology of numerous
mood disorders, including depression (Prins et al.). Inflammatory

Fig. 1. Predictive margins for positive affect by Time, across levels of epigenetic clock 2, total population: Mixed-effects linear regression models.
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connection to depressive symptoms has been explained using nitro-
oxidative (NOS) mechanisms in one study by Luca et al. (insert cita-
tion). NOS stress in brain aging could be a result of: (a) oxidative DNA
damage, primarily affecting mitochondrial DNA (mtDNA); (b) oxidation
of polyunsaturated fatty acids leading to increased production of re-
active oxygen species (ROS) and; (c) activation of microglia; also a
source of free radicals- prolonged activation of which leads to oxidative
damage and neuronal cell death. In short, increased systemic in-
flammation and impaired antioxidant defense mechanisms expose brain
cells to increased oxidative stress, resulting in chronic physiological
alterations underlying aging and depression (Luca et al., 2013). Recent
studies have shifted the direction towards epigenetic mechanisms,
particularly histone modification and DNAm, affecting depression in
human subjects or depression-like symptoms in animal models
(Massart et al.). A recent study showed that age-associated epigenetic
upregulation of the FK506 binding protein 5 (FKBP5) may increase the
risk for PTSD and MDD in mouse models (Sabbagh et al., 2014). They
showed that the progressive FKBP5 demethylation occurs with age in
wild-type mice thereby explaining the mechanism by which FKBP5
levels alter throughout the life. Their findings explicitly suggested that
aging acts as an important epigenetic entity interacting at the early
stage life events thereby making a person vulnerable to depression and
other disorders (Sabbagh et al., 2014). Our study indicates that epige-
netic aging using DNAm biomarkers is specifically linked to one aspect
of depressive symptoms, namely positive affect, and was not associated
with other domains of the CES-D. This reinforces the need for the RDoC
approach as recommended by the National Institute on Mental Health,
to examine biological markers in relation to continuous symptoms or
groups of symptoms (e.g., domains) as opposed to classifying people
based on diagnostic criteria that often produces highly heterogeneous
cases of a mental condition (Katahira and Yamashita, 2017).

Social and environmental cues earlier in life moderate epigenetic
programming and result in subsequent adaptive responses to changing
landscapes. Any insult to the estimated trajectory will presumably re-
sult in progressive maladaptation and an increased risk of developing
numerous diseases. Since DNA methylation is susceptible to environ-
mental changes (Swanson et al.), it is not unusual to observe early
environmental manipulation in mood-related disorders, as demon-
strated by Meaney and Szyf in post-natal maternal interactions (Szyf).
This is further supported by Weaver and colleagues, who showed that
maternal behavior alters DNA methylation and chromatin structure in
rats, suggesting long-term and reversible effects of maternal care in the
offspring (Weaver et al.). Maternal depression in women with high
burdens of depressive symptoms before pregnancy and antenatally
were significantly associated with child's lower epigenetic gestational
age at birth, where lower epigenetic age was an indicator of higher
mental adversities later in life (Suarez et al.). DNA methylation has
been studied extensively in relation to the embryonic brain. In mam-
mals, DNA methylation occurs predominantly at CpG islands and in-
volves DNA methyltransferases (DNMTs) to carry out desired mod-
ifications (Babenko et al.). Loss of DNMT1 action in humans, for
example, through specific mutations cause neurodegeneration in the
form of hereditary sensory neuropathy with dementia and hearing loss
(Babenko et al.).

Our study has several strengths. First, we used a longitudinal design
to ascertain temporality of those relationships and stratifying by socio-
demographics relevant to epigenetic age acceleration. In addition to
using a well-validated scale of depressive symptomology, sub-domains
were also investigated in order to separate somatic complaints from
other domains such as depressed affect, positive affect and inter-
personal problems. Those sub-domains had factorial invariance in na-
tional data (Nguyen et al., 2004). Our analyses used multivariable re-
gression models such as mixed-effects linear regression that adjusted for
sample selectivity and allowed us to use a more complete set of data
while assuming missingness at random. Finally, we used a standard and
readily available blood-based DNAm markers of epigenetic aging which

can be replicated in future studies.
Nevertheless, some study limitations should be noted. First, al-

though our models were adjusted for a wealth of potentially con-
founding covariates, causality cannot be inferred given the observa-
tional nature of the study and the possible role played by residual
confounding. Notably, an adequate measure for anti-depressant use was
not available at the time of this analysis, nor was an accurate measure
of MDD history at visit 1. In fact, MDD history was not made con-
sistently available in our study sample which used a proxy for elevated
depressive symptoms (CES-D score >16) previously shown to be as-
sociated with MDD (Wada et al., 2007). Second, outcome measures
were only repeated up to twice over an average follow-up of 5 years,
our overall sample was of moderate size and while stratification by race
was warranted, pooled analysis may introduce a bias in terms of po-
pulation structure. This allows room for improvement in larger studies
with 3 or more timepoints that could be carried out in the near future
which would mirror true change in depressive symptomology as op-
posed to random fluctuation and would allow more adequate stratum-
specific sample sizes that would detect smaller effects. Third, selective
non-participation could bias the main associations of interest. However,
this bias was minimized by using a 2-stage Heckman selection process
that was applied to the multiple linear regression models. Fourth, ex-
posure measurement can affect our conclusion given the multiplicity of
potential techniques that can be used to assess DNAm, the wide range of
possible tissues that can be targeted such as blood and brain tissue, and
the difficult task to define a “normal” epigenetic profile (Mill and
Petronis, 2007). In fact, level of blood DNA methylation may not ne-
cessarily reflect its level in the central nervous system, the target tissue
of interest. Fifth, relationships between epigenetic age acceleration and
depressive symptoms can be bi-directional. Given the current lack of
follow-up data on epigenetic age acceleration, this hypothesis can be
tested in a comparable future study. Sixth, our findings with positive
affect may be due to chance and the standardized association implies a
weak to moderate effect detected only among Whites. Finally, while the
CES-D reliably measures depressive symptoms and acts as an important
screening tool, it faces important limitations as a diagnostic test for
major depressive disorder (Carleton et al., 2013).

In our study, EAA and AgeAccel, two measures of epigenetic age
acceleration relying on the Horvath algorithm, were linked to a reduced
level of “positive affect” in the complete sample and among Whites.
Further longitudinal studies are needed to replicate our findings, while
uncovering potential bi-directional relationships and future mechan-
istic studies are required to determine the specific pathways behind this
association.
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Supplemental Method 1: Description of scales and of mixed-effects regression models 

Center for Epidemiological Studies Depression Scale (CES-D) 

The CES-D(1, 2)  is a 20-item measure of depressive symptoms. Participants are asked to 

rate the frequency and severity of symptoms over the past week. Scores range from 0 to 60, with 

scores of 16 and higher indicating significant depressive symptoms, and scores of 20 and higher 

indicating significant clinically depressive symptoms. 

 

The main multiple mixed-effects regression models can be summarized as follows: 

  Multi-level models   vs. Composite models 

Eq. 

1.1-1.4 

 

 

 

 

 

 

Where Yij is the outcome (depressive symptom scores) for each individual “i” and visit “j”; is 

the level-1 intercept for individual i; is the level-1 slope for individual i; is the level-2 

intercept of the random intercept ; is the level-2 intercept of the slope ; is a vector of 

fixed covariates for each individual i that are used to predict level-1 intercepts and slopes and 

included baseline age (Agebase) among other covariates. Xija, represents the main predictor 

variables (one of the epigenetic clock exposures); and are level-2 disturbances; is the 

within-person level-1 disturbance. Of primary interest are the main effects of each exposure Xa 

(γ0a) and their interaction with TIME (γ1a), as described in a previous methodolgical paper.(3)  
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