Citation: Liang J, Le TH, Edwards DRV, Tayo BO, Gaulton KJ, Smith JA, et al. (2017) Single-trait and multi-trait genome-wide association analyses identify novel loci for blood pressure in Africanancestry populations. PLoS Genet 13(5): e1006728. https://doi.org/10.1371/journal. pgen. 1006728

Editor: Greg Gibson, Georgia Institute of Technology, UNITED STATES

Received: December 21, 2016
Accepted: March 30, 2017
Published: May 12, 2017
Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CCO public domain dedication.

Data Availability Statement: Study-specific phenotypes and genotypes are available from dbGaP (ARIC: phs000280.v1.p1, CHS: phs000287. v1.p1, WHI: phs000200.v1.p1, MESA: phs000283. v1.p1, Cleveland Family Study: phs000284.v1.p1, CARDIA: phs000285.v3.p). Discovery metaanalyses results for this study and readme file related to meta-analyses are available in GRASP and can be accessed from http://apps.nhlbi.nih. gov/GRASP/.

Single-trait and multi-trait genome-wide association analyses identify novel loci for blood pressure in African-ancestry populations

Jingjing Liang ${ }^{1}$, Thu H. Le ${ }^{2}$, Digna R. Velez Edwards ${ }^{3}$, Bamidele O. Tayo ${ }^{4}$, Kyle J. Gaulton ${ }^{5}$, Jennifer A. Smith ${ }^{6}$, Yingchang Lu ${ }^{7,8,9}$, Richard A. Jensen ${ }^{10}$, Guanjie Chen ${ }^{11}$, Lisa R. Yanek ${ }^{12}$, Karen Schwander ${ }^{13}$, Salman M. Tajuddin ${ }^{14}$, Tamar Sofer ${ }^{15}$, Wonji Kim ${ }^{16}$, James Kayima ${ }^{17,18}$, Colin A. McKenzie ${ }^{19}$, Ervin Fox ${ }^{20}$, Michael A. Nalls ${ }^{21}$, J. Hunter Young ${ }^{12}$, Yan V. Sun ${ }^{22}$, Jacqueline M. Lane ${ }^{23,24,25}$, Sylvia Cechova ${ }^{2}$, Jie Zhou ${ }^{11}$, Hua Tang ${ }^{26}$, Myriam Fornage ${ }^{27}$, Solomon K. Musani ${ }^{20}$, Heming Wang ${ }^{1}$, Juyoung Lee ${ }^{28}$, Adebowale Adeyemo ${ }^{11}$, Albert W. Dreisbach ${ }^{20}$, Terrence Forrester ${ }^{19}$, Pei-Lun Chu ${ }^{29}$, Anne Cappola ${ }^{30}$, Michele K. Evans ${ }^{14}$, Alanna C. Morrison ${ }^{31}$, Lisa W. Martin ${ }^{32}$, Kerri L. Wiggins ${ }^{10}$, Qin Hui ${ }^{22}$, Wei Zhao ${ }^{6}$, Rebecca D. Jackson ${ }^{33}$, Erin B. Ware ${ }^{6,34}$, Jessica D. Faul ${ }^{34}$, Alex P. Reiner ${ }^{35}$, Michael Bray ${ }^{3}$, Joshua C. Denny ${ }^{36}$, Thomas H. Mosley ${ }^{20}$, Walter Palmas ${ }^{37}$, Xiuqing Guo ${ }^{38}$, George J. Papanicolaou ${ }^{39}$, Alan D. Penman ${ }^{20}$, Joseph F. Polak ${ }^{40}$, Kenneth Rice ${ }^{15}$, Ken D. Taylor ${ }^{41}$, Eric Boerwinkle ${ }^{34}$, Erwin P. Bottinger ${ }^{7}$, Kiang Liu ${ }^{42}$, Neil Risch ${ }^{43}$, Steven C. Hunt ${ }^{44}$, Charles Kooperberg ${ }^{35}$, Alan B. Zonderman ${ }^{14}$, Cathy C. Laurie ${ }^{15}$, Diane M. Becker ${ }^{12}$, Jianwen Cai ${ }^{45}$, Ruth J. F. Loos ${ }^{7,8,46}$, Bruce M. Psaty ${ }^{10,47}$, David R. Weir ${ }^{34}$, Sharon L. R. Kardia ${ }^{6}$, Donna K. Arnett ${ }^{48}$, Sungho Won ${ }^{16,49}$, Todd L. Edwards ${ }^{50}$, Susan Redline ${ }^{51}$, Richard S. Cooper ${ }^{4}$, D. C. Rao ${ }^{13}$, Jerome I. Rotter ${ }^{41}$, Charles Rotimi ${ }^{11}$, Daniel Levy ${ }^{52}$, Aravinda Chakravarti ${ }^{53}$, Xiaofeng Zhu ${ }^{10^{*}}$, Nora Franceschini ${ }^{54{ }^{50} *}$
1 Department of Epidemiology \& Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States of America, 2 Department of Medicine, Division of Nephrology, University of Virginia, Charlottesville, Virginia, United States of America, 3 Department of Obstetrics and Gynecology, Institute for Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America, 4 Department of Public Health Sciences, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, United States of America, 5 Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America, 6 Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America, 7 The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America, 8 The Genetics of Obesity and Related Metabolic Traits Program, Ichan School of Medicine at Mount Sinai, New York City, New York, United States of America, 9 Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America, 10 Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America, 11 Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America, 12 Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America, 13 Division of Biostatistics, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America, 14 Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America, 15 Department of Biostatistics, University of Washington, Seattle, Washington, United States of America, 16 Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul, Republic of Korea, 17 Division of Adult Cardiology, Uganda Heart Institute, Makerere University College of Health Sciences, Kampala, Uganda, 18 Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda, 19 Tropical Metabolism Research Unit, Caribbean Institute for Health Research, University of the West Indies, Mona, Jamaica, 20 Department of Preventive Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States of America, 21 Data Tecnica International, Glen Echo, MD, United States of America and Laboratory of Neurogenetics, National Institute on Aging, National Institute of Health, Bethesda, Maryland, United States of America, 22 Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America, 23 Center for Genomic

Funding: The work was supported by the National Institutes of Health, the National Heart, Lung and Blood Institute R21HL123677 (NF) and the National Human Genome Research Institute grant HG003054 (XZ). JLi is supported by HL007567-31 (T32) from the National Heart, Lung and Blood Institute. MAN is supported by a consulting contract between Data Tecrica International and the National Institute on Aging, NIH, Bethesda, MD, USA. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: I have read the journal's policy and the authors of this manuscript have the following competing interests: BMP serves on the DSMB of a clinical trial funded by the manufacturer (Zoll LifeCor) and on the Steering Committee of the Yale Open Data Access Project funded by Johnson \& Johnson. MA Nalls consults for Illumina Inc, the Michael J. Fox Foundation and University of California Healthcare, and has a consulting contract between Data Tecnica International and the National Institute on Aging, NIH, Bethesda, MD, USA. Other authors report no conflict of interest.

Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America, 24 Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America, 25 Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America, 26 Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America, 27 Institute of Molecular Medicine and Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, United States of America, 28 Division of Structural and Functional Genomics, Center for Genome Science, Korea National Institute of Health, Cheongju, Republic of Korea, 29 Department of Internal Medicine, Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, 30 Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States of America, 31 Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, Texas, United States of America, 32 The George Washington University School of Medicine and Health Sciences, Washington DC. United States of America, 33 Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America, 34 Survey Research Center, Institute for Social Research, University of Michigan Ann Arbor, Michigan, United States of America, 35 Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America, 36 Department of Biomedical Informatics, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America, 37 Department of Medicine, Columbia University, New York City, New York, United States of America, 38 Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America, 39 Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America, 40 Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, United States of America, 41 Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, 42 Department of Preventive Medicine, Northwestern University Medical School, Chicago, Illinois, United States of America, 43 Institute for Human Genetics, University of California, San Francisco, California, United States of America, 44 Cardiovascular Genetics, University of Utah, Salt Lake City, Utah, United States of America, 45 Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, United States of America, 46 The Mindich Child Health and Development Institute, Ichan School of Medicine at Mount Sinai, New York City, New York, United States of America, 47 Kaiser Permanente Washington Health Research Institute, Seattle, Washington, United States of America, 48 University of Kentucky, College of Public Health, Lexington, KY, 49 Department of Public Health Science, Seoul National University, Seoul, Republic of Korea, 50 Division of Epidemiology, Department of Medicine, Institute of Medicine and Public Health, Vanderbilt Genetics Institute, Vanderbilit University Medical Center, Nashville, Tennessee, United States of America, 51 Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America, 52 Population Sciences Branch, National Heart, Lung, and Blood Institute of the National Institutes of Health, Bethesda, MD, and the Framingham Heart Study, Framingham, Massachusetts, United States of America, 53 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America, 54 Epidemiology, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America

- These authors contributed equally to this work.
* xxz10@case.edu (XZ); noraf@unc.edu (NF)

Abstract

Hypertension is a leading cause of global disease, mortality, and disability. While individuals of African descent suffer a disproportionate burden of hypertension and its complications, they have been underrepresented in genetic studies. To identify novel susceptibility loci for blood pressure and hypertension in people of African ancestry, we performed both single and multiple-trait genome-wide association analyses. We analyzed 21 genome-wide association studies comprised of 31,968 individuals of African ancestry, and validated our results with additional 54,395 individuals from multi-ethnic studies. These analyses identified nine loci with eleven independent variants which reached genome-wide significance ($\mathrm{P}<$ 1.25×10^{-8}) for either systolic and diastolic blood pressure, hypertension, or for combined traits. Single-trait analyses identified two loci (TARID/TCF21 and LLPH/TMBIM4) and

multiple-trait analyses identified one novel locus (FRMD3) for blood pressure. At these three loci, as well as at GRP20/CDH17, associated variants had alleles common only in Africanancestry populations. Functional annotation showed enrichment for genes expressed in immune and kidney cells, as well as in heart and vascular cells/tissues. Experiments driven by these findings and using angiotensin-II induced hypertension in mice showed altered kidney mRNA expression of six genes, suggesting their potential role in hypertension. Our study provides new evidence for genes related to hypertension susceptibility, and the need to study African-ancestry populations in order to identify biologic factors contributing to hypertension.

Author summary

Hypertension is a global health problem which affects disproportionally people of African descent. We conducted a genome-wide association study of blood pressure in 31,968 Africans and African Americans to identify genes conferring susceptibility to increased blood pressure. This research identified three novel genomic regions associated with blood pressure which have not been previously reported in studies of other race/ethnicity. Using experimental models, we also showed an altered expression of these genes in kidney tissue in hypertension. These findings provide new evidence for genes influencing hypertension risk and supports the need to study diverse ancestry populations in order to identify biologic factors contributing to hypertension.

Introduction

Genetic studies hold the promise of providing tools to better understand and treat clinical conditions. To achieve the clinical and public health goals of reducing hypertension and its sequelae, and to understand ethnic disparities in the risk for hypertension, there is a need to study susceptible populations for genetic determinants of blood pressure (BP). BP traits are highly heritable across world populations (30 to 55\%).[1-4] Over 200 genetic loci have been identified in genome-wide association studies [5-13] and admixture mapping studies.[14-17] These variants explain approximately 3.5% of inter-individual variation in BP.[5, 7] However, there is still a paucity of studies focused on individuals of African descent. Most of the loci identified in the literature have not been replicated in individuals of African ancestry.[18, 19]

African Americans have higher mean BP, an earlier onset of hypertension, and a greater likelihood to have treatment-resistant hypertension than other ethnic groups.[20-23] Emerging research on Africans shows increasing prevalence of hypertension in urban African communities [24, 25] which are more Westernized than rural African communities and, so, more closely resemble communities in which African Americans live in the U.S. Hypertension contributes to a greater risk of coronary heart disease, stroke, and chronic kidney disease.[26-30] African Americans experience increased risk of these hypertension-related outcomes [31-34] but the underlying mechanisms, whether environmental exposures or increased genetic susceptibility, are unknown.

We hypothesized that additional variants associated with BP can be identified in people of African ancestry; some variants may be African-specific, as has been observed for multiple traits, including kidney disease [35] and metabolic syndrome. [36, 37] Other variants may be identified in novel loci based on a higher frequency of risk alleles in this population. We used
high density imputed genotypes from the 1000 Genomes Project (1000G) to expand the genome coverage of genetic variants so that we could examine the evidence for association with BP traits.

Here, we report three novel loci associated with BP which are driven by variants that are common in or unique to African-ancestry populations. Through bioinformatics and experimental evidence of kidney gene expression in mice submitted to angiotensin-II (Ang II) induced hypertension, we provide evidence for a key role of these genes in the pathogenesis of hypertension. In addition, our study extends the discovery of BP loci to genes related to kidney and the immune systems, and provides biological relevance for these loci to BP regulation.

Results

The study design and analysis process are shown in Fig 1. Study characteristics, genotyping, and quality control (QC) for discovery and replication samples are shown in S1 and S2 Tables. The discovery samples included 31,968 individuals of African ancestry from 19 studies. The replication samples included 4,184 individuals of African ancestry from three studies, 23,914 individuals of European ancestry from five studies, 14,016 individuals of Korean ancestry from three studies, and 12,278 individuals of Hispanic/Latino ancestry from one study.

Fig 1. Study design schematic for discovery and replication of loci. QC, quality control; SBP, systolic blood pressure; DBP, diastolic blood pressure; PP, pulse pressure; HTN, hypertension; eQTL, expression quantitative loci.
https://doi.org/10.1371/journal.pgen.1006728.g001

Single-trait and multi-trait meta-analysis genome-wide association study (GWAS) results

Study-specific genomic-control inflation ranged from 0.98-1.06 (S3 Table, S1 Fig) and the linkage disequilibrium (LD) score regression intercepts of the single-trait BP meta-analyses calculated by the LD score regression approach ranged from 1.02-1.04. [38] These results suggest well-controlled population stratification.

The single-trait BP meta-analyses identified several genome-wide significant single nucleotide polymorphisms (SNP) at eight loci ($\mathrm{P}<5.0 \times 10^{-8}$, systolic BP (SBP): three loci, four SNPs; diastolic BP (DBP): three loci, three SNPs; pulse pressure (PP): three loci, four SNPs; and hypertension (HTN): one locus, one SNP), with the EVX1/HOXA locus identified for SBP, DBP and HTN (S2A-S2D Fig). When combining summary statistics for SBP, DBP, and HTN using the multi-trait approach CPASSOC,[39] we identified one locus by the multi-trait statistic $\mathrm{S}_{\mathrm{Hom}}(E V X 1 / H O X A)$ and six loci by $\mathrm{S}_{\mathrm{Het}}$ (ULK4, TCF21, EVX1/HOXA, IGFBP3, CDH17, ZNF746) at $\mathrm{P}<5 \times 10^{-8}$ (S2E and S2F Fig). Note some loci overlap between single-trait and multi-trait findings.

We observed 264 variants with $\mathrm{P}<1 \times 10^{-6}$ for either single- or multi- trait GWAS and these variants were further analyzed by conditional association on the most associated SNPs at each locus (S4 Table). These analyses resulted in 72 independent associations, which included 58 SNPs with minor allele frequency (MAF) ≥ 0.05 and 14 with low frequency variants $(0.01<$ MAF <0.05) (S5 Table).

Trans-ethnic replication

Among these 72 variants carried forward for trans-ethnic replication, nine variants, all low frequency variants ($\mathrm{MAF}<0.02$), were not available in replication cohorts because they were either monomorphic in the replication population or had a low imputation quality, reducing our replication effort to 63 variants (S 6 Table). Eleven independent variants at nine loci were significantly associated with BP traits at $\mathrm{P}<1.25 \times 10^{-8}$ in the combined discovery and replication analyses and are reported in Table 1. This significance level was determined by adjusting for two independent traits for SBP, DBP, PP and HTN, and two tests of multiple trait analysis. This includes six variants that reached significance level at discovery stage ($\mathrm{P}<5 \times 10^{-8}$). Two loci were identified only through multi-trait analyses (FRMD3, IGFBP3). Three of these nine loci are novel: TARID /TCF21, FRMD3, and LLPH/TMBIM4 (Fig 2A-2C). Four loci (ULK4, PLEKHG1, EVX1/HOXA cluster, and GPR20) have been reported in our previous BP GWAS of African ancestry (S3 Fig), $[7,18]$ and two loci (IGFBP3, CDH17) have been reported in mul-tiple-trait analyses of African-ancestry studies (Fig 2D-2F).[39] A composite genetic-risk score using the eleven variants identified accounted for $1.89 \%, 2.92 \%, 1.03 \%$ and 1.08% of the variance for SBP, DBP, PP and HTN respectively.

Newly identified loci harbor variants common only in African-ancestry populations

Five of the eleven replicated variants are common in individuals of African ancestry but rare or monomorphic in individuals of non-African ancestry (rs76987554, rs115795127, rs113866309, rs7006531, and rs78192203)(Table 1). These five variants were 1) either low frequency or common variants in COGENT-BP African-ancestry samples; 2) low frequency in 1000G Phase I Integrated Release Ad Mixed-American ancestry (AMR); and 3) monomorphic in 1000G Asian ancestry (ASN) or European ancestry (EUR). One common variant was present in only 1000G samples of African ancestry (rs115795127 at FRMD3, Table 1). These variants were located at the

Table 1. Loci identified in combined COGENT-BP African ancestry discovery samples and multi-ethnic replication samples.

SNP	Effect Allele/ Other Allele	Chr	Nearby Gene	COGENT-BP Allele Frequency	1000G Phase 1 Allele Frequency				Single or Multi-Trait (CPASSOC) Statistic	COGENT-BP Discovery (Up to $\mathrm{N}=31,155$)		Trans-Ethnic Replication (Up to $N=54,245$) P	Combined Metaanalyses (Up to$\frac{N=85,397)}{P}$
					AFR	AMR	ASN	EUR		Beta (SE)	P		
SNPs in novel loci													
rs76987554	C/T	6	$\begin{aligned} & \text { TARID/ } \\ & \text { TCF21 } \end{aligned}$	0.91	0.91	0.99	1	1	SBP	$\begin{gathered} 1.85 \\ (0.31) \end{gathered}$	2.2×10^{-9}	2.0×10^{-2}	2.3×10^{-10}
rs115795127	T/C	9	FRMD3	0.89	0.86	1	1	1	$\begin{gathered} \text { CPASSOC } \\ S_{\text {Het }} \end{gathered}$	NA	1.1×10^{-6}	8.4×10^{-6}	7.3×10^{-9}
rs113866309	C/T	12	$\begin{aligned} & \text { LLPH/ } \\ & \text { TMBIM4 } \end{aligned}$	0.02	0.02	0.01	0.00	0.00	PP	$\begin{gathered} 3.28 \\ (0.63) \\ \hline \end{gathered}$	1.7×10^{-7}	1.5×10^{-3}	8.2×10^{-9}
SNPs in published BP loci													
rs7651190	G/A	3	ULK4	0.65	0.72	0.17	0.15	0.19	DBP	$\begin{gathered} 0.45 \\ (0.11) \end{gathered}$	4.2×10^{-5}	1.0×10^{-5}	2.0×10^{-9}
									$\begin{gathered} \text { CPASSOC } \\ \mathrm{S}_{\mathrm{Het}} \end{gathered}$	NA	6.9×10^{-9}	2.0×10^{-4}	9.8×10^{-11}
rs7372217	G/A	3	ULK4	0.66	0.71	0.20	0.16	0.20	DBP	$\begin{gathered} 0.55 \\ (0.11) \end{gathered}$	9.5×10^{-7}	8.1×10^{-7}	5.3×10^{-12}
									$\begin{gathered} \text { CPASSOC } \\ \mathrm{S}_{\text {Het }} \end{gathered}$	NA	8.2×10^{-6}	6.5×10^{-8}	1.4×10^{-11}
rs62434120	T/A	6	PLEKHG1	0.85	0.83	0.82	0.95	0.92	SBP	$\begin{gathered} 1.19 \\ (0.24) \end{gathered}$	1.1×10^{-6}	2.7×10^{-3}	5.7×10^{-9}
rs11563582	A/G	7	$\begin{aligned} & \text { EVX1/ } \\ & \text { HOXA } \\ & \text { cluster } \end{aligned}$						SBP	$\begin{gathered} 1.61 \\ (0.28) \end{gathered}$	7.1×10^{-9}	4.2×10^{-4}	4.5×10^{-10}
				0.13	0.16	0.09	0.05	0.08	DBP	$\begin{gathered} 1.02 \\ (0.17) \end{gathered}$	8.4×10^{-10}	1.4×10^{-4}	1.7×10^{-11}
									$\begin{gathered} \text { CPASSOC } \\ \mathrm{S}_{\text {Hom }} \end{gathered}$	NA	1.5×10^{-10}	8.0×10^{-4}	1.9×10^{-11}
									$\begin{gathered} \text { CPASSOC } \\ \mathrm{S}_{\mathrm{Het}} \\ \hline \end{gathered}$	NA	1.1×10^{-9}	9.4×10^{-3}	1.8×10^{-9}
rs6969780	C/G	7	HOXA						SBP	$\begin{gathered} 0.82 \\ (0.19) \end{gathered}$	1.7×10^{-5}	6.5×10^{-5}	6.2×10^{-9}
				0.30	0.35	0.21	0.13	0.10	DBP	$\begin{gathered} 0.62 \\ (0.12) \\ \hline \end{gathered}$	7.0×10^{-8}	2.1×10^{-4}	3.3×10^{-10}
									$\begin{gathered} \text { CPASSOC } \\ \mathrm{S}_{\text {Hom }} \end{gathered}$	NA	4.1×10^{-7}	4.0×10^{-4}	9.9×10^{-9}
rs11977526	A/G	7	IGFBP3	0.34	0.34	0.31	0.78	0.41	$\begin{gathered} \text { CPASSOC } \\ S_{\text {Het }} \end{gathered}$	NA	4.5×10^{-9}	2.9×10^{-9}	7.3×10^{-16}
rs7006531	G/A	8	CDH17	0.15	0.19	0.02	0.00	0.00	PP	$\begin{gathered} 1.16 \\ (0.17) \\ \hline \end{gathered}$	5.0×10^{-12}	9.7×10^{-2}	5.9×10^{-12}
									$\begin{gathered} \text { CPASSOC } \\ \mathrm{S}_{\text {Het }} \end{gathered}$	NA	7.6×10^{-14}	6.1×10^{-3}	2.2×10^{-13}
rs78192203	T/A	8	GPR20	0.80	0.79	0.98	1	1	DBP	$\begin{gathered} 0.77 \\ (0.14) \\ \hline \end{gathered}$	1.3×10^{-8}	2.7×10^{-4}	4.1×10^{-11}

Bold P-values represent either significance level at 5.0×10^{-8} in discovery sample or at 1.25×10^{-8} at combined discovery and replication samples. 1000G samples: AFR, African ancestry; AMR, American ancestry; ASN, Asian ancestry; EUR, European ancestry
https://doi.org/10.1371/journal.pgen.1006728.t001
three novel loci (TARID/TCF21, FRMD3, and LLPH/TMBIM4). Given the differences in allele frequency across continental-ancestry populations, we examined the evidence for selection at each of these loci using iHS, which measures the amount of extended haplotype homozygosity at a given SNP along the ancestral allele relative to the derived allele.[40] The iHS score for

Fig 2. Regional plots of the significant loci A. TARID/TCF21 for SBP B. FRMD3for $\mathrm{S}_{\text {Het }}$ of CPASSOC C. LLPH locus for PP D. CDH17 for PP E. CDH17 for $\mathrm{S}_{\text {Het }}$ of CPASSOC F. IGFBP3 for $\mathrm{S}_{\text {Het }}$ of CPASSOC. The y axis shows the $-\log _{10} \mathrm{P}$ values of SNP associations, and the x axis shows their chromosomal positions. The lowest P value SNP is plotted as a purple
diamond and its correlation with other SNPs in the region is shown in color. The orange triangle is P value in the combined discovery and replication trans-ethnic meta-analysis of the lowest P value SNP.
https://doi.org/10.1371/journal.pgen.1006728.g002
rs115795127 was 2.7 in African American samples from the Candidate-gene Association Resource (CARe) consortium (see Methods), suggesting selection at the FRMD3 locus (S7 Table).

Distinct associations at EVX1/HOXA, ULK4, and GPR20 in Africanancestry populations

We observed two independent genome-wide significant variants at the EVX1/HOXA locus $\left(\mathrm{P}<1.25 \times 10^{-8}\right)$. The two variants, rs 11563582 and rs 6969780 , are in weak $\mathrm{LD}\left(\mathrm{r}^{2}=0.21\right)$ (S3A-S3C Fig), and the LD pattern suggests that these SNPs are located in two blocks (S4 Fig). SNP rs11563582 is in strong LD with the previously reported SNP in the region (rs17428741). [18] SNP rs6969780 remained significant when conditioning on rs11563582 (S4 Table), thus demonstrating the presence of allelic heterogeneity at this locus. Two independent variants at ULK4 reached the significance threshold: rs7651190 and rs7372217 (LD r ${ }^{2}=0.15$) (S4E Fig). SNP rs7372217 is in strong LD with the previous reported SNP rs1717027.[18] The association evidence of rs1717027 can be explained by rs7372217 but not by rs7651190 in conditional analysis (S4 Table). Thus, rs7651190 is an independent association at this locus. At the GPR20 locus, our most significant SNP, rs78192203, is 8kb away and it is not in LD with the published SNP, rs34591516 ($\mathrm{r}^{2}=0.008, \mathrm{D}^{\prime}=0.68$ in African American CARe participants).

Pathway analyses suggest enrichment of immune pathways for BP traits

To gain insight into biologic mechanisms underlying genes associated with BP traits, we performed pathway analysis using publicly available databases. [41] The most relevant pathways identified were GSK3, Th1/Th2 differentiation, and Sonic Hedgehog (SHH) pathways (BIOCARTA): pyrimidine metabolism, apoptosis signaling pathway, and B cell activation (Panther); JAK Stat signaling, T cell receptor signaling, and B cell receptor signaling (Ingenuity); cytokine-cytokine receptor interaction and vascular smooth muscle contraction (KEGG); and neuronal activity, T cell mediated immunity, and tumor suppressor (Panther Biological Process) (Gene Set Enrichment Analysis [GSEA] P-value <0.01, S8 Table). These analyses suggest enrichment of immune pathways for BP traits.

Tissue and cell type group enrichment analyses identify immune, kidney, and cardiovascular enriched systems

We performed functional annotation and cell type group enrichment analysis using the stratified LD score regression approach which uses data from ENCODE and the Roadmap Epigenetic Project, as well as GWAS results while accounting for the correlation among markers. [42] We estimated functional categories of enrichment using an enrichment score, which is the proportion of SNP-heritability in the category divided by the proportion of SNPs. We identified super enhancer $\left(\mathrm{P}_{\text {Enrich }}=5.4 \times 10^{-5}\right.$, Enrichment $=5.6$ for DBP$)$, enhancer $\left(\mathrm{P}_{\text {Enrich }}=\right.$ 4.8×10^{-4}, Enrichment $=4.3$ for HTN $)$, and H3K27ac $\left(\mathrm{P}_{\text {Enrich }}=3.2 \times 10^{-4}\right.$, Enrichment $=3.6$ for HTN) significant enrichment (Fig 3). These results support a role of identified noncoding regulatory regions in BP regulation. In addition, the following cell types showed significant enrichment $\left(\mathrm{P} \leq 2.5 \times 10^{-3}\right)$: the immune $\left(\mathrm{P}_{\text {Enrich }}=1.4 \times 10^{-9}\right.$, Enrichment $=8.4$ for DBP $)$, kidney $\left(\mathrm{P}_{\text {Enrich }}=5.4 \times 10^{-5}\right.$, Enrichment $=4.8$ for DBP $)$, and cardiovascular $\left(\mathrm{P}_{\text {Enrich }}=8.9 \times 10^{-5}\right.$, Enrichment $=4.2$ for $\operatorname{SBP})$ systems (Fig 3).

A

B

Fig 3. Enrichment for functional annotations and cell-type groups using stratified LD score regression. A. Enrichment estimates of 24 main annotations for each of four BP traits. Annotations are ordered by size. Error bars represent jackknife standard errors around the estimates of enrichment, and stars indicate significance at $\mathrm{P}<0.05$ after Bonferroni correction for 24 hypotheses tested and four BP traits. B. Significance of enrichment of 10 cell-type groups for four BP traits. Dotted line and stars indicate significance at $P<0.05$ after Bonferroni correction for 10 hypotheses tested and four BP traits.
https://doi.org/10.1371/journal.pgen.1006728.g003
We next determined the enrichment of variants at the eleven genome-wide significant loci for DNase 1 hypersensitive (DHS) sites in 34 tissue categories from ENCODE. At each locus, we identified variants in $r^{2}>0.1$ with the index variant and calculated causal evidence (Bayes Factors) for each variant. We then tested for enrichment in the causal evidence of variants in DHS sites using fGWAS.[43] We found enrichment of blood/immune DHS (Enrichment = 3.1) and cardiovascular DHS (blood vessel Enrichment $=28.7$, heart Enrichment $=2.0$), in addition to DHS in several fetal tissues (S5 Fig). Candidate causal variants at several loci overlapped enriched DHS sites. For example, at the LLPH/TMBIM4 locus, the most likely causal variant, rs12426813, overlaps a DHS site active in immune (CD14+, CD4+, CD34+), blood vessel (HMVEC), and heart (HCF) cells (S5 Fig).

Overlap with eQTL at specific tissues

To examine whether the eleven significant SNPs are eQTL, we searched the genotype-tissue expression (GTEx) pilot database, which includes non-disease human tissue.[42] Among the eleven SNPs, three SNPs have been identified as eQTL: rs6969780 (HOXA2), rs7651190
(ULK4), and rs62434120 (PLEKHG1) (S9 Table). SNP rs6969780 is an eQTL for expression of HOXA2, HOXA7, HOTAIRM1, and HOXA5 in multiple tissues, including esophagus, artery, lung, skin, nerve, adipose, skeletal muscle, and stomach tissues. SNP rs7651190 is an eQTL for ULK4 and RPL36P20 in artery, whole blood, thyroid, nerve, esophagus, skeletal muscle, skin, brain, and stomach cells/tissues. SNP rs62434120 is an eQTL for PLEKHG1 in testis tissue.

Kidney gene expression in experimental angiogensin II-induced hypertension

To determine if identified genes are functionally involved in BP regulation in the kidney during hypertension, [44] we quantified gene expression in mice kidneys at baseline and during the hypertensive state induced by Ang II. This hypertensive model was chosen for two reasons: 1) to mimic the low plasma renin state, albeit more exaggerated than the level observed, in African-ancestry individuals that has been suggested to reflect the elevated renin-angiotensin system activity at the tissue level in the kidney [45], and 2) maintenance of hypertension in the Ang II model requires activation of the immune system that is implicated in several identified loci.[46, 47] Kidney gene expressions of the identified genes were compared to age-matched untreated mice after two weeks of Ang II infusion, which increases SBP. For the HOXA locus, we examined the expression of genes that are known to be expressed in the mouse kidney: Hoxal (2 isoforms), 5, 7, 9, 10 (2 isoforms), and 11. Among all the genes examined, Tmbim4 was the most abundantly expressed gene in the kidney at baseline. Six genes-Hoxa5, Hoxa101 isoform, Hoxa11, Tmbim4, Igfbp3, and Plekhg1—were significantly differentially expressed in the kidney after Ang II treatment compared to baseline (Fig 4). Except for Hoxa5, which showed a significant decrease (Fig 4A), the expression of all these genes increased after the intervention. The expression of six genes-Hoxa1-1 isoform, Hoxa7, Hoxa9, Hoxa10-2 isoform, Llph, and Ulk4—were unchanged after Ang II infusion (Fig 4B). The following genes were not expressed in the adult mouse kidney at baseline or after Ang II intervention: Frmd3-1 isoform, Frmd3-2 isoform, Grp20, Tcf21, Cdh17, and Hoxa1-2 isoform.

Discussion

To date, this is the largest genome-wide analysis of African-ancestry populations to study genetic variants underlying BP traits using dense-coverage imputed genotypes. Our main findings are eleven independent variants at nine loci, significantly associated with BP traits, including three newly identified loci (TARID/TCF21, FRMD3, LLPH/TMBIM4). We also found evidence for additional independent SNP associations in fine-mapping of three previously described loci, ULK4, EVX1/HOXA, and GRP20.[18, 39]

The most significant variants at TARID/TCF21, FRMD3, GPR20, and CDH17 are common variants in COGENT-BP African-ancestry participants, but monomorphic or low frequency in non-African-ancestry populations. For example, rs115795127 at FRMD3 is rare in European populations $(\mathrm{MAF}=0.0007)$ and absent in East Asian and Hispanic/Latino populations. Therefore, they could not be identified in GWAS of non-African-ancestry populations even when increasing sample sizes. We also show evidence for selection for the variant at FRMD3, although additional studies should confirm these findings. The African-specific variants were not well tagged by HAPMAP2 data and therefore were not detected in our previous African-ancestry GWAS.[18] Overall, our results suggest additional gain in discovery when using dense imputed genotypes and support a role of population-specific alleles in African and African-admixed populations contributing to BP regulation and hypertension. Furthermore, they support the rationale and the need to study diverse populations in order to more effectively characterize the genetic architecture of BP in populations and the ethnic disparities in hypertension.

Fig 4. Relative renal mRNA levels of genes identified at baseline and after 2 weeks of Ang Il-induced hypertension. HPRT gene was used for normalization. $\mathrm{N} \geq 5$ in each group. A. Genes that were differentially expressed between baseline and Ang II conditions. \mathbf{B}. Genes that were not altered between the two conditions. ${ }^{*} \mathrm{P}<0.05$. ${ }^{* *} \mathrm{P}<0.01$. ${ }^{* *} \mathrm{P}<0.001$.
https://doi.org/10.1371/journal.pgen.1006728.g004

Functional annotation of our lead variants showed co-localization with annotated elements, including super enhancer, enhancer, and H3K27ac chromatic mapping in immune cells and kidney tissues, which has not been previously reported, in addition to cardiovascular tissues. There was also evidence for regulatory function in these relevant tissues through gene
expression regulation (eQTL) and through overlaps with DHS in relevant tissues/cells. This evidence was additionally supported by experimental findings of differential expression of six genes (Hoxa5, Hoxa10-1 isoform, Hoxa11, Tmbim4, Igfbp3, and Plekhg1) in the mouse kidney after HTN induced by Ang II treatment. Overall, our results suggest the functional importance of identified genes in regulating BP in both normal and hypertension states.

At the newly identified loci, SNP rs76987554 is an intronic variant in TARID (TCF21 antisense RNA inducing promoter demethylation) which has not been previously reported to be associated with BP traits. A nearby gene, TCF21 (transcription factor 21), is a transcription factor of the basic helix-loop-helix family, which is mainly expressed in the liver, kidney, and heart. TCF21 is involved in epithelial differentiation and branching morphogenesis in kidney development,[48] and was associated with hypertension in a study of individuals of Japanese ancestry.[49] At the chromosome 7, rs115795127 is an intronic variant to FRMD3 (FERM domain containing 3) which encodes a protein involved in maintaining cell shape and integrity. FRMD3 has been associated with type 1 and type 2 diabetic kidney diseases in different ethnic populations, including those of European, African, and Asian ancestries.[50] The diabetes variant, rs10868025, is not in LD with rs115795127 in our African American samples or in 1000G EUR samples ($r^{2}=0.00028$ and 0.0018 , respectively), thus representing an independent association at this locus.

At chromosome 9, the functions of $L L P H$ and TMBIM4 genes in BP regulation are currently unknown. $L L P H$ belongs to the learning-associated protein family and is highly expressed in the immune system and the adrenal gland. TMBIM4 encodes the transmembrane BAX inhibitor motif-containing protein 4 and is highly expressed in whole blood, the immune system, and the adrenal gland.[51] The most significant variant at this locus, rs113866309, overlaps a DHS in immune, blood vessel, and heart cells. In our experimental model in mice, Tmbim4 gene expression was significantly increased after Ang II-induced HTN. This gene has been shown to inhibit apoptosis[52] and to decrease the efficacy of inositol 1,4,5-triphosphate $\left(\mathrm{IP}_{3}\right)$-dependent release of intracellular Ca^{2+}. [53] This raises the possibility that the TMBIM4 protein may serve to dampen the effect of Ang II, which activates IP_{3} in vascular smooth muscle cells through the stimulation of the angiotensin type 1 receptor.[51, 53, 54] Therefore, it is possible that in conditions of activated renin-angiotensin system, genetic variants that lower the expression of TMBIM4 may augment BP, whereas genetic variants that increase its expression may attenuate BP.

Other genes, such as Hoxa5, Hoxa10-1, Hoxa11, Igfbp3, and Plekhg1, were significantly differentially expressed after Ang II-induced HTN in our mice experimental models. The HOXAcluster has been identified in our previous GWAS of BP in African ancestry and in a recent GWAS of BP in European ancestry[5] though the underlying mechanisms related to BP control are unknown. We identified two independent variants at this locus; further studies are needed to delineate which of the HOXA genes are most likely involved in the association. In our experimental mice model, the Hoxa10-1 isoform had a greater than 20 -fold increase in kidney expression during Ang II-induced HTN compared to baseline levels. However, it remains to be determined whether it is an effect of Ang II in hypertension, or a compensatory response to hypertension. Future studies using genetic manipulation in rodents are required to determine whether these changes are specific response related to BP and Ang II or simply a generic response to stress.

We identified several additional pathways involved in BP traits, including the GSK3 pathway, which has been reported to influence Wnt-mediated central BP regulation.[55] The Th1/ Th2 pathway is involved in the regulation of immune responses[56] and has been linked to hypertension and atherosclerosis. $[57,58]$ The role of the immune system in the development of hypertension has been suggested in clinical studies and experimental animal models.[59-

64] This includes reports of overlap of genetic variant associations between BP traits and immune-disorders [65] and evidence of enrichment of immune pathways from GWAS of BP. [66] Mutations of SH2B3, a gene identified in a GWAS of hypertension, have been recently shown to attenuate Dahl salt-sensitivity hypertension through inflammatory modulation.[67] In addition, the actions of Ang II in the pathophysiology and maintenance of hypertension are in part mediated through the activation of the immune system.[46]

Our assessment of the clinical implications of identified variants is limited by available data on African-ancestry populations. For example, there are currently no large publicly available GWAS of coronary heart disease or stroke outcomes in African-ancestry populations. It should also be noted that most of our replication cohorts were from populations other than those of African ancestry. Therefore, the power of replication analysis could still be low, which explains why only 11 of 63 variants were successfully replicated.

In summary, we report 11 independent variants at nine loci that are potential regulators of BP in our African-ancestry population study. Three loci are new. Identified BP variants are enriched in immune, kidney, heart, and vascular system pathways. Our experimental findings suggest that several of these genes may be involved in the renin-angiotensin pathways in the kidney during hypertension. Further population studies and experimental models are required for a comprehensive assessment of the identified genes across the immune, kidney, and cardiovascular systems. Our study demonstrates the need to further study individuals of African ancestry in order to identify loci and new biological pathways for BP.

Methods

Samples and BP phenotypes

Each study followed protocols for phenotype harmonization. For individuals taking antihypertensive medications, we added 15 and 10 mm Hg to measured SBP and DBP, respectively, a standard method used in other BP GWAS.[6, 68] PP was calculated as the difference between SBP and DBP after addition of the constant values. HTN was defined by a SBP ≥ 140 mm Hg , a DBP $\geq 90 \mathrm{~mm} \mathrm{Hg}$, or use of antihypertensive drugs.[69]

Genotyping and imputation

Each cohort was genotyped on either Affymetrix or Illumina genotyping platforms. Pre-imputation quality criteria were applied as described in S2 Table, and included exclusion of individuals with discordant self-reported gender and genetic gender. Imputation was performed using the software MACH-ADMIX, MACH-minimac or IMPUTE2 [70-72] using the Phase 1 integrated (March 2012 release) multi-ethnic reference panel from the 1000G Consortium (http://www.internationalgenome.org/).[73]

Association analysis

Autosomal chromosome SNP associations for SBP, DBP, and PP were assessed by linear regression for unrelated data or by the generalized linear mixed-effects model for family data, under the assumption of an additive genetic model. All models were adjusted for age, age ${ }^{2}$, sex, and body mass index. Up to ten principal components were included, as needed as covariates in the regression models, to control population stratification.[74, 75] We used standardized pre-meta-analysis QC criteria for all 21 discovery studies.[76] At the SNP level, we excluded variants with 1) imputation quality $\mathrm{r}^{2}<0.3$ in MACH or <0.4 in IMPUTE2; 2) the number of informative individuals $\left.\left(2 \times \mathrm{MAF} \times \mathrm{N} \times \mathrm{r}^{2}\right) \leq 30 ; 3\right)$ an effect allele frequency (EAF) difference larger than 0.3 in comparison with the mixture of 80% YRI and 20% CEU of 1000 G ; and 4) the
absolute regression coefficient ≥ 10. SNPs that passed the QC were carried forward for inverse variance weighted meta-analyses, implemented in METAL.[77]

Multi-trait statistical analyses using CPASSOC

We applied the CPASSOC software to combine association evidence of SBP, DBP, and HTN. CPASSOC provides two statistics, $S_{H o m}$ and $S_{H e t,}$ as previously described.[39] $S_{H o m}$ is similar to the fixed effect meta-analysis method[77] but accounts for the correlation of summary statistics of the multi-traits and for overlapping or related samples among the cohorts. $S_{H o m}$ uses the trait sample size as the weight, so that it is possible to combine traits with different measurement scales. $S_{H e t}$ is an extension of $S_{H o m}$, and it can increase the statistical power over $S_{\text {Hom }}$ when a variant affects only a subset of traits. The distribution of $S_{H e t}$ under the null hypothesis was obtained through an estimated beta distribution. To calculate the statistics, $S_{H o m}$ and $S_{H e t}$, and to account for the correlation among the traits, a correlation matrix is required. In this study, we used the correlation matrix calculated from the residuals of the three BP traits after adjustments for covariates and principal components.

Replication and meta-analyses

All independent SNPs identified with $\mathrm{P}<10^{-6}$ (threshold chosen for suggestive association) in the discovery stage were carried forward for replication in African-ancestry individuals and in multi-ethnic samples of European Americans, East Asians, or Hispanics/Latinos (Fig 1). For single-trait analyses, we conducted fixed effect meta-analyses in the replication sets for each of four BP traits (SBP, DBP, PP and HTN), followed by a combined trans-ethnic meta-analysis of each trait. This was followed by a mega-meta-analyses, combining the results of discovery and replication for single traits using fixed-effects meta-analysis. We also performed a multi-trait CPASSOC analysis of SBP, DBP, and HTN in each replication study. Because CPASSOC only generated test statistics $\mathrm{S}_{\mathrm{Hom}} / \mathrm{S}_{\mathrm{Het}}$ and corresponding P values without effect sizes, we combined the association P values from all four replication populations using Fisher's method (http://hal.case.edu/zhu-web/). Finally, we combined the CPASSOC meta-analysis results from the discovery and replication stages using Fisher's method.

Multiple-testing thresholds

For a single trait GWAS discovery analysis, we used genome-wide significant level $\mathrm{P}=$ 5.0×10^{-8}. We performed six different analyses, four single trait (SBP, DBP, PP and HTN) analyses and two CPASSOC ($\mathrm{S}_{\mathrm{Hom}}$ and $\mathrm{S}_{\mathrm{Het}}$) analyses for each SNP. For the four single correlated traits (SBP, DBP, PP and HTN), we calculated the number of independent traits using the eigenvalues of the correlation matrix, [78] which resulted two independent traits. Therefore, we counted four independent analyses, which were two independent single traits and two statistics of CPASSOC analyses, and applied an experimental significance level $\mathrm{P}=1.25 \times 10^{-8}$ for claiming a genome-wide significance when combining discovery and replication samples. We should point out that the two CPASSOC test statistics and a single trait statistic are not independent. Thus, the significance level $\mathrm{P}=1.25 \times 10^{-8}$ is conservative.

Conditional analysis

Since a locus may consist of multiple independent signals, we applied approximate conditional analysis implemented in GCTA-COJO[79, 80] using the summary statistics of SNPs with $\mathrm{P}<1.0 \times 10^{-6}$ from both of the individual trait meta-analyses (http://cnsgenomics.com/
software/gcta/cojo.html). The LD among variants was estimated from the five African American cohorts from the CARe consortium. [79]

Pathway analysis

Pathway analysis was performed using the Meta-Analysis Gene-set Enrichment of variant Associations (MAGENTA) program (http://www.broadinstitute.org/mpg/magenta/).[41] Using the summary statistics from the four BP traits and two statistics from CPASSOC, from the discovery stage, we tested whether sets of functionally-related genes are enriched for associations. This method first converts the P values of SNPs into gene scores with correcting for confounders, such as gene site, number of variants in a gene, and their LD patterns, and then calculated a gene set enrichment P value for each biological pathway or gene set of interest using a non-parametric statistical test. The nominal GSEA P value refers to the nominal gene set enrichment P value for a gene set. The database of pathway/gene-sets to be tested include Ingenuity (June 2008), KEGG (2010), GO, and the Panther, signaling pathways downloaded from MSigDB and PANTHER (http://www.broad.mit.edu/gsea/msigdb/collections.jsp; http:// www.pantherdb.org/).[81] We applied the parameters suggested by the authors, which includes the $75^{\text {th }}$ percentile cut off of gene scores, the nominal GSEA P-value <0.01 and the false discovery rate $(\mathrm{FDR})<0.3$.

Functional annotation enrichment analysis

The enrichment of heritability of genomic regions to different functional categories, including cell type-specific elements, was evaluated using the method of LD score regression (https:// github.com/bulik/ldsc).[42, 82] This method partitioned the heritability from the discovery GWAS summary statistics of four BP traits (SBP, DBP, PP, and HTN) while accounting for LD among markers.[42] We calculated enrichment, in functional regions and in expanded regions (+500 bp) around each functional class, based on functional annotation, using a "full baseline model" previously created from 24 publicly available main annotations that are not specific to any cell type.[42] Enrichment was calculated based on the ratio of explained heritability and the proportion of SNPs in each annotation category. The standard error of enrichment was estimated with a block jackknife to calculate z scores and P values.[42] The multiple testing threshold was determined using the Bonferroni correction while accounting for two indepen-dent-trait analyses based on Ji and Li's method[78] (P of 0.05/[25 classes $\times 2$ traits]). We also performed cell-type-specific group enrichment analysis using cell-type-specific annotations from four histone marks (H3K4me1, H3K4me3, H3K9ac, and H3K27ac), which corresponded to 220 cell types. We divided the 220 cell-type-specific annotations into 10 groups: adrenal/ pancreas, central nervous system (CNS), cardiovascular, connective/bone, gastrointestinal, immune/hematopoietic, kidney, liver, skeletal muscle and other. The analysis characterized cell-type-specific annotations within each group and calculated the enrichment of heritability for each group.[42]

Genomic annotation enrichment

We selected sets of variants in LD r ${ }^{2}>0.1$ from the eleven replicated variants, and calculated Bayes Factors and posterior causal probabilities for each variant from the effect sizes and standard errors, as previously described.[83] Each distinct variant associated with multiple traits was included in the analysis only once. The genomic annotations of DHS sites for 348 cell types from the ENCODE project were obtained and grouped into cell types associated with 34 tissues (http://genome.ucsc.edu/ENCODE/cellTypes.html). Four gene-based annotationscoding exon, 5-UTR, 3-UTR, and 1kb upstream of transcription start site (TSS)—from

GENCODE transcripts were also obtained. Variants overlapping each of these annotations were then identified. Using the variant annotations and fGWAS (https://github.com/ joepickrell/fgwas), we tested for enrichment of variants across all signals in 38 DHS categories, including in the four gene-based annotations in each model.[43]

Expression quantitative trait loci (eQTL) analysis

We used the GTEx pilot database [82] (http://www.gtexportal.org/home/) to identify eQTLs in the successfully replicated SNPs.

Integrated haplotype score (iHS) analysis

To evaluate population differentiation and natural selection, using Haplotter,[40] we calculated the integrated haplotype score (iHS) in five cohorts of CARe so that we could measure the amount of extended haplotype homozygosity (http://coruscant.itmat.upenn.edu/whamm/ ihs.html). Hence, we tested the evidence of recent positive selection at five significant SNPs with differences in allele frequency across continental-ancestry populations. The measures were standardized (mean 0, variance 1) empirically to the distribution of observed iHS scores over a range of SNPs with similar derived allele frequencies. This method assesses the evidence for selection by comparing the extended homozygosity for haplotypes on a high frequency derived allele relative to the ancestry background.[40]

Experimental mouse models

Experiments were carried out in accordance with local and the National Institutes of Health guidelines. The animal protocol was approved by the University of Virginia Institutional Animal Care and Use Committee. Wild-type male mice on the 129S6 background at ~ 3 months of age were used for gene expression analyses. All mice were maintained on a 12 -hour lightdark cycle with free access to standard chow and water in the animal facility of the University of Virginia.

The hypertension experimental model was induced using Ang II (Sigma-Aldrich, St. Luis, MO) delivered at $600 \mathrm{ng} / \mathrm{kg} / \mathrm{min}$ for 2 weeks via Alzet mini-osmotic pumps (Durect Corporation, Cupertino, CA, model 2004), as previously described.[84] For gene expression analyses, RNA from kidney tissue was isolated by RNeasy Mini kit (Qiagen) and transcribed to cDNA by iScript ${ }^{\text {TM }}$ cDNA synthesis kit (Bio-Rad). Real time PCR analyses were performed on $\mathrm{iQ}^{\mathrm{TM}} 5$ Multicolor real time PCR Bio-Rad instruments using iQ ${ }^{\mathrm{TM}}$ SYBER $^{\circledR}$ Green Supermix. Hprt was used as a reference gene for normalization. Sequences of forward and reversed primers (FP and RP) for the gene expression studies are shown in S10 Table.

Ethic statement. All research involving human participants have been approved by the Institutional Review Board (IRB) \# 04-95-72 and study-related Publication and Presentation committees. All participants have provided informed consent for DNA research and data are publicly available in dbGap.

Animal experiments were carried out following the guidelines established locally at the University of Virginia (UVA) and by the National Institutes of Health. The animal protocol was approved by the UVA Institutional Animal Care and Use Committee (Protocol \# 3791, Protocol Title: Genes regulating Hypertension and Kidney Disease). Wild-type male mice on the 129S6 background at ~ 3 months of age were used for gene expression analyses. All mice were maintained on a 12-hour light-dark cycle with free access to standard chow and water in the animal facility UVA.

Supporting information

S1 Fig. Quantile-quantile plots for both individual traits and CPASSOC analysis in discovery stage.
(PDF)
S2 Fig. Manhattan plots of single trait and CPASSOC analyses at the discovery stage. (PDF)

S3 Fig. Regional interrogation of the HOXA/EVX1, ULK4 and PLEKHG1.
(PDF)
S4 Fig. Discovery stage results and linkage disequilibrium maps of the candidate regions. (PDF)

S5 Fig. Enrichment for functional annotations of variants in 11 replicated loci reaching genome-wide significance.
(PDF)
S1 Table. Descriptive characteristics of the discovery studies.
(PDF)
S2 Table. Genotyping, pre-imputation quality control, imputation and analysis methods in the participating studies.
(PDF)
S3 Table. Genomic inflation factors by study and analysis.
(PDF)
S4 Table. Conditional analysis of SNPs with $P<1.0 \times 10^{-6}$ in discovery stage for SBP, DBP, PP, HTN or CPASSOC analysis.
(PDF)
S5 Table. 72 Independent SNPs with $P<1.0 \times 10^{-6}$ in discovery stage for SBP, DBP, PP, HTN or CPASSOC analysis.
(PDF)
S6 Table. Trans-ethnic replication of 72 independent SNPs with $P<1.0 \times 10^{-6}$ in discovery stage for SBP, DBP, PP, HTN or CPASSOC. (PDF)

S7 Table. Summary of iHS signals in significant loci with frequency differences across ancestry populations.
(PDF)
S8 Table. MAGENTA analysis.
(PDF)
S9 Table. eQTL analysis of significant SNPs in tissues.
(PDF)
S10 Table. Primes for mouse expression experiments.
(PDF)
S1 Note. Single-trait and multi-trait genome wide association analyses identify novel loci for blood pressure in African-ancestry populations.
(DOCX)

Acknowledgments

This is included in the Supplemental Note.

Author Contributions

Conceptualization: NF XZ.

Formal analysis: JLi DRVE KJG JAS TS.
Funding acquisition: SR EB EPB SCH CK CCL JC RJFL BMP DRW SLRK DKA DCR JIR DMB RDJ.

Methodology: KJG.
Project administration: XZ NF.
Supervision: XZ NF.
Validation: THL SC YL GC WK TS JK JLi PLC WZ CCL.
Writing - original draft: JLi THL CR DL KJG.
Writing - review \& editing: DRVE BOT JAS YL RAJ GG LRY LS SMT KS TS WK JK CAM EF MAN JHY YVS JML SC JZ HT MF SKM HW JLe AA AWD TF PLC ACa MKE ACM LWM KLW QH WZ RDJ EBW JDF APR MB JCD THM WP XG GJP ADP JFP KR KDT EB EPB KL NR SCH CK ABZ CCL DMB JC RJFL BMP DRW SLRK DKA SW TLE SR RSC DCR JIR CR DL ACh.

References

1. Levy D, DeStefano AL, Larson MG, O'Donnell CJ, Lifton RP, Gavras H, et al. Evidence for a gene influencing blood pressure on chromosome 17. Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the framingham heart study. Hypertension. 2000; 36(4):477-83. PMID: 11040222
2. Hopkins PN, Hunt SC. Genetics of hypertension. Genet Med. 2003; 5(6):413-29. https://doi.org/10. 109701.GIM.0000096375.88710.A6 PMID: 14614392
3. Samani NJ. Genome scans for hypertension and blood pressure regulation. Am J Hypertens. 2003; 16 (2):167-71. PMID: 12559688
4. Cooper RS, Guo X, Rotimi CN, Luke A, Ward R, Adeyemo A, et al. Heritability of angiotensin-converting enzyme and angiotensinogen: A comparison of US blacks and Nigerians. Hypertension. 2000; 35 (5):1141-7. PMID: 10818078
5. Ehret GB, Ferreira T, Chasman DI, Jackson AU, Schmidt EM, Johnson T, et al. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nature genetics. 2016.
6. Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011; 478(7367):103-9. https://doi.org/10.1038/nature10405 PMID: 21909115
7. Surendran P, Drenos F, Young R, Warren H, Cook JP, Manning AK, et al. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nature genetics. 2016.
8. Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nature genetics. 2009; 41(5):527-34. https://doi.org/10.1038/ng. 357 PMID: 19396169
9. Kato N, Loh M, Takeuchi F, Verweij N, Wang X, Zhang W, et al. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nature genetics. 2015; 47(11):1282-93. https://doi.org/10.1038/ng. 3405 PMID: 26390057
10. Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, Sim X, et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nature genetics. 2011; 43(6):531-8. https://doi.org/10.1038/ng. 834 PMID: 21572416
11. Surendran P, Drenos F, Young R, Warren H, Cook JP, Manning AK, et al. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nature genetics. 2016; 48(10):1151-61. https://doi.org/10.1038/ng. 3654 PMID: 27618447
12. Liu C, Kraja AT, Smith JA, Brody JA, Franceschini N, Bis JC, et al. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nature genetics. 2016; 48(10):1162-70. https://doi.org/10.1038/ng. 3660 PMID: 27618448
13. Warren HR, Evangelou E, Cabrera CP, Gao H, Ren M, Mifsud B, et al. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nature genetics. 2017.
14. Wang YJ, Tayo BO, Bandyopadhyay A, Wang H, Feng T, Franceschini N, et al. The association of the vanin-1 N131S variant with blood pressure is mediated by endoplasmic reticulum-associated degradation and loss of function. PLoS genetics. 2014; 10(9):e1004641. https://doi.org/10.1371/journal.pgen. 1004641 PMID: 25233454
15. Zhu X, Young JH, Fox E, Keating BJ, Franceschini N, Kang S, et al. Combined admixture mapping and association analysis identifies a novel blood pressure genetic locus on 5 p13: contributions from the CARe consortium. Hum Mol Genet. 2011; 20(11):2285-95. https://doi.org/10.1093/hmg/ddr113 PMID: 21422096
16. Zhu X, Cooper RS. Admixture mapping provides evidence of association of the VNN1 gene with hypertension. PloS one. 2007; 2(11):e1244. https://doi.org/10.1371/journal.pone.0001244 PMID: 18043751
17. Zhu X, Luke A, Cooper RS, Quertermous T, Hanis C, Mosley T, et al. Admixture mapping for hypertension loci with genome-scan markers. Nature genetics. 2005; 37(2):177-81. https://doi.org/10.1038/ ng1510 PMID: 15665825
18. Franceschini N, Fox E, Zhang Z, Edwards TL, Nalls MA, Sung YJ, et al. Genome-wide association analysis of blood-pressure traits in African-ancestry individuals reveals common associated genes in African and non-African populations. American journal of human genetics. 2013; 93(3):545-54. https://doi.org/ 10.1016/j.ajhg.2013.07.010 PMID: 23972371
19. Adeyemo A, Gerry N, Chen G, Herbert A, Doumatey A, Huang H, et al. A genome-wide association study of hypertension and blood pressure in African Americans. PLoS genetics. 2009; 5(7):e1000564. https://doi.org/10.1371/journal.pgen. 1000564 PMID: 19609347
20. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension. 2008; 51 (6):1403-19. https://doi.org/10.1161/HYPERTENSIONAHA.108.189141 PMID: 18391085
21. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, et al. Executive summary: heart disease and stroke statistics-2012 update: a report from the American Heart Association. Circulation. 2012; 125(1):188-97. https://doi.org/10.1161/CIR.0b013e3182456d46 PMID: 22215894
22. Hertz RP, Unger AN, Cornell JA, Saunders E. Racial disparities in hypertension prevalence, awareness, and management. Archives of internal medicine. 2005; 165(18):2098-104. https://doi.org/10. 1001/archinte.165.18.2098 PMID: 16216999
23. Stevens J, Truesdale KP, Katz EG, Cai J. Impact of body mass index on incident hypertension and diabetes in Chinese Asians, American Whites, and American Blacks: the People's Republic of China Study and the Atherosclerosis Risk in Communities Study. American journal of epidemiology. 2008; 167(11):1365-74. https://doi.org/10.1093/aje/kwn060 PMID: 18375949
24. Mufunda J, Chatora R, Ndambakuwa Y, Nyarango P, Kosia A, Chifamba J, et al. Emerging non-communicable disease epidemic in Africa: preventive measures from the WHO Regional Office for Africa. Ethnicity \& disease. 2006; 16(2):521-6.
25. Addo J, Smeeth L, Leon DA. Hypertension in sub-saharan Africa: a systematic review. Hypertension. 2007; 50(6):1012-8. https://doi.org/10.1161/HYPERTENSIONAHA.107.093336 PMID: 17954720
26. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002; 360(9349):1903-13. PMID: 12493255
27. Hsu CY, McCulloch CE, Darbinian J, Go AS, Iribarren C. Elevated blood pressure and risk of end-stage renal disease in subjects without baseline kidney disease. Archives of internal medicine. 2005; 165 (8):923-8. https://doi.org/10.1001/archinte.165.8.923 PMID: 15851645
28. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012; 380 (9859):2224-60. https://doi.org/10.1016/S0140-6736(12)61766-8 PMID: 23245609
29. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr., et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood

Pressure: the JNC 7 report. Jama. 2003; 289(19):2560-72. https://doi.org/10.1001/jama.289.19.2560 PMID: 12748199
30. Berry JD, Dyer A, Cai X, Garside DB, Ning H, Thomas A, et al. Lifetime risks of cardiovascular disease. The New England journal of medicine. 2012; 366(4):321-9. https://doi.org/10.1056/NEJMoa1012848 PMID: 22276822
31. Howard G, Lackland DT, Kleindorfer DO, Kissela BM, Moy CS, Judd SE, et al. Racial differences in the impact of elevated systolic blood pressure on stroke risk. JAMA Intern Med. 2013; 173(1):46-51. https://doi.org/10.1001/2013.jamainternmed. 857 PMID: 23229778
32. Safford MM, Brown TM, Muntner PM, Durant RW, Glasser S, Halanych JH, et al. Association of race and sex with risk of incident acute coronary heart disease events. Jama. 2012; 308(17):1768-74. https://doi.org/10.1001/jama.2012.14306 PMID: 23117777
33. Sharma A, Colvin-Adams M, Yancy CW. Heart failure in African Americans: disparities can be overcome. Cleve Clin J Med. 2014; 81(5):301-11. https://doi.org/10.3949/ccjm.81a. 13045 PMID: 24789589
34. Zakai NA, McClure LA, Judd SE, Safford MM, Folsom AR, Lutsey PL, et al. Racial and regional differences in venous thromboembolism in the United States in 3 cohorts. Circulation. 2014; 129(14):15029. https://doi.org/10.1161/CIRCULATIONAHA.113.006472 PMID: 24508826
35. Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI, et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science. 2010; 329(5993):841-5. https://doi.org/10.1126/science. 1193032 PMID: 20647424
36. Tekola-Ayele F, Doumatey AP, Shriner D, Bentley AR, Chen G, Zhou J, et al. Genome-wide association study identifies African-ancestry specific variants for metabolic syndrome. Mol Genet Metab. 2015; 116 (4):305-13. https://doi.org/10.1016/j.ymgme.2015.10.008 PMID: 26507551
37. Cooper RS, Tayo B, Zhu X. Genome-wide association studies: implications for multiethnic samples. Hum Mol Genet. 2008; 17(R2):R151-5. https://doi.org/10.1093/hmg/ddn263 PMID: 18852204
38. Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Schizophrenia Working Group of the Psychiatric Genomics C, et al. LD Score regression distinguishes confounding from polygenicity in genomewide association studies. Nature genetics. 2015; 47(3):291-5. https://doi.org/10.1038/ng. 3211 PMID: 25642630
39. Zhu X, Feng T, Tayo BO, Liang J, Young JH, Franceschini N, et al. Meta-analysis of correlated traits via summary statistics from GWASs with an application in hypertension. American journal of human genetics. 2015; 96(1):21-36. https://doi.org/10.1016/j.ajhg.2014.11.011 PMID: 25500260
40. Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human genome. PLoS Biol. 2006; 4(3):e72. https://doi.org/10.1371/journal.pbio. 0040072 PMID: 16494531
41. Segre AV, Consortium D, investigators M, Groop L, Mootha VK, Daly MJ, et al. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS genetics. 2010; 6(8).
42. Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh PR, et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nature genetics. 2015; 47 (11):1228-35. https://doi.org/10.1038/ng. 3404 PMID: 26414678
43. Pickrell JK. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. American journal of human genetics. 2014; 94(4):559-73. https://doi.org/10.1016/j.ajhg. 2014.03.004 PMID: 24702953
44. Franceschini N, Le TH. Genetics of hypertension: discoveries from the bench to human populations. Am J Physiol Renal Physiol. 2014; 306(1):F1-F11. https://doi.org/10.1152/ajprenal.00334.2013 PMID: 24133117
45. Price DA, Fisher ND. The renin-angiotensin system in blacks: active, passive, or what? Curr Hypertens Rep. 2003; 5(3):225-30. PMID: 12724055
46. Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. The Journal of experimental medicine. 2007; 204(10):2449-60. https://doi.org/10.1084/jem. 20070657 PMID: 17875676
47. Madhur MS, Lob HE, McCann LA, Iwakura Y, Blinder Y, Guzik TJ, et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension. 2010; 55(2):500-7. https://doi. org/10.1161/HYPERTENSIONAHA.109.145094 PMID: 20038749
48. Quaggin SE, Schwartz L, Cui S, Igarashi P, Deimling J, Post M, et al. The basic-helix-loop-helix protein pod1 is critically important for kidney and lung organogenesis. Development. 1999; 126(24):5771-83. PMID: 10572052
49. Fujimaki T, Oguri M, Horibe H, Kato K, Matsuoka R, Abe S, et al. Association of a transcription factor 21 gene polymorphism with hypertension. Biomedical reports. 2015; 3(1):118-22. https://doi.org/10.3892/ br.2014.371 PMID: 25469260
50. Buffon MP, Sortica DA, Gerchman F, Crispim D, Canani LH. FRMD3 gene: its role in diabetic kidney disease. A narrative review. Diabetology \& metabolic syndrome. 2015; 7:118.
51. Lisak DA, Schacht T, Enders V, Habicht J, Kiviluoto S, Schneider J, et al. The transmembrane Bax inhibitor motif (TMBIM) containing protein family: Tissue expression, intracellular localization and effects on the ER CA(2)(+)-filling state. Biochimica et biophysica acta. 2015; 1853(9):2104-14. https:// doi.org/10.1016/j.bbamcr.2015.03.002 PMID: 25764978
52. Saraiva N, Prole DL, Carrara G, Johnson BF, Taylor CW, Parsons M, et al. hGAAP promotes cell adhesion and migration via the stimulation of store-operated $\mathrm{Ca} 2+$ entry and calpain 2. The Journal of cell biology. 2013; 202(4):699-713. https://doi.org/10.1083/jcb. 201301016 PMID: 23940116
53. Guo DF, Sun YL, Hamet P, Inagami T. The angiotensin II type 1 receptor and receptor-associated proteins. Cell Res. 2001; 11(3):165-80. https://doi.org/10.1038/sj.cr. 7290083 PMID: 11642401
54. de Mattia F, Gubser C, van Dommelen MM, Visch HJ, Distelmaier F, Postigo A, et al. Human Golgi antiapoptotic protein modulates intracellular calcium fluxes. Mol Biol Cell. 2009; 20(16):3638-45. https:// doi.org/10.1091/mbc.E09-05-0385 PMID: 19553469
55. Cheng PW, Chen YY, Cheng WH, Lu PJ, Chen HH, Chen BR, et al. Wnt Signaling Regulates Blood Pressure by Downregulating a GSK-3beta-Mediated Pathway to Enhance Insulin Signaling in the Central Nervous System. Diabetes. 2015; 64(10):3413-24. https://doi.org/10.2337/db14-1439 PMID: 25883115
56. Lederman S, Yellin MJ, Krichevsky A, Belko J, Lee JJ, Chess L. Identification of a novel surface protein on activated CD4+ T cells that induces contact-dependent B cell differentiation (help). The Journal of experimental medicine. 1992; 175(4):1091-101. PMID: 1348081
57. Lozovoy MA, Simao AN, Morimoto HK, Iryioda TM, Panis C, Reiche EM, et al. Hypertension is associated with serologically active disease in patients with systemic lupus erythematosus: role of increased Th1/Th2 ratio and oxidative stress. Scandinavian journal of rheumatology. 2014; 43(1):59-62. https:// doi.org/10.3109/03009742.2013.834963 PMID: 24134304
58. Tracy RP, Doyle MF, Olson NC, Huber SA, Jenny NS, Sallam R, et al. T-helper type 1 bias in healthy people is associated with cytomegalovirus serology and atherosclerosis: the Multi-Ethnic Study of Atherosclerosis. Journal of the American Heart Association. 2013; 2(3):e000117. https://doi.org/10.1161/ JAHA. 113.000117 PMID: 23688675
59. Mattson DL. Infiltrating immune cells in the kidney in salt-sensitive hypertension and renal injury. American journal of physiology Renal physiology. 2014; 307(5):F499-508. https://doi.org/10.1152/ajprenal. 00258.2014 PMID: 25007871
60. Dell'Omo G, Penno G, Pucci L, Lucchesi D, Del Prato S, Pedrinelli R. Lack of association between TGF-beta-1 genotypes and microalbuminuria in essential hypertensive men. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association-European Renal Association. 2009; 24(6):1864-9.
61. Blasi ER, Rocha R, Rudolph AE, Blomme EA, Polly ML, McMahon EG. Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats. Kidney international. 2003; 63(5):1791-800. https://doi. org/10.1046/j.1523-1755.2003.00929.x PMID: 12675855
62. Elmarakby AA, Quigley JE, Imig JD, Pollock JS, Pollock DM. TNF-alpha inhibition reduces renal injury in DOCA-salt hypertensive rats. American journal of physiology Regulatory, integrative and comparative physiology. 2008; 294(1):R76-83. https://doi.org/10.1152/ajpregu.00466.2007 PMID: 17989143
63. Nonaka-Sarukawa M, Okada T, Ito T, Yamamoto K, Yoshioka T, Nomoto T, et al. Adeno-associated virus vector-mediated systemic interleukin-10 expression ameliorates hypertensive organ damage in Dahl salt-sensitive rats. The journal of gene medicine. 2008; 10(4):368-74. https://doi.org/10.1002/jgm. 1166 PMID: 18205252
64. Trott DW, Harrison DG. The immune system in hypertension. Adv Physiol Educ. 2014; 38(1):20-4. https://doi.org/10.1152/advan.00063.2013 PMID: 24585465
65. Andreassen OA, McEvoy LK, Thompson WK, Wang Y, Reppe S, Schork AJ, et al. Identifying common genetic variants in blood pressure due to polygenic pleiotropy with associated phenotypes. Hypertension. 2014; 63(4):819-26. https://doi.org/10.1161/HYPERTENSIONAHA.113.02077 PMID: 24396023
66. Torkamani A, Topol EJ, Schork NJ. Pathway analysis of seven common diseases assessed by genome-wide association. Genomics. 2008; 92(5):265-72. https://doi.org/10.1016/j.ygeno.2008.07. 011 PMID: 18722519
67. Rudemiller NP, Lund H, Priestley JR, Endres BT, Prokop JW, Jacob HJ, et al. Mutation of SH2B3 (LNK), a genome-wide association study candidate for hypertension, attenuates Dahl salt-sensitive hypertension via inflammatory modulation. Hypertension. 2015; 65(5):1111-7. https://doi.org/10.1161/ HYPERTENSIONAHA.114.04736 PMID: 25776069
68. Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, et al. Genome-wide association study of blood pressure and hypertension. Nature genetics. 2009; 41(6):677-87. https://doi.org/10.1038/ng. 384 PMID: 19430479
69. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr., et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA: the journal of the American Medical Association. 2003; 289(19):256072. https://doi.org/10.1001/jama.289.19.2560 PMID: 12748199
70. Collins AJ, Foley RN, Herzog C, Chavers B, Gilbertson D, Ishani A, et al. US Renal Data System 2012 Annual Data Report. Am J Kidney Dis. 2013; 61(1 Suppl 1):A7, e1-476.
71. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nature genetics. 2012; 44(8):955-9. https://doi.org/10.1038/ng. 2354 PMID: 22820512
72. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS genetics. 2009; 5(6):e1000529. https://doi.org/10. 1371/journal.pgen. 1000529 PMID: 19543373
73. Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012; 491(7422):56-65. https://doi.org/ 10.1038/nature11632 PMID: 23128226
74. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nature genetics. 2006; 38(8):904-9. https://doi.org/10.1038/ng1847 PMID: 16862161
75. Zhu X, Zhang S, Zhao H, Cooper RS. Association mapping, using a mixture model for complex traits. Genet Epidemiol. 2002; 23(2):181-96. https://doi.org/10.1002/gepi. 210 PMID: 12214310
76. Winkler TW, Day FR, Croteau-Chonka DC, Wood AR, Locke AE, Magi R, et al. Quality control and conduct of genome-wide association meta-analyses. Nature protocols. 2014; 9(5):1192-212. https://doi. org/10.1038/nprot.2014.071 PMID: 24762786
77. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010; 26(17):2190-1. https://doi.org/10.1093/bioinformatics/btq340 PMID: 20616382
78. $\mathrm{Li} \mathrm{J}, \mathrm{Ji} \mathrm{L}$. Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity. 2005; 95(3):221-7. https://doi.org/10.1038/sj.hdy. 6800717 PMID: 16077740
79. Yang J, Ferreira T, Morris AP, Medland SE, Genetic Investigation of ATC, Replication DIG, et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nature genetics. 2012; 44(4):369-75, S1-3. https://doi.org/10.1038/ng. 2213 PMID: 22426310
80. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. American journal of human genetics. 2011; 88(1):76-82. https://doi.org/10.1016/j.ajhg.2010.11.011 PMID: 21167468
81. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome research. 2003; 13(9):2129-41. https://doi. org/10.1101/gr. 772403 PMID: 12952881
82. Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, et al. An atlas of genetic correlations across human diseases and traits. Nature genetics. 2015; 47(11):1236-41. https://doi.org/10. 1038/ng.3406 PMID: 26414676
83. Wakefield J. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. American journal of human genetics. 2007; 81(2):208-27. https://doi.org/10.1086/519024 PMID: 17668372
84. Chu PL, Gigliotti JC, Cechova S, Bodonyi-Kovacs G, Chan F, Ralph DL, et al. Renal Collectrin Protects against Salt-Sensitive Hypertension and Is Downregulated by Angiotensin II. J Am Soc Nephrol. 2017.

S1 Fig. Quantile-quantile plots for both individual traits and CASSOC analysis in discovery stage. A. SBP. B. DBP. C. PP D. HTN F. S ${ }_{\text {Hom }}$ in CPASSOC G. S

E

S2 Fig. Manhattan plots of single trait and CPASSOC analyses at the discovery stage. A. SBP. B. DBP. C. PP D. HTN E. S Hom in CPASSOC F. S $_{\text {Het }}$ in CPASSOC. The red line is genome-wide significance cutoff of $\mathrm{P}=5.0 \times 10^{-8}$. Loci that replicated in the combined discovery and replication trans-ethnic meta-analyses at the experimental-wide significance threshold ($\mathrm{P}<1.25 \times 10^{-8}$) are highlighted using asterix.

S3 Fig. Regional Interrogation of the A. $H O X A / E V X 1$ locus for SBP B. $H O X A / E V X 1$ locus for DBP C. $H O X A / E V X 1$ locus for $\mathrm{S}_{\mathrm{Het}}$ of CPASSOC D. GPR20 for DBP E. GPR20 for $\mathrm{S}_{\mathrm{Het}}$ of CPASSOC F. ULK4 for DBP G. ULK4 for S Het of CPASSOC H. PLEKHG1 for SBP. The y axis shows the $-\log _{10} \mathrm{P}$ values of SNPs, and the x axis shows their chromosomal positions. The lowest P value SNP is plotted as a purple diamond and its correlation with other SNPs in the region is shown in color. The orange triangle is P value in the combined discovery and replication trans-ethnic meta-analysis of the lowest P value SNP .

S4 Fig. Discovery stage results and linkage disequilibrium maps of the candidate regions. P value plots, genomic structures and LD maps of chromosomes 6 q 23 (A), p15 (B), 8q24 (C), 8q22 (D), 3p22 (E), 6 q 26 (F), 9 q 21 (G), 7 p 21 (H), 12q14 (I). The red plots represent the $-\log _{10}$ of the P values for association results. The LD maps based on D^{\prime} (above) and r^{2} (below) were drawn using the genotype data of 7717 CARe cohorts. Black triangels indicate the LD blocks identified by Haploview using Gabriel's method. Red dot lines indicate positions of marker SNPs.

S5 Fig. A. Enrichment of DNase hypersensitive (DHS) sites in 34 tissue categories for variants in $\mathrm{r}^{2}>0.1$ with 11 replicated SNPs reaching genome-wide significance using FGWAS B. Causal probabilities of variants at the $L L P H / T M B I M 4$ locus. The most probably causal variant rs 12426813 overlaps a DHS site active in blood and cardiovascular cells

A

B

Bloodvessel
Blood
Heart

S1 Table. Descriptive Characteristics of the Discovery Studies

Study	N	Age (SD)	No. of Males (\%)	BMI (SD)	No. with HTN (\%)	No. with Hypertensive Medication (\%)	SBP, mmHg (SD)	DBP, mmHg (SD)	PP in mmHg
Discovery Cohorts									
ARIC_AA	2502	53 (6)	926 (37)	30 (6)	1451 (58)	1076 (43)	135 (23)	84 (13)	51 (16)
CARDIA	826	39 (4)	339 (41)	31 (7)	206 (25)	107 (13)	118 (18)	78 (13)	41 (11)
CFS	608	39 (20)	258 (42)	32 (10)	182 (13)	109 (18)	126 (20)	76 (13)	50 (13)
JHS	2135	55 (13)	807 (38)	32 (7)	1328 (62)	1153 (54)	134 (21)	84 (12)	51 (17)
MESA	1646	62 (10)	746 (45)	30 (6)	1022 (62)	839 (51)	139 (25)	80 (12)	60 (18)
CHS	2064	76 (5)	834 (40)	26 (4)	1132 (55)	979 (47)	133 (20)	69 (11)	63 (18)
GeneSTAR	1129	48 (12)	428 (38)	32 (8)	616 (55)	462 (41)	129 (19)	81 (11)	48 (14)
GENOA	996	56 (11)	295 (30)	31 (7)	688 (69)	550 (56.9)	136 (22)	78 (12)	57 (12)
HANDLS	950	49 (9)	424 (45)	30 (8)	519 (53)	348 (36)	128 (21)	77 (13)	51 (14)
HyperGEN	1256	45 (13)	408 (33)	33 (8)	769 (61)	--	136 (25)	79 (13)	57 (17)
Maywood-Loyola	743	42 (8)	465 (63)	27 (8)	158 (21)	6 (1)	121 (20)	77 (13)	44 (13)
Nigeria-Loyola	1614	49 (15)	674 (42)	24 (5)	797 (49)	399 (25)	135 (30)	84 (19)	52 (16)
Loyola	967	53 (14)	737 (76)	28 (7)	660 (68)	155 (16)	149 (30)	92 (18)	57 (17)
WHI-SHARe	7989	61 (7)	0	32 (7)	4435 (56)	3692 (46)	132 (18)	78 (9)	54 (15)
HUFS	1192	46 (14)	477 (40)	31 (9)	688 (58)	442 (37)	132 (22)	82 (14)	50 (15)
BioMe Biobank	2464	49 (14)	870 (35)	30 (8)	1126 (46)	854 (35)	132 (22)	80 (14)	52 (16)
HRS	1337	67 (10)	483 (36)	31 (7)	1073 (80)	849 (64)	144 (24)	86 (13)	58 (16)
FBPP-AXIOM	917	50 (14)	367 (40)	31 (7)	642 (70)	596 (65)	129 (22)	74 (12)	55 (16)
BioVU eMERGE I AA	1048	49 (16)	330 (31)	32 (9)	510 (49)	246 (23)	135 (22)	81 (13)	54 (17)
BioVU eMERGE II AA 1M	427	48 (15)	204 (48)	30 (8)	264 (62)	169 (40)	138 (24)	83 (14)	56 (17)
BioVU Fibroids AA	407	44 (15)	0 (0)	33 (9)	174 (43)	81 (20)	134 (24)	82 (14)	53 (17)
Replication Cohorts									
Jamaica_GXE	613	40 (8)	141 (23)	13 (8)	142 (23)	0	118 (14)	71 (10)	47 (11)
Jamaica_SPT	905	47 (14)	351 (39)	27 (6)	285 (31)	123 (14)	122 (23)	71 (15)	52 (16)
Uganda	2668	35 (14)	774 (29)	24 (5)	1948 (73)	0	126 (21)	80 (12)	46 (15)
WHI_GARNET	4279	65 (7)	0	30 (6)	1721 (40)	1311 (31)	131 (18)	76 (9)	55 (15)
WHI_WHIMS	5478	68 (6)	0	28 (6)	1859 (34)	1403 (26)	130 (18)	75 (9)	56 (15)
ARIC_EA	9687	54 (6)	4650 (48)	27 (5)	2626 (27)	--	118 (16)	72 (10)	47 (13)
BioVU eMERGE II EA 1M	3428	54 (17)	1598 (47)	29 (7)	2500 (73)	1041 (30)	129 (20)	75 (19)	53 (16)
BioVU eMERGE II EA 5M	1045	51 (18)	499 (48)	30 (10)	642 (61)	239 (23)	128 (20)	75 (12)	54 (17)
Korea_hexa	3702	53 (8)	1651 (45)	24 (3)	665 (18)	0	122 (14)	78 (10)	45 (9)
Korea_kare	8773	52 (9)	4117 (47)	25 (3)	2284 (26)	0	122 (19)	80 (11)	41 (12)
Korea_nc2	1814	61 (7)	858 (47)	25 (3)	796 (44)	0	134 (18)	84 (11)	50 (13)
HCHS/SOL	12278	46 (14)	5019 (41)	30 (6)	3445 (28)	2070 (17)	125 (20)	75 (12)	50 (13)

S3 Table: Genomic inflation factors by study and analysis.

Study	\mathbf{N}	$\mathbf{S B P}-\boldsymbol{\lambda}_{\mathbf{G C}}$	DBP $-\boldsymbol{\lambda}_{\mathbf{G C}}$	$\mathbf{H T N}-\boldsymbol{\lambda}_{\mathbf{G C}}$	PP $-\boldsymbol{\lambda}_{\mathbf{G C}}$
ARIC	2502	1	1.02	1.01	1.01
CARDIA	826	0.99	0.99	1	1.01
CFS	608	1.05	1.03	1.02	1.04
CHS	815	1.01	1	1	1.02
FBPP	917	0.96	0.98	0.97	0.99
GENOA	996	0.99	0.99	1	0.99
JHS	2135	0.98	0.99	0.99	1.01
MESA	1646	0.98	1.01	1	0.99
HyperGen	1256	1.08	1.07	1.05	1.06
Loyola	967	0.99	1	0.98	0.99
HRS	1337	0.99	1.01	0.99	1
HUFS	1192	1.06	1.03	1.03	1.02
IPM	2464	0.98	0.99	1	1
Maywood	743	1.01	1.02	1.01	1
WHI	7989	1.01	1.03	1.03	1.02
HANDLS	950	0.99	1	1	1.02
Nigeria	1614	1.09	1.05	1.02	1.02
GeneSTAR	1129	1.02	1.06	1.04	1
eMERGE	1048	1.03	1.05	1.01	1.02
OMNI	427	1.01	1	0.99	1.01
FIBROID	407	0.99	1.02	1.04	1
		1	1.02	1.01	1.01
Total	31968				

λ indicates the genomic inflation factor. N indicates sample size.

Conditional SNP (Independent SNP for replication)	SNP	Chr	Pos	A1	A2	Gene	Effect	SE	P.value	Effect (conditional)	SE (conditional)	P.value (conditional)
SBP												
rs76987554	rs9918487	6	134042960	A	G	$\begin{aligned} & \text { TARID/ } \\ & \text { TCF21* } \end{aligned}$	-1.2639	0.2555	$7.55 \mathrm{E}-07$	-0.2810	0.1957	0.1511
	rs57850577	6	134046495	A	G		1.2660	0.2489	$3.64 \mathrm{E}-07$	0.3393	0.1949	0.0817
	rs79889868	6	134052576	C	G		-1.2168	0.2440	$6.13 \mathrm{E}-07$	-0.3251	0.1932	0.0925
	rs80176668	6	134069965	A	G		1.7082	0.2906	$4.15 \mathrm{E}-09$	0.1825	0.1395	0.1908
	rs112734474	6	134073797	T	G		1.7256	0.2910	$3.02 \mathrm{E}-09$	0.1921	0.1379	0.1638
	rs79590186	6	134075021	T	C		-1.3953	0.2749	$3.87 \mathrm{E}-07$	-0.1150	0.1726	0.5054
	rs80328223	6	134076947	T	C		-1.7232	0.2915	$3.39 \mathrm{E}-09$	-0.1808	0.1362	0.1844
	rs76987554	6	134080855	T	C		-1.8492	0.3090	$2.17 \mathrm{E}-09$	NA	NA	NA
	rs79030490	6	134087689	A	C		-1.8344	0.3091	2.96E-09	NA	NA	NA
rs11563582	rs17428380	7	27328929	T	C	EVXI/HOXA	1.3794	0.2609	$1.24 \mathrm{E}-07$	0.0863	0.1347	0.5220
	rs12535894	7	27329173	C	G		-1.2687	0.2553	$6.72 \mathrm{E}-07$	-0.0601	0.1469	0.6825
	rs113318709	7	27332148	T	C		1.3424	0.2651	$4.12 \mathrm{E}-07$	0.0128	0.1323	0.9231
	rs148340546	7	27333162	A	G		-1.3761	0.2590	1.08E-07	-0.1058	0.1375	0.4418
	rs7777128	7	27337113	C	G		1.3821	0.2577	$8.13 \mathrm{E}-08$	0.1173	0.1366	0.3905
	rs17428471	7	27337867	T	G		1.3276	0.2522	1.41E-07	0.1690	0.1534	0.2706
	rs17438166	7	27341976	T	C		1.3827	0.2581	$8.43 \mathrm{E}-08$	0.1100	0.1351	0.4158
	rs1009547	7	27342727	A	G		1.3847	0.2582	$8.15 \mathrm{E}-08$	0.1111	0.1351	0.4110
	rs55831032	7	27343535	T	C		1.3716	0.2593	$1.23 \mathrm{E}-07$	0.0878	0.1343	0.5134
	rs17438292	7	27347127	A	G		-1.3848	0.2644	$1.62 \mathrm{E}-07$	-0.0577	0.1317	0.6612
	rs17502580	7	27350607	A	G		-1.3376	0.2603	2.77E-07	-0.0581	0.1374	0.6724
	rs11563582	7	27351650	A	G		1.6125	0.2786	7.09E-09	NA	NA	NA
rs7941648	rs7941648	11	5532222	T	G	HGB2	-1.2323	$2.21 \mathrm{E}-01$	$2.43 \mathrm{E}-08$	NA	NA	NA
	rs3763880	11	5533606	T	G		1.4268	0.2679	1.01E-07	0.4701	0.2059	0.0224
	rs72887764	11	5545271	T	C		1.2862	0.2413	$9.77 \mathrm{E}-08$	0.4505	0.1893	0.0173
D DBP												
rs7372217	rs7651190	3	41765955	A	G	ULK4	-0.45	0.1099	4.20E-05	-0.3366	0.1824	0.0010
	rs 1716975	3	41960006	T	C		0.5759	0.1176	$9.67 \mathrm{E}-07$	NA	NA	NA
	rs7372217	3	41990122	A	G		-0.5514	0.1125	$9.50 \mathrm{E}-07$	NA	NA	NA
rs62312401	rs7676999	4	116987529	A	G	NDST4/TRAMILI	1.3123	2.38E-01	$3.50 \mathrm{E}-08$	NA	NA	NA
	4:116968554:GTTT	/4	116934079	T	C		-1.2314	0.2311	$9.86 \mathrm{E}-08$	-0.1433	0.1203	0.2337
	rs62312401	4	116968554	G	gTttat		-1.2686	0.2344	6.19E-08	-0.2317	0.1400	0.0979
rs11563582	rs2428433	7	27145517	T	C		-0.5765	0.1178	$9.94 \mathrm{E}-07$	-0.5602	0.1178	$1.98 \mathrm{E}-06$
	rs73071550	7	27149099	T	C		-0.5692	0.116	$9.17 \mathrm{E}-07$	-0.5541	0.1160	$1.78 \mathrm{E}-06$
	rs6461985	7	27150634	T	C		-0.5699	0.1158	$8.60 \mathrm{E}-07$	-0.5551	0.1158	$1.64 \mathrm{E}-06$
	rs7798733	7	27153281	C	G		-0.5691	0.1159	$9.05 \mathrm{E}-07$	-0.5541	0.1159	$1.75 \mathrm{E}-06$
	rs6969780	7	27159136	C	G		0.6214	0.1152	$6.95 \mathrm{E}-08$	0.5591	0.1148	$1.11 \mathrm{E}-06$
	rs6461987	7	27166956	C	G		0.6364	0.1238	$2.73 \mathrm{E}-07$	0.5453	0.1229	$9.17 \mathrm{E}-06$
	rs 1801085	7	27168590	A	G		-0.5972	0.1134	$1.40 \mathrm{E}-07$	-0.5351	0.1130	$2.17 \mathrm{E}-06$
	rs6962314	7	27170159	T	C		0.6283	0.1218	$2.46 \mathrm{E}-07$	0.5416	0.1210	$7.63 \mathrm{E}-06$
	rs6976129	7	27177746	T	C		0.6462	0.1243	$2.03 \mathrm{E}-07$	0.5558	0.1235	$6.73 \mathrm{E}-06$
	rs17471520	7	27178790	T	C		-0.6073	0.1138	$9.58 \mathrm{E}-08$	-0.5381	0.1133	$2.02 \mathrm{E}-06$
	rs17502232	7	27323604	T	G		-0.8317	0.163	$3.35 \mathrm{E}-07$	0.0601	0.0738	0.4154
	rs 17473410	7	27324196	T	G		-0.8396	0.1632	$2.68 \mathrm{E}-07$	0.0547	0.0735	0.4566
	rsi7473424	7	27324369	A	G		0.7873	0.1592	7.65E-07	-0.0475	0.0827	0.5662
	rs73073487	7	27324984	A	G		0.8186	0.1672	$9.83 \mathrm{E}-07$	-0.0810	0.0804	0.3141
	rs17502260	7	27325313	T	C		-0.7875	0.1592	$7.49 \mathrm{E}-07$	0.0474	0.0827	0.5664
	rs6961048	7	27328187	C	G		-0.7732	0.1563	$7.49 \mathrm{E}-07$	0.0381	0.0834	0.6473
	rs17428380	7	27328929	T	C		0.8543	0.1575	$5.78 \mathrm{E}-08$	0.0088	0.0763	0.9079
	rs12535894	7	27329173	C	G		-0.8122	0.1541	$1.36 \mathrm{E}-07$	-0.0222	0.0847	0.7933
	rs113318709	7	27332148	T	C		0.8363	0.1599	$1.70 \mathrm{E}-07$	-0.0321	0.0745	0.6667
	rs148340546	7	27333162	A	G		-0.846	0.1563	$6.21 \mathrm{E}-08$	-0.0159	0.0783	0.8392
	rs7777128	7	27337113	C	G		0.8556	0.1555	$3.74 \mathrm{E}-08$	0.0294	0.0778	0.7057
	rs17428471	7	27337867	T	G		0.8208	0.1521	$6.85 \mathrm{E}-08$	0.0648	0.0892	0.4675
	rs17438166	7	27341976	T	C		0.8739	0.1557	$2.01 \mathrm{E}-08$	0.0429	0.0769	0.5769
	rs1009547	7	27342727	A	G		0.8756	0.1558	$1.90 \mathrm{E}-08$	0.0435	0.0768	0.5705
	rs55831032	7	27343535	T	C		0.8894	0.1565	$1.32 \mathrm{E}-08$	0.0502	0.0761	0.5095
	rs17438292	7	27347127	A	G		-0.9136	0.1594	$1.00 \mathrm{E}-08$	-0.0481	0.0743	0.5173
	rs17502580	7	27350607	A	G		-0.8833	0.157	$1.86 \mathrm{E}-08$	-0.0478	0.0782	0.5412
	rs11563582	7	27351650	A	G		1.0151	0.1654	$8.45 \mathrm{E}-10$	NA	NA	NA
	rs917206	7	27385004	A	$\stackrel{\mathrm{G}}{\mathrm{C}}$ EVXI/HOXA	EVXI/HOXA	-1.2058	0.2447	$8.32 \mathrm{E}-07$	-0.7071	0.2310	0.0022
rs11563582 rs6969780	rs2428433	7	27145517	T			-0.5765	0.1178	$9.94 \mathrm{E}-07$	-0.0402	0.0498	0.4194
	rs73071550	7	27149099	T	C		-0.5692	0.116	$9.17 \mathrm{E}-07$	-0.0353	0.0459	0.4421
	rs6461985	7	27150634	T	C		-0.5699	0.1158	$8.60 \mathrm{E}-07$	-0.0359	0.0453	0.4273
	rs7798733	7	27153281	C	G		-0.5691	0.1159	$9.05 \mathrm{E}-07$	-0.0336	0.0449	0.4538
	rs6969780	7	27159136	C	G		0.6214	0.1152	$6.95 \mathrm{E}-08$	NA	NA	NA
	rs6461987	7	27166956	C	G		0.6364	0.1238	$2.73 \mathrm{E}-07$	0.0514	0.0695	0.4594
	rs1801085	7	27168590	A	G		-0.5972	0.1134	$1.40 \mathrm{E}-07$	NA	NA	NA
	rs6962314	7	27170159	T	c		0.6283	0.1218	$2.46 \mathrm{E}-07$	0.0476	0.0660	0.4708
	rs6976129	7	27177746	T	C		0.6462	0.1243	$2.03 \mathrm{E}-07$	0.0635	0.0709	0.3701
	rs17471520	7	27178790	T	C		-0.6073	0.1138	$9.58 \mathrm{E}-08$	-0.0241	0.0411	0.5575
	rs17502232	7	27323604	T	G		-0.8317	0.163	$3.35 \mathrm{E}-07$	0.0679	0.0738	0.3575
	rsil473410	7	27324196	T	G		-0.8396	0.1632	$2.68 \mathrm{E}-07$	0.0623	0.0734	0.3964
	rs17473424	7	27324369	A	G		0.7873	0.1592	$7.65 \mathrm{E}-07$	-0.0552	0.0827	0.5045
	rs73073487	7	27324984	A	G		0.8186	0.1672	$9.83 \mathrm{E}-07$	-0.0858	0.0804	0.2862
	rs17502260	7	27325313	T	C		-0.7875	0.1592	$7.49 \mathrm{E}-07$	0.0551	0.0827	0.5048
	rs6961048	7	27328187	C	G		-0.7732	0.1563	$7.49 \mathrm{E}-07$	0.0470	0.0833	0.5730
	rs 17428380	7	27328929	T	C		0.8543	0.1575	$5.78 \mathrm{E}-08$	-0.0014	0.0763	0.9852
	rs 12535894	7	27329173	C	G		-0.8122	0.1541	$1.36 \mathrm{E}-07$	-0.0119	0.0847	0.8884
	rs 113318709	7	27332148	T	C		0.8363	0.1599	$1.70 \mathrm{E}-07$	-0.0405	0.0744	0.5863
	rs 148340546	7	27333162	A	G		-0.846	0.1563	$6.21 \mathrm{E}-08$	-0.0061	0.0783	0.9375
	rs7777128	7	27337113	C	G		0.8556	0.1555	$3.74 \mathrm{E}-08$	0.0189	0.0778	0.8078
	rs 17428471	7	27337867	T	G		0.8208	0.1521	$6.85 \mathrm{E}-08$	0.0469	0.0892	0.5990
	rs 17438166	7	27341976	T	c		0.8739	0.1557	$2.01 \mathrm{E}-08$	0.0340	0.0768	0.6585
	rs1009547	7	27342727	A	G		0.8756	0.1558	$1.90 \mathrm{E}-08$	0.0347	0.0767	0.6511
	rs55831032	7	27343535	T	C		0.8894	0.1565	$1.32 \mathrm{E}-08$	0.0418	0.0761	0.5825
	rs17438292	7	27347127	A	G		-0.9136	0.1594	$1.00 \mathrm{E}-08$	-0.0410	0.0743	0.5808
	rs17502580	7	27350607	A	G		-0.8833	0.157	$1.86 \mathrm{E}-08$	-0.0447	0.0782	0.5673
	rs11563582	7	27351650	A	G		1.0151	0.1654	$8.45 \mathrm{E}-10$	NA	NA	NA
	rs917206	7	27385004	A	G		-1.2058	0.2447	8.32E-07	-0.6353	0.2306	0.0059
	rs2123202	9	28153553	A	C		0.6117	0.1229	6.46E-07	0.1099	0.0755	0.1454
	rs13294724	9	28157548	A	G		0.6036	0.1231	$9.38 \mathrm{E}-07$	0.1035	0.0762	0.1745

								SBP				DBP				HTN				PP		PASSOC-SHom	CPASSOC-SHet		
ID	chr	pos	${ }^{\text {A1 }}$	${ }^{\text {A } 2}$	EAF	Effect	Stderr	P.value	N	P.value	P.value	1KG_African	1KG_European												
rsil 1325995	1	38880204	t	c	0.99	-7.38	4.21	7.90E-02	5212	-2.19	2.0	$2.80 \mathrm{E}-01$	10249	-0.96	0.62	1.20E-01	9282	\|-11.25	2.27	6.80E-07	10249	19E-02	-01	-.99	-1
rs36064592	1	114462662	a	g	0.43	0.78	0.18	1.80E-05	31970	0.2	0.11	7.40E-02	31967	0.05	0.02	1.90E-02	28230	0.64	0.13	8.60E-07	31967	1.61E-03	1.51E-04	0.5	0.34
rs12063100	1	188834544	t	g	0.02	2.95	0.88	8.30E-04	19870	1.13	0.53	3.20E-02	19867	-0.19	0.11	$7.70 \mathrm{E}-02$	16108	1.88	0.63	3.00E-03	19867	2.37E-01	4.76E-07	0.02	0
rs59922837	2	154175435	a	g	0.01	4.55	1.21	1.70E-04	20703	3.54	0.7	4.50E-07	20700	0.36	0.14	1.10E-02	18451	0.67	0.83	$4.20 \mathrm{E}-01$	22314	$1.39 \mathrm{E}-05$	3.88E-06	0	0
rsi918172	2	156888500	c	g	0.36	-0.92	0.18	2.90E-07	30714	-0.51	0.11	$2.60 \mathrm{E}-06$	30711	-0.03	0.02	9.30E-02	27244	-0.44	0.13	6.00E-04	30711	1.82E-05	1.04E-06	0.41	0.11
rs7602674	2	184538648	t	${ }^{\text {c }}$	0.39	-0.95	0.19	$8.10 \mathrm{E}-07$	30714	-0.36	0.12	2.00E-03	30711	-0.06	0.02	9.70E-03	27230	-0.61	0.14	$1.20 \mathrm{E}-05$	30711	$6.63 \mathrm{E}-05$	7.00E-06	0.34	0.47
rs62180365	2	192934117	t	g	0.77	1.05	0.2	2.40E-07	31970	0.47	0.12	1.00E-04	31967	0.1	0.02	1.30E-05	27923	0.62	0.14	1.90E-05	31967	2.63E-07	6.41E-07	0.79	0.47
2:210033781:AT_A ${ }^{\text {a }}$	2	210033781	a	at	0.06	-1.39	0.39	4.00E-04	28554	0.07	0.23	7.50E-01	28551	-0.1	0.05	3.20E-02	20616	-1.62	0.29	3.10E-08	24802	4.67E-02	1.68E-06	0.06	0.13
rs737126	2	231896779	a	g	0.24	0.77	0.23	$7.20 \mathrm{E}-04$	30841	0.61	0.13	6.00E-06	30838	0.12	0.03	3.30E-06	26789	0.16	0.16	3.30E-01	28703	$7.79 \mathrm{E}-07$	1.51E-06	0.28	0.25
rsi7042306	3	5381728	a	g	0.88	-1.25	0.28	1.10E-05	31970	${ }^{-0.79}$	0.17	$3.00 \mathrm{E}-06$	31967	-0.13	0.03	1.30E-04	27728	-0.54	0.21	8.80E-03	30918	6.58E-07	5.69E-06	0.89	0.9
rs14821199 ${ }^{\text {a }}$	3	40965875	a	g	0.01	4.42	1.04	$2.30 \mathrm{E}-05$	22648	0.2	0.6	7.40E-01	22645	0.18	0.12	1.40E-01	20396	4.21	0.73	1.00E-08	22645	2.92E-02	1.87E-04	0.02	0
r87651190 ${ }^{\text {b }}$	3	41765955	a	g	0.35	0.04	0.18	8.10E-01	30356	-0.45	0.11	$4.20 \mathrm{E}-05$	30353	-0.06	0.02	8.80E-03	26906	0.43	0.13	1.30E-03	30918	$7.47 \mathrm{E}-03$	6.87E-09	0.28	0.81
rs147428270 ${ }^{\text {b }}$	3	41868721	t	c	0.63	0.09	0.21	6.80E-01	31970	-0.51	0.13	4.60E-05	31967	-0.05	0.02	5.80E-02	28443	0.47	0.15	2.00E-03	30918	$2.16 \mathrm{E}-02$	2.49E-08	0.57	0.97
rs7372217	3	41990122	a	g	0.34	-0.14	0.19	4.60E-01	29585	-0.55	0.11	9.50E-07	29582	-0.07	0.02	1.40E-03	25731	0.33	0.14	1.60E-02	28533	3.55E-04	8.21E-06	0.29	0.8
r99864989	3	52684365	t	g	0.03	2.95	0.63	$3.20 \mathrm{E}-06$	19178	1.78	0.37	1.90E-06	19175	0.31	0.08	9.70E-05	15416	1.3	0.47	6.00E-03	19740	2.99E-07	2.59E-06	0.05	
rs7654819	4	11618714	a	c	0.27	-0.6	0.19	2.00E-03	31970	-0.4	0.12	5.20E-04	31967	0.04	0.02	1.10E-01	27987	-0.23	0.14	9.20E-02	31540	9.15E-02	5.77E-08	0.29	0.3
rs192457887	4	58795698	a	c	0.99	-9.35	2.33	$6.10 \mathrm{E}-05$	14601	-0.95	1.28	4.60E-01	15515	-0.4	0.29	$1.70 \mathrm{E}-01$	14605	-8.43	1.61	1.60E-07	15515	2.60E-02	4.83E-04	1	1
rs150834401	4	103164224	t	c	0.11	1.16	0.28	4.80E-05	31970	0.86	0.17	4.80E-07	31967	0.04	0.03	1.90E-01	27648	0.31	0.2	1.20E-01	31540	9.27E-05	4.11E-06	0.14	0
rs62312401 ${ }^{\text {a }}$	4	116987529	a	g	0.94	1.64	0.4	3.80E-05	30356	1.31	0.24	3.50E-08	30353	0.13	0.05	5.00E-03	24655	0.61	0.29	3.50E-02	31540	$1.91 \mathrm{E}-06$	3.04E-07	0.96	0.77
rs182783477	4	123592734	c	g	0.98	-2.82	0.7	6.10E-05	29578	-0.45	0.43	$2.90 \mathrm{E}-01$	29575	-0.1	0.08	$2.20 \mathrm{E}-01$	24849	-2.51	0.51	7.00E-07	29575	2.24E-02	4.86E-04	0.99	1
rs115236533	5	19745715	c	g	0.01	-2.96	1.07	5.50E-03	22648	0.29	0.62	6.30E-01	22645	0.19	0.12	1.30E-01	20396	-2.92	0.74	7.70E-05	24259	9.37E-01	9.16E-07	0.01	0
rs35335431	5	31910483	a	t	0.43	-0.87	0.23	1.20E-04	30356	${ }^{-0.07}$	0.14	6.20E-01	30353	-0.03	0.03	$2.60 \mathrm{E}-01$	26120	-0.82	0.16	3.50E-07	31967	4.97E-02	9.08E-04	0.44	0.5
rs143572614	5	62024475	c	g	0.99	7.93	2.8	4.60E-03	10582	6.21	1.54	5.80E-05	10579	1.44	0.29	7.80E-07	10636	2.06	1.98	3.00E-01	10579	2.81E-06	3.38E-06	0.99	1
rsi89315540	5	108796312	t	c	0.01	6.05	1.8	7.80E-04	16865	0.84	0.99	3.90E-01	17688	0.32	0.18	7.10E-02	18871	6.48	1.21	9.40E-08	17688	$2.50 \mathrm{E}-02$	5.49E-03	0.02	0
rs2584077	6	46267046	a	c	0.01	-5.05	1.46	5.30E-04	17352	-4.16	0.83	4.90E-07	17349	-0.24	0.16	1.40E-01	17406	-0.86	1.04	4.10E-01	17349	1.64E-04	4.22E-06	0	0.06
r99385284	6	123400105	a	g	0.8	-0.47	0.25	6.10E-02	29227	-0.43	0.15	3.20E-03	29224	0.08	0.03	$6.40 \mathrm{E}-03$	25126	0.04	0.18	8.40E-01	30838	5.58E-01	$5.56 \mathrm{E}-08$	0.82	0.76
rs4487596	6	123407496	t	c	0.8	-0.59	0.23	1.10E-02	30356	-0.4	0.14	4.10E-03	30353	0.05	0.03	5.20E-02	26266	-0.11	0.16	4.90E-01	31967	$2.61 \mathrm{E}-01$	3.92E-07	0.81	0.76
rs76987554, ${ }^{\text {a,b }}$	6	134080855	t	c	0.09	-1.85	0.31	2.20E-09	31970	-0.91	0.19	1.10E-06	31967	-0.12	0.04	9.20E-04	27480	-0.99	0.22	5.70E-06	31967	8.69E-08	1.84E-08	0.09	0
rs79030490, ${ }^{\text {a }}$	6	134087689	a	c	0.09	-1.83	0.31	3.00E-09	31970	-0.92	0.19	8.70E-07	31967	-0.12	0.04	7.00E-04	27480	-0.96	0.22	1.00E-05	31967	7.01E-08	2.50E-08	0.91	1
rs62434120	6	150992370	a	t	0.15	-1.19	0.24	1.10E-06	31970	-0.69	0.15	2.80E-06	31967	-0.1	0.03	4.70E-04	27742	-0.55	0.17	1.50E-03	31967	$5.89 \mathrm{E}-07$	2.23E-06	0.17	0.08
rs6969780	7	27159136	c	g	0.3	0.82	0.19	1.70E-05	31155	0.62	0.12	6.90E-08	31152	0.08	0.02	5.30E-04	26701	0.23	0.13	8.90E-02	31152	4.06E-07	5.97E-07	0.35	0.1
r10279899 ${ }^{\text {a,b }}$	7	27328210	a	g	0.9	1.09	0.29	1.40E-04	31970	0.83	0.17	1.80E-06	31967	0.19	0.03	1.80E-08	26977	0.36	0.2	8.10E-02	31967	2.16E-08	3.24E-08	0.89	1
r11563582, ${ }^{\text {a,b }}$	7	27351650	a	g	0.13	1.61	0.28	7.10E-09	30841	1.02	0.17	8.40E-10	30838	0.16	0.03	2.20E-06	26059	0.64	0.19	1.10E-03	30838	1.51E-10	1.08E-09	0.16	0.08
rs1723953	7	45993668	a	c	0.03	1.87	0.56	9.00E-04	30393	-0.03	0.34	9.20E-01	30390	0.13	0.07	4.60E-02	26631	1.95	0.4	$9.60 \mathrm{E}-07$	30390	$5.25 \mathrm{E}-02$	3.58E-05	0.03	0
rs11977526 ${ }^{\text {b }}$	7	46008110	a	g	0.34	-0.24	0.19	$2.10 \mathrm{E}-01$	29227	0.39	0.12	7.50E-04	29224	0.01	0.02	8.40E-01	25372	-0.67	0.14	9.50E-07	30838	$4.10 \mathrm{E}-01$	$4.53 \mathrm{E}-09$	0.35	0.41
rs150785606	7	46990467	t	c	0.01	9.71	2.34	$3.30 \mathrm{E}-05$	10212	1.72	1.27	1.70E-01	11126	0.71	0.29	1.50E-02	10216	8.04	1.64	8.90E-07	11126	2.95E-03	2.69E-04	0	0
7:80293263:A_AAT	7	80293263	a	atacto	0.85	-0.78	0.29	8.00E-03	25479	-0.86	0.17	5.70E-07	25476	-0.13	0.04	4.10E-04	20999	0.15	0.21	4.80E-01	23862	1.11E-05	4.96E-06	0.82	1
rs115476423 ${ }^{\text {b }}$	7	149199964	c	g	0.94	0.32	0.38	4.10E-01	31970	0.58	0.23	1.20E-02	31967	-0.14	0.05	2.20E-03	27226	-0.22	0.27	4.20E-01	31967	9.42E-01	$4.99 \mathrm{E}-08$	0.92	1
rs1 15706913	8	14081817	t	${ }_{\text {c }}$	0.95	0.77	0.43	$7.10 \mathrm{E}-02$	29227	0.36	0.25	$1.50 \mathrm{E}-01$	29224	0.26	0.05	$2.70 \mathrm{E}-07$	23954	0.33	0.3	$2.80 \mathrm{E}-01$	30838	6.40E-04	$2.31 \mathrm{E}-06$	0.93	0.97
rs10096908	8	41641557	t	c	0.2	1.03	0.21	1.40E-06	31970	0.47	0.13	$2.30 \mathrm{E}-04$	31967	0.11	0.02	1.00E-05	27871	0.55	0.15	2.30E-04	31967	$6.21 \mathrm{E}-07$	1.63E-06	0.19	0.07
rs7006531 ${ }^{\text {a,b }}$	8	95110744	a	g	0.85	-0.85	0.24	$3.40 \mathrm{E}-04$	31970	0.31	0.14	$3.00 \mathrm{E}-02$	31967	-0.02	0.03	5.80E-01	27734	-1.16	0.17	5.00E-12	31967	$5.63 \mathrm{E}-01$	7.56E-14	0.81	1
rs186208701	8	99580116	t	c	0.99	-0.91	0.88	3.00E-01	23777	1.29	0.52	1.20E-02	23774	-0.18	0.1	7.20E-02	21525	-2.12	0.62	6.80E-04	25388	8.82E-01	7.77E-07	0.98	1
rs187821766	8	99741278	t	c	0.02	0.67	0.93	4.70E-01	14176	-1.68	0.56	2.70E-03	14173	0.19	0.1	6.50E-02	12891	2.24	0.7	1.30E-03	14173	$8.91 \mathrm{E}-01$	9.25E-08	0.02	0
rs7945883	8	122045324	a	c	0.96	1.75	0.45	1.00E-04	31155	1.1	0.27	5.90E-05	31152	0.25	0.05	1.50E-06	26392	0.73	0.32	2.20E-02	31152	6.55E-07	4.93E-06	0.96	1
rs3866719	8	134932570	t	c	0.82	1.08	0.24	4.00E-06	30714	0.58	0.14	$4.20 \mathrm{E}-05$	30711	0.11	0.03	$2.20 \mathrm{E}-05$	183238	0.54	0.17	1.30E-03	30711	5.87E-07	5.08E-06	0.87	0.45
rs78192203 ${ }^{\text {a }}$	8	142375073	a	t	0.2	-0.82	0.23	$2.60 \mathrm{E}-04$	31970	-0.77	0.14	1.30E-08	31967	-0.08	0.03	3.60E-03	27821	-0.15	0.16	$3.60 \mathrm{E}-01$	31967	2.33E-06	$1.09 \mathrm{E}-07$	0.22	,
rst14334738	9	28165671	t	c	0.94	1.65	0.42	1.00E-04	31970	1.28	0.26	5.70E-07	31967	0.11	0.05	3.40E-02	27226	0.38	0.3	$2.00 \mathrm{E}-01$	31967	2.88E-05	4.94E-06	0.92	1
rs71512425	9	28165694	a	g	0.8	0.81	0.23	3.10E-04	31970	0.7	0.13	2.30E-07	31967	0.05	0.03	8.10E-02	27879	0.12	0.16	4.40E-01	31967	$6.47 \mathrm{E}-05$	1.99E-06	0.8	0.81
rs115795127	9	85993901	t	c	0.89	0.99	0.28	5.00E-04	31970	0.48	0.17	5.50E-03	31967	0.17	0.03	1.20E-07	27676	0.59	0.2	3.70E-03	31967	5.10E-06	1.05E-06	0.86	1
rs190531342	9	114719568	t	c	0.92	-1.54	0.42	$2.10 \mathrm{E}-04$	30356	-1.02	0.25	$4.10 \mathrm{E}-05$	30353	-0.23	0.05	$2.60 \mathrm{E}-06$	25877	-0.51	0.29	8.50E-02	31967	9.63E-07	5.19E-06	0.93	0.99
rs10123054	9	128452054	t	c	0.65	-0.69	0.18	1.40E-04	31003	${ }^{-0.57}$	0.11	$2.10 \mathrm{E}-07$	31000	-0.07	0.02	1.50E-03	27582	-0.09	0.13	4.70E-01	31000	2.70E-06	1.85E-06	0.69	0.43
r28687694	9	128483092	t	c	0.26	0.87	0.2	$2.10 \mathrm{E}-05$	28472	0.57	0.12	4.40E-06	28469	0.1	0.02	4.70E-05	24483	0.3	0.15	4.30E-02	30083	5.85E-07	5.06E-06	0.25	0.22
rs78687626	9	133280171	a	g	0.01	-6.13	1.77	5.50E-04	14481	-1.36	1.04	1.90E-01	14478	-0.53	0.2	6.50E-03	13196	-7.35	1.45	$4.20 \mathrm{E}-07$	12013	4.33E-03	3.42E-03	0	0.03
10:4699372:GTGTT	10	4699372	g	gtgtt	0.08	-1.55	0.41	1.30E-04	28554	-1.23	0.24	$3.20 \mathrm{E}-07$	28551	-0.12	0.05	1.50E-02	20645	-0.29	0.3	3.30E-01	26937	1.43E-05	2.75E-06	0.08	0
10:14646769:T TCA	10	14646769	t	tca	0.59	-0.91	0.22	$3.40 \mathrm{E}-05$	26671	${ }^{-0.18}$	0.13	1.60E-01	26668	-0.04	0.03	1.30E-01	20184	-0.79	0.16	6.00E-07	25054	$9.92 \mathrm{E}-03$	$2.77 \mathrm{E}-04$	0.54	0.59
rs77932157	10	69457644	a	g	0.19	-0.21	0.23	3.50E-01	31970	0.4	0.14	$3.50 \mathrm{E}-03$	31967	${ }^{-0.03}$	0.03	3.30E-01	27847	-0.58	0.16	$2.60 \mathrm{E}-04$	31967	6.77E-01	4.61E-07	0.21	0.02
10:69514659:AAAG		69514659	a	aag	0.09	-1.14	0.35	1.30E-03	28554	0.17	0.21	4.10E-01	28551	${ }^{-0.08}$	0.04	6.40E-02	21024	${ }^{-1.16}$	0.26	5.50E-06	26937	$1.21 \mathrm{E}-01$	$5.40 \mathrm{E}-07$	0.09	0.03
rs1196093	10	114524327	c	g	0.34	-0.72	0.18	7.40E-05	31970	-0.11	0.11	3.00E-01	31967	${ }^{-0.05}$	0.02	1.90E-02	28131	-0.64	0.13	6.30E-07	31967	$6.10 \mathrm{E}-03$	5.86E-04	0.34	0.1
rs7941684 ${ }^{\text {a }}$	11	5532222	t	g	0.8	-1.23	0.22	2.40E-08	31970	${ }^{-0.54}$	0.13	4.80E-05	31967	-0.07	0.03	5.00E-03	27872	-0.68	0.16	1.40E-05	31967	3.85E-06	5.82E-07	0.81	0.78
rs145171075	11	80139405	t	g	0.98	4.46	0.91	9.50E-07	24262	1.56	0.52	2.90E-03	24259	0.4	0.1	5.80E-05	22010	3.02	0.64	2.20E-06	24259	$5.16 \mathrm{E}-06$	3.92E-06	0.98	,
ris 10842715	12	26487183	t	g	0.46	${ }^{-0.33}$	0.18	5.70E-02	30841	${ }^{-0.22}$	0.1	$3.40 \mathrm{E}-02$	30838	-0.1	0.02	4.80E-07	26649	-0.13	0.12	3.00E-01	30838	$2.50 \mathrm{E}-04$	4.26E-06	0.5	0.34
12:53049050:AC_A	12	53049050	a	ac	0.86	-1.7	0.43	8.10E-05	17426	-1.18	0.27	1.30E-05	17426	-0.24	0.06	1.10E-05	11700	-0.46	0.31	1.40E-01	15812	7.67E-07	5.49E-06	0.89	0.83
rs1 13866309	12	66516948	t	c	0.98	-3.73	0.87	1.70E-05	23760	${ }^{-0.67}$	0.52	2.00E-01	23757	-0.22	0.1	3.00E-02	22043	-3.28	0.63	1.70E-07	23757	3.91E-03	1.40E-04	0.98	1
rs144058433	13	73013077	t	c	0.14	1.19	0.28	$2.40 \mathrm{E}-05$	31970	0.85	0.17	5.00E-07	31967	0.11	0.03	6.30E-04	27732	0.32	0.2	1.10E-01	31967	1.08E-06	4.35E-06	0.12	0.05
rs2414856	15	65072461	a	g	0.51	0.87	0.18	1.00E-06	30714	0.26	0.11	1.80E-02	30711	0.07	0.02	1.10E-03	26575	0.68	0.13	$9.20 \mathrm{E}-08$	30711	$6.89 \mathrm{E}-05$	8.70E-06	0.61	0.1
rs12445099	16	57890233	a	g	0.67	0.6	0.19	$2.00 \mathrm{E}-03$	31970	0.25	0.12	$3.10 \mathrm{E}-02$	31967	0.12	0.02	$2.20 \mathrm{E}-07$	27573	0.36	0.14	8.70E-03	31967	3.40E-05	1.86E-06	0.61	0.85
rs12 149202	16	85700360	a	g	0.11	-1.34	0.3	9.20E-06	31970	-0.69	0.18	1.50E-04	31967	-0.19	0.03	5.10E-08	27644	-0.7	0.22	1.20E-03	31967	9.24E-08	2.98E-07	0.1	0.27
rs17721557	17	27260017	t	c	0.21	1.05	0.21	5.80E-07	30086	0.58	0.13	4.90E-06	30083	0.06	0.02	1.50E-02	25498	0.52	0.15	4.90E-04	30083	6.13E-06	2.22E-06	0.2	0.13
rs1 14296860	17	51285996	t	c	0.02	2.55	0.65	8.30E-05	30321	1.61	0.39	$3.80 \mathrm{E}-05$	30318	-0.04	0.08	5.90E-01	25456	1.11	0.46	1.50E-02	30318	$7.16 \mathrm{E}-03$	2.65E-07	0.03	0
rs2832976	21	32037484	t	c	0.16	-1.2	0.26	$4.20 \mathrm{E}-06$	31970	${ }_{-0.33}$	0.16	3.30E-02	31967	-0.07	0.03	1.70E-02	27732	-0.95	0.19	3.90E-07	31967	6.57E-04	3.54E-05	0.13	0.43
rs62225706	22	26680705	a	c	0.03	-3.97	0.83	1.70E-06	16221	-2.62	0.49	$1.10 \mathrm{E}-07$	15169	-0.26	0.1	6.90E-03	12891	-1.61	0.61	8.40E-03	16218	1.17E-06	4.62E-07	0.01	0.11
rs6006767	22	45927045	t	c	0.94	-1.04	0.37	$5.20 \mathrm{E}-03$	31970	-1.16	0.23	$4.40 \mathrm{E}-07$	30918	-0.08	0.05	$9.40 \mathrm{E}-02$	25742	0.05	0.27	8.50E-01	31967	$2.63 \mathrm{E}-04$	3.76E-06	0.06	0.11

variants identified with single-trait analysis reaching genome-wide significant threshold of 5.0×10^{-2}
Bold statistics are the corresponting significant statistics for significants of identified variants

id	Chromosome	Physical Position	Allele1	Allele2	EAF \quad Trait $\quad \begin{gathered}\text { Discovery } \\ \text { Effect }\end{gathered}$				P Value	v	Effect Trans-etthic Replication				Effect ${ }_{\text {SE }}^{\text {META Analssis (All) }} \begin{aligned} & \text { P Value }\end{aligned}$								
rs 113025995	1	38880204	t	c					7.93E-02	5212	¢	NA	$\frac{\mathrm{P} \text { Value }}{\text { NA }}$	N	Effect	${ }_{\text {SE }}$	P Value	N^{NA}					
					0.99	DBP	-2.192	2.0445	2.84E-01	10249	NA												
						PP	-11.2545	2.2652	6.75E-07	10249	NA												
						htN	-0.9586	0.6153	1.19E-01	9282	NA												
						CPASSOC (SHom)	NA	NA	9.19E-02	5212/102499282	NA	NA	NA	NA	NA	NA	9.19E-02	NA					
						CPASSOC (SHet)	NA	NA	$2.52 \mathrm{E}-01$	5212/102499282	NA	NA	NA	NA	NA	NA	2.52E-01	NA					
r36064592	1	114462662	a	g	0.43	SBP	0.7792	0.1819	$1.85 \mathrm{E}-05$	31970	-0.0888	0.1512	5.57E-01	35270	${ }^{0.2658}$	0.1163	2.22E-02	67240					
						DBP	0.1954	0.1094	$7.41 \mathrm{E}-02$	31967	-0.0482	0.0926	6.03E-01	35270	${ }^{0.0535}$	0.0707	4.49E-01	67237					
						Pp	0.6374	0.1295	8.64E-07	31967	-0.018	0.1093	8.69E-01	35270	0.2546	0.0835	2.30E-03	67237					
						HTN	0.0494	0.021	1.88E-02	28229.5	-0.0336	0.0197	8.85E-02	35532	${ }^{0.0053}$	0.0144	7.12E-01	63761.5					
						CPASSOC (SHom)	NA	NA	$1.61 \mathrm{E}-03$	31970/31976/28229	NA	NA	2.49E-01	35270/3270/35532	NA	NA	5.62E-03	67240/67237/63762					
						CPASSOC (SHet)	NA	NA	$1.51 \mathrm{E}-04$	31970/31976/28229	NA	NA	$2.27 \mathrm{E}-01$	35270/35270/35532	NA	NA	7.21E-04	67240167237/63762					
rs12063100	1	188834544	t	g	0.02	SBP	2.9461	0.8816	$8.33 \mathrm{E}-04$	19869.9	NA												
						DBP	1.1281	0.5251	3.17E-02	19866.9	NA												
						Pp	1.8752	0.6315	2.99E-03	19866.9	NA												
						HTN	-0.19	0.1074	7.67E-02	16108	NA												
						CPASSOC (SHom)	NA	NA	$2.37 \mathrm{E}-01$	19869/19869/16108	NA	NA	NA	NA	NA	NA	$2.37 \mathrm{E}-01$	NA					
						CPASSOC (SHet)	NA	NA	4.76E-07	19869/19869/16108	NA	NA	NA	NA	NA	NA	4.76E-07	NA					
rs59922837	2	154175435	a	g	0.01	SBP	${ }^{4.5541}$	1.2119	$1.77 \mathrm{E}-04$	20703	NA												
						DBP	3.5366	0.7007	4.48E-07	2070	NA												
						PP	0.6653	0.827	$4.21 \mathrm{E}-01$	22314	NA												
						HTN	0.3643	0.1433	1.10E-02	18451	NA												
						CPASSOC (SHom)	NA	NA	$1.39 \mathrm{E}-05$	20703/20700/18451	NA	NA	NA	NA	NA	NA	1.39E-05	NA					
						CPASSOC (SHet)	NA	NA	3.88E-06	20703/20700/18451	NA	NA	NA	NA	NA	NA	3.88E-06	NA					
rs1918172	2	156888500	c	g	0.36	SBP	-0.9154	0.1785	2.90E-07	30714	-0.1877	0.1908	3.25E-01	37930	${ }^{-0.5758}$	0.1303	1.00E-05	${ }^{68644}$					
						DBP	-0.5079	0.1081	$2.61 \mathrm{E}-06$	30711	-0.0854	0.118	4.69E-01	37930	${ }^{-0.3151}$	0.0797	7.70E-05	68641					
						${ }_{\text {Pr }}^{\text {P/ }}$	-0.4356	0.127	${ }^{6.04 E-04}$	30711	-0.1969	0.1319	1.35E-01	37930	${ }^{-0.3207}$	${ }^{0.0915}$	4.543-04	68641					
						HTN	-0.0346	0.0206	9.26E-02	27243.7	0.0023	0.0233	9.21E-01	38203	${ }^{-0.0184}$	0.0154	$2.33 \mathrm{E}-01$	65446.7					
						CPASSOC (SHom)	NA	NA	1.82E-05	30714/30711/27243	NA	NA	$8.83 \mathrm{E}-01$	37930/379301/7930	NA	NA	7.22E-04	68644/68641/65447					
						CPASSOC (SHet)	NA	NA	1.04E-06	30714/30711/27243	NA	NA	8.82E-01	3793017930037930	NA	NA	6.84E-05	68644/68641/65447					
rs7602674	2	184538648	t	c	0.39	SBP	-0.954	0.1934	8.13E-07	30714	-0.118	0.1458	$4.18 \mathrm{E}-01$	36162	${ }^{-0.4211}$	0.1164	2.99E-04	66876					
						DBP	-0.3614	0.1167	1.96E-03	30711	-0.1669	0.0893	6.18E-02	36162	${ }^{-0.2387}$	0.0709	7.64E-04	66873					
						PP	-0.6061	0.1387	$1.23 \mathrm{E}-05$	30711	0.038	0.1043	7.15E-01	36162	${ }^{-0.1945}$	0.0833	1.96E-02	66873					
						htN	-0.0578	0.0223	9.66E-03	27230.4	-0.0077	0.0187	6.81E-01	36416	${ }^{-0.0284}$	0.0143	4.76E-02	63646.4					
						CPASSOC (SHom)	NA	NA	$6.63 \mathrm{E}-05$	30714/30711/27230	NA	NA	9.78E-02	36162/36162/36416	NA	NA	1.40E-04	66876/66873/[3646					
						CPASSOC (SHet)	NA	NA	7.00E-06	30714/30711/27230	NA	NA	$1.73 \mathrm{E}-01$	36162/36162/36416	NA	NA	3.75E-05	66876/66873/63646					
rs62180365	2	192934117	t	g	0.77	SBP	1.0454	0.2024	$2.41 \mathrm{E}-07$	31970	-0.0247	0.1277	$8.47 \mathrm{E}-01$	38978	${ }^{0.2799}$	0.108	9.54E-03	70948					
						DBP	0.4723	0.1217	$1.05 \mathrm{E}-04$	31967	0.0638	0.0785	4.16E-01	38978	0.1838	0.066	5.32E-03	70945					
						PP	0.6162	0.1439	1.86E-05	31967	-0.1154	0.0912	2.06E-01	38978	0.0942	0.077	2.22E-01	70945					
						HTN	0.1016	0.0233	$1.31 \mathrm{E}-05$	27922.8	-0.0192	0.0168	$2.51 \mathrm{E}-01$	39247	0.022	0.0136	1.06E-01	67169.8					
						CPASSOC (SHom)	NA	NA	$2.63 \mathrm{E}-07$	31970/31967/27922	NA	NA	5.44E-01	38978/38978/9247	NA	NA	$2.36 \mathrm{E}-05$	70948/7094/67170					
						CPASSOC (SHet)	NA	NA	6.41E-07	31970/31967/27922	NA	NA	4.19E-01	38978/39778/3247	NA	NA	3.22E-05	70948/7094/67170					
2:210033781:AT_A	2	210033781	a	at	0.06	SBP	-1.3903	0.3929	$4.03 \mathrm{E}-04$	28554	-0.0632	${ }^{0.2028}$	$7.55 \mathrm{E}-01$	49649	${ }^{-0.3424}$	0.1802	5.75E-02	${ }^{78203}$					
						DBP	0.0739	0.2321	7.50E-01	28551	-0.0529	0.1233	6.68E-01	49649	${ }^{-0.025}$	0.1089	8.18E-01	78200					
						${ }_{\text {PP }}^{\text {P/ }}$	${ }^{-1.6191}$	0.2926	3.13E-08	24882	-0.2198	${ }^{0.1308}$	9.30E-02	${ }^{46093}$	${ }^{-0.453}$	0.1194	1.49E-04	70895					
						HTN	-0.1021	0.0475	3.17E-02	20615.5	-0.0153	0.0275	5.79E-01	36192	${ }^{-0.0371}$	0.0238	1.19E-01	56807.5					
						CPASSOC (SHom)	NA	NA	4.67E-02	28554/28551/20615	NA	NA	$4.25 \mathrm{E}-01$	49649/496699/36192	NA	NA	1.25E-01	78203/78200/56808					
						CPASSOC (SHet)	NA	NA	1.68E-06	28544/28551/20615	NA	NA	7.56E-01	496499496493/36192	NA	NA	$7.61 \mathrm{E}-05$	78203/78200/56808					
rs737126	2	231896779	a	g	0.24	SBP	0.7711	0.2281	$7.23 \mathrm{E}-04$	${ }^{30841}$	${ }^{0.1842}$	0.1775	3.00E-01	${ }^{35171}$	${ }^{0.4056}$	0.1401	3.79E-03	66012					
						DBP	0.6105	0.1348	5.97E-06	30838	0.0421	0.1087	6.98E-01	35171	${ }^{0.2661}$	0.0846	1.66E-03	66009					
						${ }^{\text {PP }}$	0.1599	0.1628	$3.26 \mathrm{E}-01$	28703	0.1227	0.1261	3.30E-01	35171	${ }^{0.1367}$	0.0997	1.70E-01	${ }_{6} 68874$					
						HTN	0.1225	0.0263	3.27E-06	26789	0.0207	0.0225	3.58E-01	35399	${ }_{0}^{0.0638}$	0.0171	1.93E-04	62188					
						CPASSOC (SHom)	NA	NA	7.79E-07	30841/30838/26789	NA	NA	3.30E-01	35171/35171/35399	NA	NA	1.18E-05	66012/66009/62188					
						CPASSOC (SHet)	NA	NA	$1.51 \mathrm{E}-06$	30841/30838/26789	NA	NA	6.77E-01	35171/35171/35399	NA	NA	5.76E-05	66012/66009/62188					
rs 17042306	3	5381728	a	g	0.88	SBP	-1.2546	0.2849	1.06E-05	31970	0.397	0.254	$1.18 \mathrm{E}-01$	35125	${ }^{-0.3344}$	0.1896	$7.78 \mathrm{E}-02$	67095					
						DBP	-0.7937	0.17	3.05E-06	31967	0.1412	0.1565	3.67E-01	35125	-0.2877	0.1151	1.25E-02	67092					
						PP	-0.538	0.2053	8.77E-03	30918	0.3106	0.1873	9.73E-02	35125	${ }^{-0.0749}$	0.1384	$5.88 \mathrm{E}-01$	66043					
						HTN	-0.126	0.0329	$1.30 \mathrm{E}-04$	27727.9	-0.0011	0.0332	9.74E-01	35383	${ }^{-0.0641}$	0.0234	${ }^{6.08 E-03}$	63110.9					
						CPASSOC (SHom)	NA	NA	6.58E-07	31970/31967/27727	NA	NA	$7.03 \mathrm{E}-01$	35125/35125/35833	NA	NA	2.96E-05	67095/67092/63111					
						CPASSOC (SHet)	NA	NA	5.99E-06	31970/31967/27727	NA	NA	4.46E-01	35125/3125/3583	NA	NA	9.94E-05	67095/67092/63111					
rs1 1482199	3	40968875	a	g	0.01	SBP	4.4192	1.0433	$2.28 \mathrm{E}-05$	${ }^{22648}$	-1.7438	2.3296	4.54E-01	13817	${ }^{3.3896}$	0.9522	3.71E-04	36465					
						DBP	0.2012	0.6004	$7.38 \mathrm{E}-01$	22645	-0.569	1.4464	6.94E-01	13817	0.088	0.5545	8.74E-01	36462					
						PP	4.2099	0.7349	$1.01 \mathrm{E}-08$	22645	-0.3834	0.8188	6.40E-01	16476	2.1606	0.5469	7.80E-05	39121					
						HTN	0.1781	0.121	$1.41 \mathrm{E}-01$	20396	-0.2443	0.1603	1.28E-01	16692	0.0248	0.0966	7.97E-01	37088					
						CPASSOC (SHom)	NA	NA	2.92E-02	22648/22645/20396	NA	NA	5.10E-01	13817/13817/16922	NA	NA	1.10E-01	36465/36462/37088					
						CPASSOC (SHet)	NA	NA	1.87E-04	22648/22645/20396	NA	NA	7.50E-01	13817/13817/16922	NA	NA	$4.00 \mathrm{E}-03$	36465/36462/37088					
rs7651190 ${ }^{\text {a }}$	3	41765955	a	g	0.35	SBP	0.0447	0.1825	8.07E-01	30356	-0.0501	0.1392	7.19E-01	51662	${ }^{-0.0152}$	0.1107	8.91E-01	82018					
						DBP	-0.4501	0.1099	4.20E-05	30353	-0.3808	0.0863	1.02E-05	51662	${ }^{-0.4072}$	0.0679	1.97E-09	82015					
						PP	0.4271	0.1323	$1.25 \mathrm{E}-03$	30918	0.125	0.099	2.07E-01	51662	0.2335	0.0793	3.23E-03	82580					
						HTN	-0.0563	0.0215	8.79E-03	26905.7	-0.0179	0.0188	3.39E-01	51935	${ }^{-0.0345}$	0.0141	$1.46 \mathrm{E}-02$	78840.7					
						CPASSOC (SHom)	NA	NA	7.47E-03	30356/30353/26905	NA	NA	$1.35 \mathrm{E}-01$	51662/1662/51935	NA	NA	1.42E-02	82018/82015/78841					
						CPASSOC (SHet)	NA	NA	6.87E-09	30356/30353/26905	NA	NA	$1.65 \mathrm{E}-04$	51662/1662/51935	NA	NA	9.85E-11	82018822015/78841					
rs147428270	3	41868721	t	c	0.63	SBP	0.0861	0.2097	$6.81 \mathrm{E}-01$	31969.9	${ }^{-0.265}$	0.2884	3.58E-01	40344	${ }^{-0.0354}$	0.1696	$8.35 \mathrm{E}-01$	72313.9					
						DBP	-0.5125	0.1258	4.99E-05	31966.9	-0.5587	0.1837	$2.35 \mathrm{E}-03$	40344	${ }^{-0.5273}$	0.1038	3.78E-07	72310.9					
						PP	0.4715	0.153	2.05E-03	30917.9	-0.4352	0.2109	3.90E-02	40344	0.1588	0.1238	$2.00 \mathrm{E}-01$	71261.9					
						HTN	-0.0465	0.0245	5.79E-02	28442.7	-0.0216	0.0401	5.89E-01	40581	${ }^{-0.0397}$	0.0209	5.73E-02	69023.7					
						CPASSOC (SHom)	NA	NA	2.16E-02	31969/1966/28442	NA	NA	2.81E-01	40344/40344/40581	NA	NA	6.52E-02	72314/72311/6924					
						CPASSOC (SHet)	NA	NA	2.49E-08	31969/1966/28442	NA	NA	$2.47 \mathrm{E}-01$	40334/4034440581	NA	NA	1.94E-06	72314/72311/69024					
rs5372217 ${ }^{\text {b }}$	3	41990122	a	g	0.34	SBP	-0.1391	0.1887	$4.61 \mathrm{E}-01$	29585	-0.0317	0.1393	$8.20 \mathrm{E}-01$	51725	${ }^{-0.0696}$	0.1121	5.35E-01	81310					
						DBP	-0.5514	0.1125	9.50E-07	29582	-0.4255	0.0863	8.11E-07	51725	-0.4721	0.0685	5.32E-12	81307					
						Pp	${ }_{0} 0.3276$	0.1354	1.55E-02	28533	0.1578	0.099	1.11E-01	51725	0.2169	0.0799	6.64E-03	80258					
						htn	-0.0697	0.0218	1.39E-03	25730.9	-0.0205	0.0188	2.74E-01	51998	${ }^{-0.0414}$	0.0142	3.57E-03	77728.9					
						CPASSOC (SHom)	NA	NA	3.55E-04	29585/29582/25730	NA	NA	1.42E-01	51725/1725/51998	NA	NA	1.74E-03	8131081307/77729					
						CPASSOC (SHet)	NA	NA	$8.21 \mathrm{E}-06$	29585/29582/25730	NA	NA	6.53E-08	51725/1725/51998	NA	NA	1.41E-11	8131081307/77729					
r9984989	3	52684365	t	g	0.03	SBP	2.9529	0.6338	$3.18 \mathrm{E}-06$	19178	1.6138	1.5936	$3.11 \mathrm{E}-01$	${ }^{11311}$	2.77	0.5889	$2.56 \mathrm{E}-06$	30489					
						DBP	1.7846	0.3749	1.93E-06	19175	0.2876	1.1603	8.04E-01	11311	1.6431	0.3567	4.11E-06	30486					
						${ }_{\text {Pr }}^{\text {P }}$	${ }^{1.3032}$	0.4743	${ }^{6.015-03}$	19740	1.504	1.2418	2.26E-01	11311	${ }_{1}^{1.3288}$	${ }^{0.4431}$	${ }_{\text {2 }}^{\text {2 }}$. $715 \mathrm{E}-036$	31051					
						HTN	0.3123	0.0801	9.70E-05	15416	0.6501	0.2395	6.64E-03	11311	${ }^{0.3463}$	0.076	5.15E-06	26727					
						${ }^{\text {CPASSOC (}}$ (SHom)	NA	NA	2.99E-07	19178/19175/15416	NA	NA	3.48E-01	11311/1311/11311	NA	NA	1.27E-05	30048930486816727					
						CPASSOC (SHet)	NA	NA	$2.59 \mathrm{E}-06$	19178/19175/15416	NA	NA	8.59E-02	11311/1311/13311	NA	NA	1.25E-05	30489/30486/26727					
rs7654819	4	11618714	a	c	0.27	SBP	${ }^{-0.5974}$	0.193	1.97E-03	31970	-0.0398	0.1612	8.05E-01	37297	${ }^{-0.269}$	0.1237	2.97E-02	69267					
						DBP	-0.4027	0.1161	5.25E-04	31967	-0.0347	0.098	$7.23 \mathrm{E}-01$	37297	${ }^{-0.1877}$	0.0749	1.22E-02	69264					
						PP	-0.2326	0.138	9.21E-02	31540	0.011	0.1194	9.27E-01	37297	${ }^{-0.0933}$	0.0903	3.02E-01	68837					
						HTN	0.0358	0.0222	$1.06 \mathrm{E}-01$	27987.3	-0.0114	0.0212	5.91E-01	37570	0.0111	0.0153	$4.68 \mathrm{E}-01$	${ }_{692676265555757}$					
						CPASSOC (SHom)	NA	NA	9.15E-02	31970/31967/27987	NA	NA	$7.05 \mathrm{E}-01$	37297/37297/37570	NA	NA	3.25E-01	69267/69264/65557					
						CPASSOC (SHet)	NA	NA	5.77E-08	31970/31967/27987	NA	NA	$9.68 \mathrm{E}-01$	37297/37297/37570	NA	NA	7.08E-06	69267/69264/65557					
rs 192457787	4	58795698	a	c	0.99	SBP	-9.3475	2.3309	$6.07 \mathrm{E}-05$	14601	NA												
						DBP	-0.9472	1.2754	4.58E-01	15515	NA												
						Pp	-8.4329	1.6081	$1.57 \mathrm{E}-07$	1515	NA												
						htN	${ }^{-0.3983}$	0.2886	1.68E-01	14605	NA												
						CPASSOC (SHom)	NA	NA	$2.60 \mathrm{E}-02$	14601/15515/14605	NA	NA	$1.00 \mathrm{E}+00$	NA	NA	NA	2.60E-02	NA					
						CPASSOC (SHet)	NA	NA	$4.83 \mathrm{E}-04$	14601/15515/14605	NA	NA	$1.00 \mathrm{E}+00$	NA	NA	NA	4.83E-04	NA					
rs 150834401	4	10316424	t	c	0.11	SBP	1.156	0.2842	4.75E-05	31970	0.0365	0.845	$9.66 \mathrm{E}-01$	24420	1.0422	0.2694	1.09E-04	56390					
						DBP	0.8647	0.1717	4.77E-07	31967	0.1027	0.6102	$8.66 \mathrm{E}-01$	24420	0.8088	0.1653	9.91E-07	56387					
						PP	${ }_{0}^{0.3146}$	${ }^{0.2016}$	1.19E-01	31540	-0.1388	${ }_{0}^{0.6593}$	8.33E-01	24420	${ }^{0.2758}$	0.1928	${ }^{1.535-01}$	55960 52063					
						HTN	0.0434	0.0329	1.88E-01	27648.3	0.0609	0.1311	6.42E-01	24420	0.0444	0.0319	1.64E-01	52068.3					
						CPASSOC (SHom)	NA	NA	9.27E-05	31970/31967/27648	NA	NA	9.50E-01	24420/24420/24420	NA	NA	9.66-03	56390/56387/52068					
						CPASSOC (SHet)	NA	NA	4.11E-06	31970/31967/27648	NA	NA	4.90E-01	24420/24420/24420	NA	NA	8.51E-05	56390/56387/52068					
rs62312401	4	116987529	a	g	0.94	SBP	1.6367	0.3976	3.85E-05	${ }^{30356}$	${ }^{0.1851}$	0.173	$2.85 \mathrm{E}-01$	46511	${ }^{0.4162}$	0.1587	8.71E-03	76867					
						DBP	1.3123	0.238	$3.50 \mathrm{E}-08$	30353	${ }^{0.0806}$	${ }^{0.1065}$	4.49E-01	46511	${ }^{0.2861}$	0.0972	3.25E-03	76864					
						PP	0.6084	0.2881	3.47E-02	31540	0.1673	0.1268	1.87E-01	46511	0.2389	0.116	3.95E-02	78051					
						${ }_{\text {HTN }}$	${ }^{0.1321}$	0.0471	5.00E-03	24654.7	0.0187	0.0229	4.14E-01	${ }_{46146146726}$	${ }^{0.0403}$	${ }^{0.0206}$	5.01E-02	71380.7					
						CPASSOC (SHom)	NA	NA	1.91E-06	30356/30353/24654	NA	NA	1.09E-01	46511/46511/46726	NA	NA	1.29E-05	76867/76864/71381					
						CPASSOC (SHet)	NA	NA	3.04E-07	30356/30353/24654	NA	NA	4.97E-01	46511/46511/46726	NA	NA	2.27E-05	76867/7686471381					

10102/00711	-			s	\%,0	HTN CPASSOC (SHom) CPASSOC (SHet)	$\begin{array}{r} -0.1031 \\ \text { NA } \\ \text { NA } \end{array}$	$\begin{array}{r} 0.0835 \\ \text { NA } \\ \text { NA } \\ \hline \end{array}$	$\begin{aligned} & 2.17 \mathrm{E}-01 \\ & 2.24 \mathrm{E}-02 \\ & 4.86 \mathrm{E}-04 \end{aligned}$	$\begin{array}{r} 24849 \\ 29578 / 29575 / 24849 \\ 29578 / 29575 / 24849 \end{array}$	$\begin{array}{r} -1.3067 \\ \text { NA } \\ \text { NA } \end{array}$	$\begin{array}{r} 32.4195 \\ \text { NA } \\ \text { NA } \\ \hline \end{array}$	$\begin{aligned} & 9.68 \mathrm{E}-01 \\ & 9.32 \mathrm{E}-01 \\ & 9.97 \mathrm{E}-01 \end{aligned}$	$\begin{array}{r} 3428 \\ 3428 / 3428 / 3228 \\ 3428 / 3428 / 3428 \end{array}$	-0.1031 NA NA N	0.0835 NA NA	$\begin{aligned} & 2.17 \mathrm{E}-01 \\ & 1.02 \mathrm{E}-01 \\ & 4.18 \mathrm{E}-03 \\ & \hline \end{aligned}$	$\begin{array}{r} 28277 \\ 33006 / 33003 / 28277 \\ 33006 / 33003 / 28277 \end{array}$
rs1 15236533	5	19745715	c	g	0.01	SBP	-2.9626	1.0665	5.47--03	22648	NA							
						DBP	0.2942	0.617	$6.34 \mathrm{E}-01$	22645	NA							
						${ }^{\text {PP }}$	-2.9243	0.7398	7.72E-05	24259	NA							
						HTN	${ }^{0.1867}$	0.1245	1.34--01	${ }^{203969}$	NA							
						CPASSOC (SHom) CPASSOC (SHet)	$\begin{aligned} & \text { NA } \\ & \text { NA } \end{aligned}$	NA NA	$\begin{aligned} & 9.37 \mathrm{E}-01 \\ & 9.16 \mathrm{E}-07 \end{aligned}$	22648/22645/20396	${ }_{\text {Na }}^{\text {NA }}$	NA	NA NA	NA NA	NA	NA	9.37E-01	NA
r353334431	5	31910483	a	t	0.43	SBP	-0.8718	0.2263	$1.17 \mathrm{E}-04$	30355.7	-0.1061	0.1677	5.27E-01	${ }^{34243}$	${ }^{-0.3777}$	0.1348	5.07E-03	64598.7
						DBP	-0.0673	0.136	6.21E-01	30352.7	-0.0646	0.102	5.26E-01	34243	-0.0656	0.0816	4.22E-01	64995.7
						${ }^{\text {PP }}$	-0.8169	0.1603	3.46E-07	31966.7	-0.0615	0.1244	$6.21 \mathrm{E}-01$	34243	-0.3455	0.0983	$4.40 \mathrm{E}-04$	662097
						HTN	-0.0302	0.027	2.64E-01	26120.3	0.0087	0.0213	$6.81 \mathrm{E}-01$	34223	-0.0062	0.0167	7.12E-01	60543.3
						CPASSOC (SHom)	NA	NA	4.97E-02	30355/30352/26120	NA	NA	9.50E-01	34423/3423/34423	NA	NA	4.69E-01	64599/64596/60543
						CPASSOC (SHet)	NA	NA	9.08E-04	30355/30352/26120	NA	NA	9.99E-02	34423/34423/3423	NA	NA	1.78E-03	64599/64596/60543
rs143572614	5	6202475	c	g	0.99	SBP	7.9343	2.7977	4.57E-03	10582	NA							
						DBP	6.2089	1.5436	5.76E-05	10579	NA							
						${ }^{\text {PP }}$	${ }_{2}^{2.0587}$	1.9795	2.98E-01	10579	NA							
						HTN	1.4411	0.2917	7.81E-07	10636	NA							
						CPASSOC (SHom)	NA	NA	2.81E-06	10582/10579/10636	NA	NA	NA	NA	NA	NA	2.81E-06	NA
						CPASSOC (SHet)	NA	NA	3.38E-06	10582/10579/10636	NA	NA	NA	NA	NA	NA	3.38E-06	NA
rs189315540	5	108796312	t	c	0.01	SBP	6.0518	1.8012	7.80E-04	1686	0.1749	2.0122	9.31E-01		${ }^{3.4375}$	1.3421	1.048-02	${ }^{30583}$
						DBP	0.8433	0.985	3.92E-01	17688	0.5288	1.3344	6.92E-01	13718	0.7323	0.7927	3.56E-01	31406
						PP	6.4812	1.2143	9.44E-08	17688	-0.3142	1.2874	8.07E-01	13718	${ }^{3.2819}$	0.8834	$2.03 \mathrm{E}-04$	31406
						HTN	0.3229	0.1787	7.08E-02	18871	${ }_{0} 0.0832$	0.321	7.96E-01	1397	0.2662	0.1561	8.82E-02	32845
						CPASSOC (SHom)	NA	NA	2.50--02	16865/17699/18871	NA	NA	7.64E-01	13718/13718/13974	NA	NA	9.46E-02	30583/31406/32845
						CPASSOC (SHet)	NA	NA	5.49E-03	16865/17699/18871	NA	NA	NA	13718/13718/13974	NA	NA	5.49E-03	30583/31406/32845
rs2584077	6	46267046	a	c	0.01	SBP	-5.0528	1.4592	5.35E-04	17352	0.4931	0.4712	2.95E-01	36925	-0.0305	0.4484	$9.46 \mathrm{E}-01$	54277
						DBP	4.1562	0.8261	4.87--07	17349	0.5131	0.2855	7.23E-02	36925	0.0149	0.2698	9.56E-01	54274
						PP	${ }^{-0.857}$	1.0407	4.10E-01	17349	${ }_{0}^{0.1266}$	${ }^{0.3656}$	${ }^{7.29 \mathrm{E}-01}$	36925 37187	${ }^{0.0185}$	${ }^{0.345}$	9.57E-01	${ }_{54274}^{54593}$
						HTN	-0.236	0.1614	1.44E-01	17406	${ }^{0.1471}$	0.0594	1.33E-02	37187	0.1014	0.0558	6.91E-02	54593
						CPASSOC (SHom)	NA	NA	1.64E-04	17352/17349/17406	NA	NA	5.81E-02	36925/36925/37187	NA	NA	1.76E-04	54277/54274/54593
						CPASSOC (SHet)	NA	NA	4.22E-06	17352/1734917406	NA	NA	2.11E-01	36925/36925/37187	NA	NA	3.02E-05	54277/54274/54593
r99385284	6	123400105	a	g	0.80	SBP	-0.4677	0.2499	6.13E-02	29227	0.0645	0.1321	6.25E-01	48897	${ }^{-0.0517}$	0.1168	6.58E-01	${ }^{78124}$
						DBP	-0.4332	0.1471	3.24--03	2922	0.0065	0.0817	9.36E-01	48897	-0.0971	0.0714	1.74E-01	78121
						PP	0.0352	0.1762	8.42E-01	30838	${ }_{0} 0.0606$	0.0927	5.13E-01	48897	0.0551	0.0821	5.02E-01	79735
						HTN	0.0784	0.0287	6.40--03	25125.7	0.0151	0.0186	4.17E-01	4914	0.0338	0.0156	3.02E-02	74268.7
						${ }^{\text {CPASSOC (}}$ (Hom)	NA	NA	5.58E-01	29227/29224/25125	NA	NA	$1.22 \mathrm{E}-01$	48897/48897/49143	NA	NA	1.89E-01	78124/78121/74269
						CPASSOC (SHet)	NA	NA	2.56E-08	29227/29224/25125	NA	NA	2.74E-01	48897/48897/49143	NA	NA	1.09E-06	78124/78121/74269
rs4487596	6	123407496	t	c	0.80	SBP	${ }^{-0.585}$	${ }^{0.2296}$	1.088-02	${ }^{30356}$	${ }^{-0.1053}$	${ }^{0.1538}$	4.94E-01	${ }^{37389}$	${ }^{-0.2539}$	${ }^{0.1278}$	4.69E-02	67745
						DBP	-0.3962	0.1381	4.111-03	30353	-0.0794	0.0947	4.02E-01	37389	-0.1807	0.0781	$2.07 \mathrm{E}-02$	67742
						PP	-0.1145	0.1642	4.85E-01	31967	${ }^{-0.015}$	0.1079	8.89E-01	37389	${ }^{-0.045}$	0.0902	6.18E-01	69356
						hTN	0.0516	0.0265	5.18E-02	26266.3	-0.0106	0.0193	5.83E-01	37645	0.0109	0.0156	4.84E-01	63911.3
						CPASSOC (SHom)	NA	NA	2.61E-01	30356/30353/26266	NA	NA	6.79E-01	37389/77389/37645	NA	NA	5.44E-01	67745/67742/(3911
						CPASSOC (SHet)	NA	NA	3.92E-07	30356/3035322626	NA	NA	$9.65 \mathrm{E}-01$	37389/37389/37645	NA	NA	3.79E-05	67745/67742/63911
rs76987554 ${ }^{\text {1.c }}$	6	134088855	t	c	0.09	SBP	-1.8492	0.309	2.17--99	31969.9	-1.2266	0.5259	1.97E-02	30327	${ }^{-1.6894}$	0.2664	2.28E-10	${ }^{62296.9}$
						DBP	-0.905	0.1859	1.12E-06	31966.9	-0.3548	0.3489	3.99E-01	29101	-0.7833	0.1641	$1.80 \mathrm{E}-06$	61067.9
						PP	-0.9899	0.2182	5.73E-06	31966.9	${ }^{-0.4173}$	${ }^{0.4025}$	3.00E-01	29101	-0.8598	0.1918	7.38E-06	61067.9
						HTN	-0.1184	0.0357	9.16E-04	27480	${ }^{-0.1135}$	0.0781	1.46E-01	29336	-0.1176	${ }^{0.0325}$	2.94-04	56516
						CPASSOC (SHom)	NA	NA	8.99E-08	31969/31966/27480	NA	NA	$1.95 \mathrm{E}-01$	30327/29101/29036	NA	NA	${ }^{8.66 E-07}$	62297/1068/56516
						CPASSOC (SHet)	NA	NA	1.84E-08	31969/31966/27480	NA	NA	1.22E-01	30327/29101/29036	NA	NA	1.22E-07	62297/61068/56516
rs79030490	6	134087689	a	c	0.09	SBP	-1.8344	0.3091	2.96E-09	31969.9	-6.4041	4.0623	${ }^{1.15 E-01}$	${ }^{14157}$	${ }^{-1.8607}$	${ }^{0.3082}$	$1.57 \mathrm{E}-09$	46126.9
						DBP	-0.9154	0.186	8.65E-07	31966.9	4.2993	2.5996	9.82E-02	14157	${ }^{-0.9326}$	0.1855	4.98E-07	46123.9
						PP	-0.9636 -0.1212	$\begin{aligned} & 0.2185 \\ & 0.0257 \end{aligned}$	$1.03 \mathrm{E}-05$ $6.98 \mathrm{E}-04$	31966.9 27499	-4.4041 0.0771	${ }^{3.2621}$	1.77E-01	14157 1457	-0.979 -0.1208	0.218 0.0357	${ }_{7}^{7.11 \mathrm{E}-06}$	${ }_{416363.7}^{4619}$
						HTN	-0. 1212	0.0357	6.98E-04	27479.7	${ }^{0.0771}$	0.7941	9.23E-01	14157	-0.1208	0.0357	7.06E-04	41636.7
						CPASSOC (SHom)	NA	NA	7.01E-08	31969/1966/27479	NA	NA	$2.85 \mathrm{E}-01$	14157/14157/14157	NA	NA	3.74E-07	46127/4612441637
						CPASSOC (SHet)	NA	NA	2.50E-08	319693196627479	NA	NA	1.67E-01	14157/14157/14157	NA	NA	8.49E-08	46127/4612441637
rs62434120 ${ }^{\text {b }}$	6	150992370	a	t	0.15	SBP	-1.1882	0.2434	$1.05 \mathrm{E}-06$	31970	-0.7336	0.276	2.70E-03	3774	-0.9925	0.1726	5.72E-09	69714
						DBP	-0.686	0.1465	2.82E-06	31967	-0.4249	0.1683	1.16E-02	37744	-0.5734	0.1105	$2.11 \mathrm{E}-07$	69711
						${ }_{\text {PP }}^{\text {P/ }}$	-0.5495	0.1728	1.488-03	31967	-0.2061	0.2221	$3.08 \mathrm{E}-01$	37744	-0.4045	0.1313	${ }^{2.07 \mathrm{E}-03}$	69711
							-0.0967	0.0276	4.70E-04	27741.9	-0.0817	0.0367	$2.61 \mathrm{E}-02$	38015	${ }^{-0.0913}$	0.0221	3.51E-05	65756.9
						CPASSOC (SHom)	NA	NA	5.89E-07	31970/31967/27742	NA	NA	2.42E-02	37744/37744/38015	NA	NA	4.75E-07	69714/69711/69757
						CPASSOC (SHet)	NA	NA	$2.23 \mathrm{E}-06$	31970/31967/27742	NA	NA	1.57E-01	37744/37744/38015	NA	NA	1.23E-05	69714/69711/69757
rs6969780 ${ }^{\text {b }}$	7	27159136	c	g	0.30	SBP	0.8198	0.1903	$1.65 \mathrm{E}-05$	31155	0.6075	0.1521	6.46E-05	54245	0.6902	0.1188	${ }^{6} .23 \mathrm{E}-09$	85400
						DBP	0.6214	0.1152	6.95E-08	31152	0.3501	0.0945	2.12E-04	54245	0.4593	0.0731	3.27E-10	85397
						PP	0.2282	0.1343	8.94E-02	31152	0.3158	0.1123	4.90E-03	51578	0.2798	${ }^{0.0861}$	${ }^{1.16 \mathrm{E}-03}$	82730
						HTN	0.0779	0.0225	5.26E-04	26700.8	${ }^{0.0719}$	0.0209	5.84E-04	5452	0.0747	0.0153	${ }^{1.08 E-06}$	
						CPASSOC (SHom)	NA	NA	4.06E-07	31155/31152/26700	Na	NA	4.29E-04	54245/54245/54452	NA	Na	9.92E-09	85400085397/8153
						CPASSOC (SHet)	NA	NA	5.97E-07	31155/31152/26700	NA	NA	5.80E-03	54245/54245/54452	NA	NA	2.43E-07	85400085397781153
rs10279895	7	27328210	a	g	0.90	${ }_{\text {SBP }}$	1.0947	${ }^{0.2879}$	$1.43 \mathrm{E}-04$	31970	${ }^{0.3865}$	0.6401	5.46E-01	29101	${ }^{0.9755}$	${ }^{0.2626}$	$2.03 \mathrm{E}-04$	${ }^{61071}$
						DBP	0.8302	0.1738	1.78E-06	31967	${ }^{0.3721}$	0.3931	3.44E-01	29101	0.7553	0.159	2.02E-06	61068
						PP	0.3565	0.2044	8.11E-02	31967	${ }_{0}^{0.3871}$	0.6392	5.45E-01	26435	0.3593	0.1947	6.49E-02	58402
						HTN	0.1894	0.0337	1.84--08	26977.3	0.1252	0.0885	1.57E-01	29036	0.1813	0.0315	8.63E-09	56013.3
						CPASSOC (SHom)	NA	NA	2.16E-08	31970/31967/26977	NA	NA	4.19E-01	29101/29101/29036	NA	NA	6.52E-07	61071/61068/56013
						CPASSOC (SHet)	NA	NA	3.24--08	31970/31967/26977	NA	NA	4.93E-01	29101/29101/29036	NA	NA	1.18E-06	61071/61068/56013
rs11563582 ${ }^{\text {a }}$	7	27351650	a	g	0.13		${ }^{1.6125}$	0.2786	7.09E-09	${ }^{30841}$	${ }_{0}^{0.7026}$	${ }^{0.1991}$	$4.17 \mathrm{E}-04$	53978	1.0102	${ }^{0.162}$	$4.47 \mathrm{E}-10$	${ }_{8819}$
						dBP	1.0151	0.1654	8.45E-10	30838	0.4707	0.1233	1.35E-04	53978	0.6652	0.0989	1.71E-11	84816
						${ }^{\text {PP }}$	0.6381	0.1948	1.06E-03	30838	${ }^{0.3345}$	0.1491	2.49E-02	51319	${ }^{0.4466}$	0.1184	1.62E-04	82157
						HTN	0.1566	0.0331	$2.24 \mathrm{E}-06$	26058.5	0.0886	0.0266	8.82E-04	54179	0.1153	0.0208	2.74E-08	80237.5
						CPassoc (SHom)	Na	NA	1.518-10	30841/38838/26058	NA	NA	7.98E-04	53978/53978/54179	na	na	1.88E-11	84819/84816180238
						CPASSOC (SHet)	NA	NA	1.08E-09	30841/30838/26058	NA	NA	9.41E-03	53978/53978/54179	NA	NA	1.84E-09	84819848816180238
${ }^{\text {rs1723953 }}$	7	45993668	a	c	0.03	${ }_{\text {SBP }}$	${ }^{1.8689}$	${ }^{0.5628}$	8.988-04	${ }^{30393}$	2.8663	${ }^{7} .4379$	7.00E-01	10729	1.8746	${ }^{0.5612}$	8.37E-04	4112
						DBP	-0.0322	0.3358	$9.24 \mathrm{E}-01$	30390	4.5177	5.6277	$4.22 \mathrm{E}-01$	10729	${ }^{-0.0161}$	0.3352	9.62E-01	41119
						${ }^{\text {PP }}$	1.9482	0.3976	9.61E-07	30390	${ }^{0.9821}$	6.7442	8.84E-01	10729	1.9449	0.3969	9.59E-07	41119
						HTN	0.1316	0.0658	4.56E-02	26311	${ }^{1.7283}$	1.2979	$1.83 \mathrm{E}-01$	10729	0.1357	0.0657	3.89E-02	37360
						CPASSOC (SHom)	NA	NA	5.25E-02	30393/3039026631	NA	NA	2.92E-01	10729/10729/10729	NA	NA	7.93E-02	41122/4111937360
						CPASSOC (SHet)	NA	NA	3.58E-05	30393/30390/26631	NA	NA	5.53E-01	10729/10729/10729	NA	NA	2.34E-04	41122/41119/37360
rs11977526 ${ }^{\text {a }}$	7	46008110	a	g	0.34	SBP	-0.2433	0.1943	$2.11 \mathrm{E}-01$	29227	-0.1507	0.122	2.17E-01	48305	-0.1769	0.1033	8.69E-02	77532
						DBP	0.3881	0.1152	7.52E-04	2922	0.2399	0.0736	1.11E-03	50971	0.2829	0.062	5.08E-06	80195
						PP	-0.6674	0.1362	9.53E-07	30838	-0.2346	0.0865	6.71E-03	50971	-0.359	0.073	8.84E-07	81809
						HTN	-0.0044	0.0224	8.44E-01	25371.9	-0.0064	0.0164	6.97E-01	49723	-0.0057	0.0132	6.67E-01	75094.9
						CPASSOC (SHom)	NA	NA	4.10E-01	29227/29224/25371	NA	NA	1.60E-01	48305/50971/49723	NA	NA	1.92E-01	77532/80195/75095
						CPASSOC (SHet)	NA	NA	$4.53 \mathrm{E}-99$	29227/29224/25371	Na	NA	2.93E-09	48305/50971/49723	na	Na	7.34E-16	77532/80195/75095
rs1 50785606	7	46990467	t	c	0.01	SBP	9.7112	2.3396	3.31E-05	10212	NA							
						${ }_{\text {DPP }}^{\text {pp }}$	${ }_{1}^{1.7188}$	1.2668	1.75E-01	11126 11126	NA	NA	NA	${ }^{\mathrm{NA}}$	NA	NA	NA	NA
						$\stackrel{\text { Pr }}{\text { HTN }}$	8.0378 0.706	1.6358 0.2909	8.94E-07 $1.52 \mathrm{E}-22$	11126 1026	NA NA	NA	NA NA	NA NA	${ }_{\text {NA }}$	NA	${ }_{\text {NA }}^{\text {NA }}$	NA NA
						${ }_{\text {CPASSOC (}}$ (SHom)	${ }^{0.006}$	${ }^{0.2909}$	${ }_{\text {len }}^{1.95 \mathrm{E}-02}$	10212/11126/102016	NA	NA	${ }_{\text {NA }}$	NA	NA	NA	2.95E-03	NA
						CPASSOC (SHet)	NA	NA	$2.69 \mathrm{E}-04$	10212/11126/10216	NA	NA	NA	NA	NA	NA	2.69E-04	NA
7:80293263:A_AAT	7	80293263	a			SBP	-0.7788	0.2936	7.98E-03	25479	${ }^{4.1393}$	4.2589	3.31E-01	18445	${ }^{-0.7555}$	0.2229	9.90E-03	43924
						DBP	-0.8585	0.1717	5.70E-07	25476	3.408	2.5957	1.89E-01	18445	-0.8399	0.1713	9.47E-07	43921
				aatactic	0.85	${ }_{\text {Pr }}^{\text {Pr }}$	0.1506	0.2118	$4.77 \mathrm{E}-01$	${ }_{2}^{23862}$	1.9541	3.1301	5.32E-01	18445	${ }^{0.1588}$	0.2113	4.52E-01	42307
						${ }^{\text {HTN }}$	-0.1255	0.0355	4.08E-04	254792547620999999	1.244	0.919	1.76E-01	9684 $18455 / 1845 / 9684$	-0.1235	${ }^{0.0355}$	${ }^{5} 5.01 \mathrm{E}-04$	${ }^{30683}$
						${ }_{\text {cPass }}$	NA	NA	1.11-05	254792544620999	NA	NA	2.31E-01		NA	NA	${ }^{3.06 E-05}$	${ }_{439244392921 / 30683}$
rs1 15476423	7	149199964	c	g		SBP	0.3162	0.3841	$4.10 \mathrm{E}-01$	31970	1.1005	1.3607	4.19E-01	16751	0.3741	0.3697	3.12E-01	48721
						DBP	0.5803	0.2305	1.18E-02	31967	0.1553	0.8469	8.55E-01	16751	0.551	0.2224	1.32E-02	48718
					0.94	PP	-0.2183	0.2719	$4.22 \mathrm{E}-01$	31967	0.4542	0.9641	6.38E-01	16751	-0.1688	0.2617	5.19E-01	48718
					0.94	HTN	-0.1376	0.045	2.21E-03	27226.2	0.2006	0.193	2.99E-01	16751	-0.1202	0.0438	6.11E-03	43977.2
						CPASSOC (SHom)	NA	NA	9.42E-01	31970/31967/27226	NA	NA	5.98E-01	16751/16751/16751	NA	NA	8.23E-01	48721/48718/43977
						CPASSOC (SHet)	NA	NA	4.99E-08	31970/31967/27226	NA	NA	9.15E-01	1675/16751/16751	NA	NA	5.17E-06	48721/48718443977
rs1 15706913	8	14081817	t	c	0.95	SBP	${ }^{0.7716}$	0.4281	7.15E-02	${ }^{29227}$	${ }^{0.0828}$	${ }^{0.558}$	8.82E-01	23914	0.5164	0.3397	$1.28 \mathrm{E}-01$	${ }^{53141}$
						DBP	0.3639	0.2528	1.50E-01	29224	0.1031	0.334	7.58E-01	23914	0.2689	0.2016	1.82E-01	53138
						PP	0.325	0.2986	2.76E-01	30838	-0.2151	0.4311	6.18E-01	23914	0.1499	0.2455	5.41E-01	54752
						HTN	0.2609	0.0507	2.69E-07	23954.4	0.1124	0.0733	$1.25 \mathrm{E}-01$	23914	0.2128	0.0417	3.32E-07	47868.4
						CPASSOC (SHom)	NA	NA	6.40E-04	29227/29224123954	NA	NA	3.73E-01	239142391423914	NA	NA	2.23E-03	53141/53148478868
						CPASSOC (SHet)	NA	NA	$2.31 \mathrm{E}-06$	29227/29224/23954	NA	NA	4.29E-01	2391423914/23914	NA	NA	1.47E-05	53141/53148478868
rs 10096908	8	41641557	t	c	0.20	SBP	${ }^{1.0253}$	0.2124	$1.39 \mathrm{E}-06$	${ }^{31970}$	${ }^{0.4149}$	${ }^{0.3087}$	${ }^{1.799 \mathrm{E}-01}$	37570	${ }^{0.8292}$	0.175	${ }^{2.15 E-06}$	${ }^{69540}$
						DBP	0.4726	0.1282	$2.27 \mathrm{E}-04$	31967	0.2285	0.1869	$2.22 \mathrm{E}-01$	37570	0.3945	0.1057	$1.90 \mathrm{E}-04$	69537
						PP	0.5538	0.1504	$2.31 \mathrm{E}-04$	31967	0.1631	0.2307	4.80E-01	37570	0.4373	0.126	5.19E-04	69537
						${ }_{\text {CPASSOC }}$ (SHom)				${ }_{31970131967 / 278707}^{2787}$	${ }_{\text {NA }}^{0.0595}$	$\stackrel{0.04}{\mathrm{NA}}$	${ }^{1.376 \mathrm{E}-01}$	37570/37570/387399 ${ }^{3789}$	${ }_{\text {N }}^{0.0947}$	$\stackrel{0.0208}{N A}$	$5.47 \mathrm{E}-06$ $2.23 \mathrm{E}-06$	${ }_{\text {69540/69537/69910 }}$ 657997

	8	95110744	a		0.85	CPASSOC (SHet)	NA	NA	1.63E-06	31970/31967727870	NA	NA	4.15E-01	37570/37570/37839	NA	NA	3.03E-05	695401/9537/65910
rs7006531 ${ }^{\text {a }}$				g		SBP	-0.8494	0.2372	3.43E-04	31970	-0.7612	0.4429	8.57E-02	4092	-0.8297	0.2091	7.25E-05	72890
						DBP	0.3108	0.1433	3.01E-02	31967	0.457	0.3875	2.38E-01	38254	0.3284	0.1344	$1.46 \mathrm{E}-02$	70221
						Pp	-1.1601	0.168	5.03E-12	31967	${ }^{-0.5275}$	0.3176	$9.67 \mathrm{E}-02$	40920	-1.0218	0.1485	5.96E-12	72887
						HTN	${ }^{-0.0152}$	0.0274	5.78E-01	27733.8	0.0403	0.0882	6.48E-01	38526	-0.0103	0.0262	6.94E-01	66259.8
						CPASSOC (SHom)	NA	NA	5.63E-01	31970/31967727733	NA	NA	$9.11 \mathrm{E}-01$	40920/38254/38526	NA	NA	9.22E-01	72890/70221/6260
						CPASSOC (SHet)	na	Na	7.56E-14	31970/31967/2773	na	na	6.13E-03	40920/38254/38526	na	na	2.19E-13	72890/70221/66260
rs186208701	8	99580116	t	c	0.99	SBP	${ }^{-0.9056}$	0.875	$3.01 \mathrm{E}-01$	23777	NA							
						DBP	1.291	0.5168	1.25E-02	23774	NA							
						Pp	-2.117	0.623	6.79E-04	25388	NA							
						htN	${ }^{-0.1806}$	0.1002	7.15E-02	21525	NA							
						CPASSOC (SHom)	NA	NA	8.82E-01	2377723774/21525	NA	NA	NA	NA	NA	NA	8.82E-01	NA
						CPASSOC (SHet)	NA	NA	7.77E-07	$2377723774 / 21525$	NA	NA	NA	NA	NA	NA	7.77E-07	NA
rs187821766	8	99741278	t	c	0.02	SBP	0.6681	0.9348	4.75E-01	${ }^{14176}$	NA							
						DBP	-1.6757	0.5577	2.66E-03	14173	NA							
						PP	2.2392	0.6959	1.29E-03	14173	NA							
						HTN	0.1939	0.1049	6.45E-02	12891	NA							
						CPASSOC (SHom)	NA	NA	8.91E-01	14176/14173/12891	NA	NA	NA	NA	NA	NA	8.91E-01	NA
						CPASSOC (SHet)	NA	NA	9.25E-08	14176/14173/12891	NA	NA	NA	NA	NA	NA	9.25E-08	NA
rs7945883	8	122045324	a	c	0.96	SBP	1.7549	0.4515	1.02E-04	31155	0.1733	1.275	8.92E-01	27691	1.5787	0.4256	2.08E-04	58846
						DBP	1.1009	0.274	5.85E-05	31152	0.8366	0.8333	3.15E-01	27691	1.0751	0.2603	3.62E-05	58843
						PP	${ }^{0.7324}$	0.319	$2.17 \mathrm{E}-02$	31152	-0.7314	0.9673	4.50E-01	27691	${ }^{0.5888}$	0.3029	5.20E-02	58843
						HTN	0.2535	0.0527	1.48E-06	26392.1	0.125	0.1893	5.09E-01	27958	${ }_{0} 0.2443$	0.0508	1.50E-06	54350.1
						CPASSOC (SHom)	NA	NA	6.55E-07	31155/31152/26392	NA	NA	3.26E-01	27691/27691/27958	NA	NA	9.95E-06	58846/58843/54350
						CPASSOC (SHet)	NA	NA	4.93E-06	31155/31152/2632	NA	NA	7.52E-01	27691/27691/27958	NA	NA	1.91E-04	58846/58843/54350
r3886719	8	134932570	t	c	0.82	SBP	1.084	0.235	3.98E-06	30714	${ }^{-0.0146}$	0.1309	$9.11 \mathrm{E}-01$	36781	0.2456	0.1144	3.18E-02	67495
						DBP	0.583	0.1423	4.21E-05	30711	0.0827	0.0802	3.03E-01	36781	${ }^{0.2033}$	0.0699	3.62E-03	67492
						$\stackrel{\text { PP }}{ }$	0.5419	0.1685	1.30E-03	30711	-0.0892	0.0937	3.41E-01	36781	${ }^{0.066}$	0.0819	$4.64 \mathrm{E}-01$	${ }_{57292}^{674}$
						HTN	0.1148	0.0271	2.22E-05	18238	-0.0102	0.0172	5.53E-01	37024	${ }^{0.0256}$	0.0145	7.71E-02	55262
						CPASSOC (SHom)	NA	NA	5.87E-07	30714/30711/18238	NA	NA	8.24--01	36781/36781/37024	NA	NA	3.58E-05	67495/67492/55262
						CPASSOC (SHet)	NA	NA	5.08E-06	30774/3071/18238	NA	NA	7.18E-01	36781/36781/37024	NA	NA	1.81E-04	67495/67492/55262
rs78192203 ${ }^{\text {a }}$	8	142375073	a	t	0.20	SBP	-0.8242	${ }^{0.2257}$	$2.61 \mathrm{E}-04$	31970	-2.0961	0.5973	$4.50 \mathrm{E}-04$	30714	-0.9831	0.2111	3.22E-06	${ }_{62684}$
						DBP	-0.7722	0.1357	1.26E-08	31967	-1.3428	0.3686	$2.69 \mathrm{E}-04$	30714	${ }^{-0.8403}$	0.1273	4.15E-11	62681
						PP	${ }^{-0.1477}$	0.1597	3.55E-01	31967	${ }^{-1.3663}$	0.4247	1.29E-03	39423	${ }^{-0.2987}$	0.1495	4.57E-02	71390
						HTN	${ }^{-0.0756}$	0.026	3.58E-03	27820.6	-0.2519	0.0857	3.28E-03	30714	${ }^{-0.0905}$	0.0249	$2.77 \mathrm{E}-04$	58534.6
						CPASSOC (SHom)	NA	NA	2.33E-06	31970/31967/27820	NA	NA	${ }^{1.668-03}$	30714/30714/30714	NA	NA	$1.42 \mathrm{E}-07$	${ }^{62684462681 / 58535}$
						CPASSOC (SHet)	NA	NA	1.09E-07	31970/31967/27820	NA	NA	2.85E-03	30771/30714/30714	NA	NA	1.69E-08	62684/62681/58535
rs1 14334738	9	28165671	t	c	0.94	SBP	${ }^{1.6453}$	${ }^{0.4236}$	$1.03 \mathrm{E}-04$	31970	3.7745	5.6727	$5.06 \mathrm{E}-01$	20901	${ }^{1.6571}$	${ }^{0.4224}$	8.75E-05	52871
						DBP	1.2762	0.2552	5.73E-07	31967	1.7709	3.7499	6.37E-01	20901	1.2785	0.2546	5.13E-07	52868
						PP	0.3841	0.2996	2.00E-01	31967	2.7247	4.3212	5.28E-01	20901	${ }^{0.3953}$	0.2989	1.86E-01	52868
						${ }_{\text {HTN }}$	0.1069	0.0505	3.42E-02	27225.6	-0.2018	0.9575	8.33E-01	21170	0.106	0.0504	3.55E-02	48395.6
						CPASSOC (SHom)	NA	NA	2.88E-05	31970/31967/27225	NA	NA	8.99E-01	20901/20901/21170	NA	NA	1.22E-03	52871/52868848396
						CPASSOC (SHet)	NA	NA	4.94E-06	3197031967/27225	NA	NA	7.72E-01	2090120901/21170	NA	NA	$2.01 \mathrm{E}-04$	5287/528888/8396
rs71512425	9	28165694	a	g	0.80	SBP	0.8122	0.225	3.07E-04	31970	0.0033	0.1894	9.86E-01	35538	0.3389	0.1449	1.94E-02	67508
						DBP	0.6974	0.1348	$2.32 \mathrm{E}-07$	31967	-0.0322	0.1102	7.70E-01	38168	0.2599	0.0853	$2.31 \mathrm{E}-03$	70135
						${ }^{\text {PP }}$	0.124	0.1605	4.40E-01	31967	-0.0253	0.1422	8.59E-01	35538	${ }^{0.0403}$	0.1064	7.05E-01	67505
						HTN	0.0456	0.0262	8.12E-02	27878.6	0.0318	0.0252	2.06E-01	35798	${ }^{0.0384}$	0.0182	3.42E-02	6367.6
						CPASSOC (SHom)	NA	NA	6.47E-05	31970/31967/27879	NA	NA	${ }^{6.75 E-01}$	3553838168835798	NA	NA	1.42E-03	6750870135/63677
						CPASSOC (SHet)	NA	NA	1.99E-06	31970/31967/27879	NA	NA	3.84E-01	3553883816883798	NA	NA	3.27E-05	6750870135/[3677
rs115795127 ${ }^{\text {b,c. }}$	9	85993901	t	c	0.89	SBP	0.9906	0.2847	5.03E-04	31970	8.7717	9.0475	3.32E-01	4473	0.9983	0.2846	$4.51 \mathrm{E}-04$	36443
						DBP	0.4763	0.1716	5.52E-03	31967	0.7026	6.6522	9.16E-01	4473	0.4765	0.1715	5.48E-03	36440
						PP	0.5871	0.2022	3.99E-03	31967	9.2572	8.6147	$2.83 \mathrm{E}-01$	4473	0.5919	0.2021	3.41E-03	36440
						HTN	0.172	0.0325	1.23E-07	27675.5	4.8894	1.6767	7.42E-03	4473	0.1736	0.0325	1.13E-08	32148.5
						${ }^{\text {chassoc (SHom) }}$	NA	NA	5.10E-06	31970/31967/27675	NA	NA	1.07E-01	4473/4473/4473	NA	NA	8.42E-06	36443/3640132149
						CPASSOC (SHet)	NA	NA	1.05E-06	31970/31967727675	na	Na	8.41E-06	4473/4473/4473	Na	NA	7.30E-09	36443/36401/32149
rs190531342	9	114719568	t	c	0.92	SBP	${ }^{-1.5414}$	0.4156	2.09E-04	${ }^{30356}$	${ }^{3.5014}$	${ }^{1.4213}$	$1.38 \mathrm{E}-02$	28014	${ }^{-1.1442}$	${ }^{0.3989}$	4.13E-03	${ }^{58370}$
						DBP	-1.0192	0.2484	4.09E-05	30333	1.8065	0.8716	3.82E-02	2814	${ }^{-0.807}$	0.2389	7.30E-04	58367
						PP	${ }^{-0.5053}$	0.2939	8.55E-02	31967	1.6605	1.151	$1.49 \mathrm{E}-01$	28014	${ }^{-0.3727}$	0.2848	1.91E-01	59981
						HTN	-0.2325	0.0495	$2.65 \mathrm{E}-06$	25877.2	0.2763	0.171	1.06E-01	28286	-0.1932	0.0475	4.86E-05	54163.2
						CPASSOC (SHom)	NA	NA	$9.63 \mathrm{E}-07$	30356/30353225877	NA	NA	${ }^{6.07 \mathrm{E}-02}$	28014/28014/28286	NA	NA	1.99E-06	58370/58367/54163
						CPASSOC (SHet)	NA	NA	5.19E-06	30356/30353/25877	NA	NA	$2.10 \mathrm{E}-01$	280142801428286	NA	NA	3.61E-05	58370/58367/54163
rs10123054	9	128452054	t	c	0.65	SBP	${ }^{-0.6921}$	0.182	$1.43 \mathrm{E}-04$	${ }^{31003}$	${ }^{-0.2167}$	${ }^{0.1298}$	9.51E-02	37754	${ }^{-0.377}$	${ }^{0.1057}$	3.61E-04	${ }^{68757}$
						DBP	${ }^{-0.5706}$	0.11	$2.13 \mathrm{E}-07$	31000	${ }^{-0.0705}$	0.0798	3.77E-01	37754	-0.2428	0.0646	1.70E-04	68754
						PP	${ }_{-0.0933}$	0.1302	4.74E-01	31000	-0.159	0.0927	8.61E-02	37754	${ }^{-0.1369}$	0.0755	6.97E-02	68754
						${ }_{\text {HTN }}$	${ }^{-0.0667}$	0.021	1.488-03	27582.1	-0.0131	0.0173	4.50E-01	38026	${ }^{-0.0348}$	0.0134	9.22E-03	65608.1
						CPASSOC (SHom)	NA	NA	2.70E-06	31003/31000/27582	NA	NA	3.23E-01	37754/3774438026	NA	NA	3.42E-05	68757/187744/65008
						CPASSOC (SHet)	NA	NA	$1.85 \mathrm{E}-06$	31003/31000/27582	NA	NA	$6.78 \mathrm{E}-01$	37754/37754/38026	NA	NA	6.89E-05	68757/18774465608
r28687694	9	128883092	t	c	0.26	${ }_{\text {SBP }}$	${ }^{0.8674}$	${ }^{0.2036}$	2.05E-05	28472	${ }^{-0.146}$	${ }^{0.142}$	3.04E-01	37444	${ }^{0.1856}$	${ }^{0.1165}$	1.111E-01	${ }_{65966}$
						DBP	0.5658	0.1233	4.43E-06	28469	-0.1233	0.0877	$1.60 \mathrm{E}-01$	37494	0.1081	0.0715	$1.30 \mathrm{E}-01$	${ }_{65963}$
						PP	0.296	0.1461	$4.28 \mathrm{E}-02$	30083	0.026	0.0996	7.94E-01	37494	0.1117	0.0823	$1.75 \mathrm{E}-01$	67577
						${ }^{\text {HTN }}$	0.0967	${ }^{0.0238}$	${ }^{\text {4.75E-05 }}$	24883.4	-0.0157	${ }^{0.0187}$	4.01E-01	37763	${ }^{0.0271}$	0.0147	6.48E-02	62246.4
						CPASSOC (SHom)	NA	NA	5.85E-07	28472/28469924483	NA	NA	$3.43 \mathrm{E}-01$	37494/37494/37763	NA	NA	9.59E-06	65966/65993/62246
						CPASSOC (SHet)	NA	NA	5.06E-06	28472/28469/24483	NA	NA	6.22E-01	37444/37444/37763	NA	NA	1.44E-04	65966/6593/62246
rs78687626	9	133280171	a	g	0.01	SBP	-6.1309	${ }^{1.7746}$	$5.51 \mathrm{E}-04$	${ }^{14481}$	${ }^{-0.4687}$	0.6024	$4.37 \mathrm{E}-01$	26512	${ }^{-1.0537}$	0.5704	$6.47 \mathrm{E}-02$	40993
						DBP	-1.362	1.0386	1.90E-01	14478	${ }^{-0.1279}$	0.3553	7.19E-01	26512	-0.2572	0.3362	4.44E-01	40990
						${ }^{\text {PP }}$	-7.3536	1.4531	4.18E-07	12013	-0.2388	0.4874	6.24E-01	26512	${ }^{-0.9582}$	0.4621	3.81E-02	38525
							${ }^{-0.5341}$	0.1962	6.48E-03	13196	0.0703	0.0685	$3.05 \mathrm{E}-01$	26512	0.0046	0.0647	$9.43 \mathrm{E}-01$	39708
						CPASSOC (SHom)	NA	NA	4.33E-03	14481/14478/13196	NA	NA	9.84--01	26512/26512/26512	NA	NA	8.06E-02	40993/40990/39708
						CPASSOC (SHet)	NA	NA	$3.42 \mathrm{E}-03$	14481/14478/3196	NA	NA	$2.13 \mathrm{E}-01$	26512/26512/26512	NA	NA	5.99E-03	40993/40990/39708
10:4699372:GTGTT	10	4699372	g	gtgt	0.08	SBP	${ }^{-1.5547}$	0.4072	1.34E-04	28554	${ }^{-1.6356}$	5.1122	7.49E-01	10729	${ }^{-1.5552}$	0.4059	$1.27 \mathrm{E}-04$	${ }^{39283}$
						DBP	-1.2281	0.2402	3.19E-07	28551	${ }^{-3.0155}$	3.3472	3.68E-01	10729	${ }^{-1.2373}$	0.2396	2.42E-07	39280
						PP	-0.2925	0.2981	3.27E-01	26937	0.1823	4.0482	9.64E-01	10729	-0.2899	0.2973	3.29E-01	37666
							${ }^{-0.1231}$	0.0508	1.54E-02	20645.3	-0.8704	1.009	3.88E-01	10729	${ }^{-0.125}$	0.0507	1.38E-02	31374.3
						CPASSOC (SHom)	NA	NA	$1.43 \mathrm{E}-05$	28554/28551/20645	NA	NA	3.96E-01	10729/10729/10729	NA	NA	7.41E-05	39283/39280/31374
						CPASSOC (SHet)	NA	NA	2.75E-06	28554/28551/20645	NA	NA	7.52E-01	10729/10729/10729	NA	NA	2.91E-05	39283/39280/31374
10:14646769:TTCA	10	14646769	t	tca	0.59	SBP	-0.9063	0.2187	3.43E-05	26670.9	-0.0948	0.1531	$5.36 \mathrm{E}-01$	31011	${ }^{-0.3618}$	0.1254	3.93E-03	57881.9
						DBP	-0.1799	0.1292	$1.64 \mathrm{E}-01$	26667.9	${ }^{0.1292}$	0.0911	${ }^{1.56 E-01}$	31011	${ }^{0.0265}$	${ }^{0.0745}$	${ }^{7.22 E-01}$	57678.9 56064
						${ }^{\text {PP }}$	-0.7905	0.1584	6.01E-07	25053.9	-0.168	0.1071	1.17E-01	31011	-0.3633	0.0887	4.22E-05	56064.9
							${ }^{-0.0397}$	0.0265	1.35E-01	20184	0.0287	0.0248	$2.47 \mathrm{E}-01$	19441	-0.0032	0.0181	8.58E-01	39625
						CPASSOC (SHom) CPASSOC (SHet)	${ }_{\text {NA }}^{\text {NA }}$	NA	9.92E-03	$\begin{aligned} & 26671 / 26668 / 20184 \\ & 26671 / 26668 / 20184 \\ & \hline \end{aligned}$	NA NA	NA NA	3.78E-01 $5.12 \mathrm{E}-04$	$\begin{aligned} & 31011 / 31011 / 19441 \\ & 31011 / 31011 / 19441 \\ & \hline \end{aligned}$	NA NA	NA	2.47E-02 $2.38 \mathrm{E}-06$	${ }_{5}^{57682 / 576797 / 39625}$
rs7932157	10	69457644	a	g	0.19	SBP	${ }^{-0.2091}$	0.225	3.53E-01	31970	${ }^{-0.2711}$	0.4968	5.85E-01	23914	${ }^{-0.2197}$	0.205	$2.84 \mathrm{E}-01$	55884
						DBP	0.3957	0.1353	3.46E-03	31967	-0.1187	0.298	$6.90 \mathrm{E}-01$	23914	0.3078	0.1232	1.25E-02	55881
						${ }_{\text {Pr }}^{\text {Pr }}$	${ }^{-0.5841}$	${ }_{0}^{0.16}$	${ }^{2.62 \mathrm{E}-04}$	31967	${ }^{-0.3265}$	0.3864	3.98E-01	23314	${ }^{-0.5464}$	0.1478	2.19E-04	55881
						HTN	${ }^{-0.0254}$	0.0261	3.31E-01	27846.5	-0.0996	0.0648	1.24--01	23914	-0.0358	0.0242	$1.40 \mathrm{E}-01$	51760.5
							${ }_{\text {NA }}^{\text {NA }}$	${ }_{\text {NA }}^{\text {NA }}$	l $6.77 \mathrm{E}-01$ $4.61 \mathrm{E}-7$	${ }^{31970191967727846}$	${ }_{\text {NA }}^{\text {NA }}$	${ }_{\text {Na }}^{\text {Na }}$	2.27E-01	$23914 / 23914 / 23914$ 239142991429914	NA NA	NA	5.20E-01 3.24E-06	${ }^{55884558881 / 17761}$ 5584/5581/51761
10:69514659:AAAG_	10	69514659	a	aaag	0.09	SBP	-1.1361	0.3537	$1.32 \mathrm{E}-03$	28554	${ }^{-0.4742}$	0.5137	3.56E-01	23914	${ }^{-0.9232}$	0.2913	$1.53 \mathrm{E}-03$	52468
						DBP	0.171	0.2076	4.10E-01	28551	${ }^{-0.1574}$	0.3086	6.10E-01	23914	0.0687	0.1723	6.90E-01	52465
							${ }^{-1.10222}$			26937	${ }^{-0.5098}$			23314		${ }^{0.2155}$	6.30E-06	50851
						${ }_{\text {Crassoc }}^{\text {HTN }}$ (SHom)	${ }^{-0.0793}$	0.0428	6.42E-02	${ }^{2855428551224.3}$	-0.1336	0.0672	4.68E-02	${ }^{23914239142934}$	${ }^{-0.095}$	0.0361	8.52E-03	44938.3
						CPASSOC (SHom)	NA	NA	1.21E-01	28554/28551/21024	NA	NA	$1.55 \mathrm{E}-01$	23914/23914/23914	NA	NA	9.30E-02	52468/52465/44938
						CPASSOC (SHet)	NA	NA	5.40E-07	28554/28551/21024	NA	NA	2.01E-01	$23914 / 23914 / 23914$	NA	NA	1.85E-06	$52468 / 52465 / 44938$
rs11 196093	10	114524327	c			${ }_{\text {SBP }}^{\text {SBP }}$	${ }^{-0.7212}$	${ }_{0}^{0.182}$	${ }^{7.40 \mathrm{E}-05}$	31969.9	0.1129	${ }^{0.1886}$	5.49E-01	36992	-0.319	0.131	1.49E-02	${ }^{68961.9}$
						${ }_{\text {pP }}$	${ }_{-}^{-0.6431}$	${ }_{0}^{0.1299}$	- $3.031 \mathrm{E}-07$	319669 3196.9	-	0.1164 0.1323	${ }_{7}^{2.855 E-01}$	36992 3692	${ }_{-0}^{-0.0017}$	0.0798 0.0924	$9.83 \mathrm{E}-01$ $1.55 \mathrm{E}-04$	68958.9 68958.9
				g	0.34	HTN	${ }^{-0.0491}$	0.021	1.93E-02	28131	0.045	0.0258	8.18E-02	33824	-0.0117	0.0163	$4.73 \mathrm{E}-01$	61955
						CPASSOC (SHom)	NA	NA	6.10E-03	31969/31969/28131	NA	NA	$2.61 \mathrm{E}-01$	36992/36992/33824	NA	NA	1.69E-02	68992/68959/61955
						CPASSOC (SHet)	NA	NA	5.86E-04	31969/31969/28131	NA	NA	5.73E-01	36992/36992/38824	NA	NA	6.76E-03	68992/68999/61955
rs7941684	11	553222	t	g	0.80	SBP	${ }^{-1.2323}$	0.2209	$2.44 \mathrm{E}-08$	31969.9	${ }^{-0.0909}$	${ }^{0.1483}$	$5.40 \mathrm{E}-01$	47955	${ }^{-0.4455}$	${ }^{0.1231}$	2.96E-04	${ }^{79924.9}$
						DBP	-0.5388	0.1325	4.79E-05	31966.9	${ }^{-0.1031}$	0.0829	$2.13 \mathrm{E}-01$	47955	-0.2256	0.0703	1.32E-03	7992.9
						Pp	-0.6802	0.1567	1.42E-05	31966.9	0.0536	0.0955	5.74E-01	47955	-0.145	0.0815	7.54E-02	79921.9
						HTN	-0.071	0.0253	5.03E-03	27872.2	-0.0081	0.0183	${ }^{6.60 \mathrm{E}-01}$	48190	${ }^{-0.0297}$	0.0148	4.52E-02	76062.2
						CPASSOC (SHom)	NA	NA	3.85E-06	31969/31969/27827	NA	NA	6.80E-01	47955/47955/48190	NA	NA	3.29E-04	79925/79922/76062
						CPASSOC (SHet)	NA	NA	5.82E-07	31969/31969/27827	NA	NA	4.71E-01	47955/47955/48190	NA	NA	3.58E-05	79925/79922/76062
rs145171075	11	80139405	t	g	0.98	SBP	4.4592	0.9998	9.52E-07	${ }^{24262}$	-10.96	${ }^{8.3346}$	1.89E-01	${ }^{8735}$	4.2776	0.9044	2.25E-06	${ }^{32997}$
						${ }^{\text {DBP }}$	1.558	0.5227	$2.88 \mathrm{E}-03$	24259	-3.968	5.1286	4.39E-01	8735	1.5012	0.52	3.89E-03	32994
						Pp	3.0231	0.6382	$2.17 \mathrm{E}-06$	24259	-6.992	5.164	1.76E-01	8735	2.8724	0.6334	5.76E-06	3294
						HTN	0.401	0.0997	5.81E-05	22010	${ }^{-0.6397}$	0.9131	4.84--01	8735	${ }^{0.3887}$	0.0991	8.77E-05	30745
						CPASSOC (SHom)	NA	NA	5.16E-06	24262/24259922010	NA	NA	3.01E-01	8773/8735/8735	NA	NA	$2.23 \mathrm{E}-05$	32997/3299430745
						CPASSOC (SHet)	NA	NA	3.92E-06	24262/24259/22010	NA	NA	5.43E-01	8735/8735/8735	NA	NA	2.99E-05	32997/3294430745
						SBP DBP			5.74E-02	30841 30838	${ }^{-0.0635}$		6.24E-01 $1.85 \mathrm{E}-01$	38701 38701	${ }^{-0.1588}{ }_{0}^{0.1486}$	${ }_{0}^{0.1042}$	$1.28 \mathrm{E}-01$ $1.92 \mathrm{E}-02$	$\underset{69539}{69542}$

rs 10842715	12	26487183	t	g	0.46	PP	-0.1279	0.1228	2.98E-01	30838	-0.0402	0.0926	6.64E-01	38701	-0.072	0.0739	3.30E-01	69539
						HTN	-0.1026	0.0204	4.79E-07	26649	-0.0133	0.0171	4.37E-01	38971	-0.0502	0.0131	1.29E-04	65620
						CPASSOC (SHom)	NA	NA	$2.50 \mathrm{E}-04$	30841/30838/26649	NA	NA	$7.30 \mathrm{E}-01$	38701/38701/38971	NA	NA	$9.63 \mathrm{E}-03$	69542/69539/65620
						CPASSOC (SHet)	NA	NA	$4.26 \mathrm{E}-06$	30841/30838/26649	NA	NA	4.64E-01	38701/38701/38971	NA	NA	1.81E-04	69542/69539/65620
12:53049050:AC_A	12	53049050	a	ac	0.86	SBP	-1.7032	0.4322	$8.11 \mathrm{E}-05$	17426	0.6576	0.2759	1.72E-02	28247	-0.0259	0.2326	9.11E-01	45673
						DBP	-1.1805	0.2708	$1.30 \mathrm{E}-05$	17426	0.0525	0.1626	7.47E-01	28247	-0.2741	0.1394	$4.92 \mathrm{E}-02$	45673
						PP	-0.46	0.3141	$1.43 \mathrm{E}-01$	15812	0.6155	0.1932	$1.45 \mathrm{E}-03$	28247	0.3202	0.1646	5.17E-02	44059
						HTN	-0.2433	0.0554	$1.15 \mathrm{E}-05$	11700	-0.0151	0.0431	7.26E-01	19441	-0.1011	0.034	2.95E-03	31141
						CPASSOC (SHom)	NA	NA	7.67E-07	17426/17426/11700	NA	NA	9.72E-01	28247/28247/19441	NA	NA	$1.13 \mathrm{E}-05$	45673/45673/31141
						CPASSOC (SHet)	NA	NA	5.49E-06	17426/17426/11700	NA	NA	1.21E-01	28247/28247/19441	NA	NA	$1.01 \mathrm{E}-05$	45673/45673/31141
rs113866309 ${ }^{\text {b,c }}$	12	66516948	t	c	0.98	SBP	-3.7312	0.8675	$1.70 \mathrm{E}-05$	23760	-12.0824	10.7806	$2.60 \mathrm{E}-01$	10729	-3.7821	0.8633	1.24E-05	34489
						DBP	-0.6665	0.5167	1.97E-01	23757	8.3116	7.3912	$2.63 \mathrm{E}-01$	10729	-0.2559	0.4539	2.33E-01	34486
						PP	-3.2809	0.6275	1.71E-07	23757	-9.7833	3.3063	1.50E-03	9684	-2.2172	0.5424	8.24E-09	33441
						HTN	-0.2244	0.1033	2.99E-02	22043	-3.5217	3.3044	$2.83 \mathrm{E}-01$	10729	-0.1475	0.0943	2.74E-02	32772
						CPASSOC (SHom)	NA	NA	3.91E-03	23760/23757/22043	NA	NA	$3.50 \mathrm{E}-01$	10729/10729/10729	NA	NA	1.87E-02	34489/34486/32772
						CPASSOC (SHet)	NA	NA	1.40E-04	23760/23757/22043	NA	NA	$1.60 \mathrm{E}-02$	10729/10729/10729	NA	NA	$4.78 \mathrm{E}-05$	34489/34486/32772
rs144058433	13	73013077	t	c	0.14	SBP	1.1947	0.2826	$2.37 \mathrm{E}-05$	31969.9	-0.1628	0.255	$5.23 \mathrm{E}-01$	36119	0.4465	0.1893	1.84E-02	68088.9
						DBP	0.8518	0.1695	$5.03 \mathrm{E}-07$	31966.9	0.023	0.1622	8.87E-01	36119	0.4192	0.1172	3.48E-04	68085.9
						PP	0.3197	0.2002	1.10E-01	31966.9	-0.1381	0.1718	$4.21 \mathrm{E}-01$	36119	0.0561	0.1304	6.67E-01	68085.9
						HTN	0.1119	0.0327	$6.29 \mathrm{E}-04$	27732.3	-0.0032	0.0337	$9.24 \mathrm{E}-01$	36364	0.056	0.0235	1.69E-02	64096.3
						CPASSOC (SHom)	NA	NA	1.08E-06	31969/31966/27732	NA	NA	$5.35 \mathrm{E}-01$	36119/36119/36364	NA	NA	3.00E-05	68089/68086/64096
						CPASSOC (SHet)	NA	NA	$4.35 \mathrm{E}-06$	31969/31966/27732	NA	NA	$9.11 \mathrm{E}-01$	36119/36119/36364	NA	NA	$2.55 \mathrm{E}-04$	68089/68086/64096
rs2414856	15	65072461	a	g	0.51	SBP	0.8733	0.1786	$1.02 \mathrm{E}-06$	30713.9	0.3052	0.2249	$1.75 \mathrm{E}-01$	38481	0.6535	0.1399	2.97E-06	69194.9
						DBP	0.2552	0.1081	$1.83 \mathrm{E}-02$	30710.9	0.1833	0.1384	$1.85 \mathrm{E}-01$	38481	0.228	0.0852	7.46E-03	69191.9
						PP	0.6783	0.127	9.18E-08	30710.9	0.1527	0.17	3.69E-01	38481	0.49	0.1017	1.46E-06	69191.9
						HTN	0.0686	0.021	1.10E-03	26574.6	0.0256	0.0301	3.95E-01	38754	0.0545	0.0172	1.55E-03	65328.6
						CPASSOC (SHom)	NA	NA	6.89E-05	30713/30710/26574	NA	NA	5.06E-01	38481/38481/38754	NA	NA	$1.91 \mathrm{E}-03$	69195/69192/65329
						CPASSOC (SHet)	NA	NA	8.70E-06	30713/30710/26574	NA	NA	6.72E-01	38481/38481/38754	NA	NA	6.17E-04	69195/69192/65329
rs12445099	16	57890233	a	g	0.67	SBP	0.6013	0.1944	$1.98 \mathrm{E}-03$	31970	0.2477	0.2368	$2.95 \mathrm{E}-01$	35367	0.4589	0.1502	$2.25 \mathrm{E}-03$	67337
						DBP	0.2529	0.117	3.07E-02	31967	0.0723	0.1436	6.14E-01	35367	0.1808	0.0907	$4.62 \mathrm{E}-02$	67334
						PP	0.36	0.1373	8.74E-03	31967	0.2399	0.1813	1.86E-01	35367	0.3162	0.1095	3.86E-03	67334
						HTN	0.1193	0.023	$2.16 \mathrm{E}-07$	27573.2	-0.0317	0.0303	2.94E-01	35599	0.064	0.0183	4.74E-04	63172.2
						CPASSOC (SHom)	NA	NA	3.40E-05	31970/31967/27573	NA	NA	$7.75 \mathrm{E}-01$	35367/35367/35599	NA	NA	$1.04 \mathrm{E}-03$	67337/67334/63172
						CPASSOC (SHet)	NA	NA	$1.86 \mathrm{E}-06$	31970/31967/27573	NA	NA	$1.89 \mathrm{E}-01$	35367/35367/35599	NA	NA	$1.29 \mathrm{E}-05$	67337/67334/63172
rs12149202	16	85700360	a	g	0.11	SBP	-1.3354	0.3011	$9.21 \mathrm{E}-06$	31970	0.0767	0.1592	6.30E-01	36873	-0.2319	0.1408	9.94E-02	68843
						DBP	-0.6867	0.1813	$1.53 \mathrm{E}-04$	31967	0.0948	0.0976	3.32E-01	36873	-0.0809	0.086	$3.47 \mathrm{E}-01$	68840
						PP	-0.7034	0.2168	1.18E-03	31967	-0.0135	0.1142	$9.06 \mathrm{E}-01$	36873	-0.1633	0.101	1.06E-01	68840
						HTN	-0.1877	0.0345	5.14E-08	27643.5	-0.0224	0.0205	$2.73 \mathrm{E}-01$	37140	-0.0655	0.0176	2.01E-04	64783.5
						CPASSOC (SHom)	NA	NA	9.24E-08	31970/31967/27643	NA	NA	$9.99 \mathrm{E}-01$	36973/36873/37140	NA	NA	$1.33 \mathrm{E}-05$	68843/68840/64784
						CPASSOC (SHet)	NA	NA	2.98E-07	31970/31967/27643	NA	NA	$4.49 \mathrm{E}-01$	36973/36873/37140	NA	NA	7.52E-06	68843/68840/64784
rs17721557	17	27260017	t	c	0.21	SBP	1.0488	0.2099	$5.82 \mathrm{E}-07$	30086	0.0711	0.2085	$7.33 \mathrm{E}-01$	37483	0.5566	0.1479	1.68E-04	67569
						DBP	0.5784	0.1266	4.87E-06	30083	0.1056	0.1271	$4.06 \mathrm{E}-01$	37483	0.343	0.0897	$1.32 \mathrm{E}-04$	67566
						PP	0.5216	0.1497	4.93E-04	30083	-0.063	0.1532	6.81E-01	37483	0.236	0.1071	$2.75 \mathrm{E}-02$	67566
						HTN	0.0597	0.0245	1.47E-02	25498.2	0.0076	0.0273	7.81E-01	37756	0.0365	0.0182	$4.55 \mathrm{E}-02$	63254.2
						CPASSOC (SHom)	NA	NA	6.13E-06	30086/30083/25498	NA	NA	6.14E-01	37483/37483/37756	NA	NA	1.66E-04	67569/67566/63254
						CPASSOC (SHet)	NA	NA	2.22E-06	30086/30083/25498	NA	NA	$8.58 \mathrm{E}-01$	37483/37483/37756	NA	NA	1.24E-04	67569/67566/63254
rs114296860	17	51285996	t	c	0.02	SBP	2.5521	0.6484	8.29E-05	30321	-11.985	14.626	$4.13 \mathrm{E}-01$	9684	2.5236	0.6478	$9.79 \mathrm{E}-05$	40005
						DBP	1.6074	0.3904	3.84E-05	30318	-5.247	8.863	5.54E-01	9684	1.5941	0.39	$4.37 \mathrm{E}-05$	40002
						PP	1.1088	0.4557	1.50E-02	30318	-6.88	10.815	$5.25 \mathrm{E}-01$	9684	1.0946	0.4553	1.62E-02	40002
						HTN	-0.042	0.0772	5.86E-01	25456	-0.676	4.305	8.75E-01	9684	-0.0422	0.0772	5.85E-01	35140
						CPASSOC (SHom)	NA	NA	$7.16 \mathrm{E}-03$	30321/30318/25456	NA	NA	5.80E-01	9684/9684/9684	NA	NA	$2.69 \mathrm{E}-02$	40005/40002/35140
						CPASSOC (SHet)	NA	NA	$2.65 \mathrm{E}-07$	30321/30318/25456	NA	NA	$8.47 \mathrm{E}-01$	9684/9684/9684	NA	NA	$3.66 \mathrm{E}-06$	40005/40002/35140
rs2832976	21	32037484	t	c	0.16	SBP	-1.1975	0.2602	4.19E-06	31969.9	-0.0669	0.1387	6.30E-01	39617	-0.3172	0.1224	$9.58 \mathrm{E}-03$	71586.9
						DBP	-0.3333	0.1564	3.31E-02	31966.9	-0.0361	0.0862	6.75E-01	37007	-0.1054	0.0755	1.63E-01	68973.9
						PP	-0.9467	0.1865	3.86E-07	31966.9	0.038	0.0992	7.02E-01	39617	-0.179	0.0876	4.09E-02	71583.9
						HTN	-0.0719	0.0302	1.72E-02	27732.2	-0.0097	0.0179	5.89E-01	39832	-0.0259	0.0154	9.27E-02	67564.2
						CPASSOC (SHom)	NA	NA	6.57E-04	31969/31969/27732	NA	NA	5.47E-01	39617/37007/39832	NA	NA	6.97E-03	71587/68974/67564
						CPASSOC (SHet)	NA	NA	3.54E-05	31969/31969/27732	NA	NA	8.52E-01	39617/37007/39832	NA	NA	1.29E-03	71587/68974/67564
rs62225706	22	26680705	a	c	0.03	SBP	-3.9669	0.8283	$1.68 \mathrm{E}-06$	16221	-0.0782	0.4006	$8.45 \mathrm{E}-01$	26143	-0.8154	0.3607	$2.38 \mathrm{E}-02$	42364
						DBP	-2.624	0.4943	1.10E-07	15169	-0.028	0.2441	9.09E-01	26143	-0.537	0.2189	1.42E-02	41312
						PP	-1.6075	0.6099	8.40E-03	16218	0.1566	0.3286	6.34E-01	26143	-0.2403	0.2893	$4.06 \mathrm{E}-01$	42361
						HTN	-0.2607	0.0964	6.85E-03	12891	-0.0344	0.0464	$4.58 \mathrm{E}-01$	26387	-0.077	0.0418	6.55E-02	39278
						CPASSOC (SHom)	NA	NA	1.17E-06	16221/15169/12891	NA	NA	5.17E-01	26143/26143/26387	NA	NA	3.06E-05	42364/41312/39278
						CPASSOC (SHet)	NA	NA	$4.62 \mathrm{E}-07$	16221/15169/12891	NA	NA	$7.73 \mathrm{E}-01$	26143/26143/26387	NA	NA	$2.57 \mathrm{E}-05$	42364/41312/39278
rs6006767	22	45927045	t	c	0.94	SBP	-1.0401	0.3723	$5.21 \mathrm{E}-03$	31970	-0.3444	0.2025	8.90E-02	37910	-0.5033	0.1779	$4.67 \mathrm{E}-03$	69880
						DBP	-1.1597	0.2295	$4.37 \mathrm{E}-07$	30918	-0.2582	0.1245	3.81E-02	38497	-0.4632	0.1094	$2.31 \mathrm{E}-05$	69415
						PP	0.0491	0.2651	8.53E-01	31967	-0.1627	0.1418	$2.51 \mathrm{E}-01$	37910	-0.1156	0.125	$3.55 \mathrm{E}-01$	69877
						HTN	-0.0763	0.0455	9.35E-02	25742.1	-0.0151	0.0266	$5.70 \mathrm{E}-01$	38183	-0.0307	0.023	1.81E-01	63925.1
						CPASSOC (SHom)	NA	NA	$2.63 \mathrm{E}-04$	31970/30918/25742	NA	NA	$2.63 \mathrm{E}-01$	37910/38497/38183	NA	NA	$1.36 \mathrm{E}-03$	69880/69415/63925
						CPASSOC (SHet)	NA	NA	3.76E-06	31970/30918/25742	NA	NA	$2.77 \mathrm{E}-01$	37910/38497/38183	NA	NA	3.79E-05	69880/69415/63925

N: sample size for CPASSOC refers the sample sizes of SBP/DBP/HTN
Variants identified reaching genome-wide significant threshold of 5.0×10^{-8} in discovery stage and successfully replicated with experimental significance in replication
Variants identified not reaching genome-wide significant threshold of 5.0×10^{-8} in discovery stage but replicated with experimental significance in replication
${ }^{\text {c }}$ Novel blood pressure loci identified in current study
Bold statistics are the corresponting significant statistics for significants of identified variants

S7 Table. Summary of iHS signals in significant loci with frequency differences across ancestry populations

SNP	Chr	Pos	Gene	Derived Allele	Ancestry Allele	Deri	Derved Alle Frequency		Asian	iHS
						African American	African	European		
rs78192203	8	142375073	GPR20	A	T	0.2	0.21	0	0	-2.678
rs7006531	8	95110744	CDH17	G	T	0.15	0.19	0	0	-1.567
rs113866309	12	66516948	LLPH	C	T	0.02	0.02	0	0	-1.776
rs76987554	6	134080855	TCF21	T	C	0.09	0.09	0	0	-1.723
rs115795127	9	85993901	FRMD3	T	C	0.89	0.86	1	1	2.702

Rank	Database	Gene Set	Original number of genes	Effective number genes	Nominal GSEA P value	FDR
				Trait		

		KEGG_STARCH_AND_SUCROSE_MET					
6	KEGG	ABOLISM	52	37	0.0044	0.247	DBP
7	KEGG	KEGG_GLYCEROLIPID_METABOLISM	49	43	0.0047	0.255	SHET
1	$\begin{aligned} & \text { PANTHER_BIOLOGICAL } \\ & \text { _PROCESS } \\ & \text { PANTHER_BIOLOGICAL } \end{aligned}$	Other_neuronal_activity	136	120	0.001	0.2364	HTN
2	-PROCESS	T-cell_mediated_immunity	138	103	0.0018	0.2359	PP
3	$\begin{aligned} & \text { _PROCESS } \\ & \text { PANTHER_BIOLOGICAL } \end{aligned}$	Tumor_suppressor	102	72	0.0023	0.1611333	PP
4	$\begin{aligned} & \text { _PROCESS } \\ & \text { PANTHER_BIOLOGICAL } \end{aligned}$	DNA_metabolism	32	30	0.0023	0.14215	HTN
5	-PROCESS	Phagocytosis	39	36	0.0026	0.1248	HTN
6	$\begin{aligned} & \text { _PROCESS } \\ & \text { PANTHER_BIOLOGICAL } \end{aligned}$	DNA_repair	169	138	0.0031	0.15365	HTN
8	-PROCESS	Transport	509	384	0.0042	0.18848	HTN
9	-PROCESS	Fatty_acid_beta-oxidation	27	23	0.0044	0.2383	PP
12	PPROCESS	Cytokinesis	115	82	0.0056	0.1951833	HTN
13	_PROCESS	Protein_phosphorylation	660	556	0.0082	0.247925	HTN
1	$\begin{aligned} & \text { PANTHER_MOLECULAR } \\ & \text { _FUNCTION } \\ & \text { PANTHER_MOLECULAR } \end{aligned}$	Non-motor_actin_binding_protein	165	136	$5.00 \mathrm{E}-04$	0.150	SHET
2	$\begin{aligned} & \text { _FUNCTION } \\ & \text { PANTHER_MOLECULAR } \end{aligned}$	Transcription_cofactor	168	137	0.002	0.254	SHOM
3	FUNCTION	Dehydrogenase	225	183	0.004	0.298	PP

S9 Table. eQTL analysis of significant SNPs in tissues

SNP	Proxy	Correlation R2	Gene Symbol	P-Value	Effect Size	Tissue
rs6969780	rs6969780	NA	HOTAIRM1	$2.50 \mathrm{E}-14$	0.54	Esophagus - Mucosa
rs6969780	rs6969780	NA	HOXA2	$8.10 \mathrm{E}-13$	-0.6	Artery - Tibial
rs6969780	rs6969780	NA	HOTAIRM1	$6.30 \mathrm{E}-12$	0.59	Esophagus - Muscularis
rs6969780	rs6969780	NA	HOTAIRM1	$1.80 \mathrm{E}-10$	0.33	Lung
rs6969780	rs6969780	NA	HOTAIRM1	$5.00 \mathrm{E}-10$	0.58	Artery - Tibial
rs6969780	rs6969780	NA	HOTAIRM1	$1.30 \mathrm{E}-09$	0.64	Skin - Sun Exposed (Lower leg)
rs6969780	rs6969780	NA	HOXA2	$1.60 \mathrm{E}-09$	-0.62	Nerve - Tibial
rs6969780	rs6969780	NA	HOTAIRM1	$5.70 \mathrm{E}-09$	0.66	Cells - Transformed fibroblasts
rs6969780	rs6969780	NA	HOTAIRM1	$2.90 \mathrm{E}-08$	0.48	Adipose - Subcutaneous
rs6969780	rs6969780	NA	HOXA2	$3.10 \mathrm{E}-07$	-0.49	Adipose - Subcutaneous
rs6969780	rs6969780	NA	HOTAIRM1	$4.70 \mathrm{E}-07$	0.46	Muscle - Skeletal
rs6969780	rs6969780	NA	HOXA5	$7.50 \mathrm{E}-07$	-0.5	Cells - Transformed fibroblasts
rs6969780	rs6969780	NA	HOTAIRM1	0.0000023	0.53	Skin - Not Sun Exposed (Suprapubic)
rs6969780	rs6969780	NA	HOTAIRM1	0.0000025	0.36	Stomach
rs6969780	rs6969780	NA	HOXA7	0.0000032	-0.4	Artery - Tibial
rs7651190	rs7651190	NA	ULK4	$1.10 \mathrm{E}-44$	0.99	Cells - Transformed fibroblasts
rs7651190	rs7651190	NA	ULK4	$1.70 \mathrm{E}-31$	0.87	Artery - Aorta
rs7651190	rs7651190	NA	ULK4	$1.80 \mathrm{E}-27$	0.68	Whole Blood
rs7651190	rs7651190	NA	ULK4	$8.50 \mathrm{E}-27$	0.74	Thyroid
rs7651190	rs7651190	NA	ULK4	$8.20 \mathrm{E}-25$	0.67	Nerve - Tibial
rs7651190	rs7651190	NA	ULK4	$5.10 \mathrm{E}-24$	0.94	Esophagus - Mucosa
rs7651190	rs7651190	NA	ULK4	$2.40 \mathrm{E}-21$	0.62	Artery - Tibial
rs7651190	rs7651190	NA	ULK4	$3.00 \mathrm{E}-19$	0.67	Muscle - Skeletal
rs7651190	rs7651190	NA	ULK4	$3.10 \mathrm{E}-18$	0.85	Cells - EBV-transformed lymphocytes
rs7651190	rs7651190	NA	ULK4	$6.70 \mathrm{E}-18$	0.64	Esophagus - Muscularis
rs7651190	rs7651190	NA	ULK4	$2.30 \mathrm{E}-15$	0.59	Skin - Sun Exposed (Lower leg)
rs7651190	rs7651190	NA	ULK4	$3.80 \mathrm{E}-15$	1.2	Brain - Cortex
rs7651190	rs7651190	NA	ULK4	$7.10 \mathrm{E}-14$	0.76	Stomach
rs7651190	rs7651190	NA	ULK4	$1.30 \mathrm{E}-13$	0.45	Adipose - Subcutaneous
rs7651190	rs7651190	NA	ULK4	$9.70 \mathrm{E}-13$	1.2	Pituitary
rs7651190	rs7651190	NA	ULK4	$1.10 \mathrm{E}-12$	1.2	Brain - Anterior cingulate cortex (BA24)
rs7651190	rs7651190	NA	ULK4	$2.30 \mathrm{E}-12$	1.1	Brain - Frontal Cortex (BA9)
rs7651190	rs7651190	NA	ULK4	$1.10 \mathrm{E}-11$	0.88	Adrenal Gland
rs7651190	rs7651190	NA	ULK4	$1.10 \mathrm{E}-11$	0.64	Adipose - Visceral (Omentum)
rs7651190	rs7651190	NA	ULK4	$1.80 \mathrm{E}-11$	0.59	Colon - Transverse
rs7651190	rs7651190	NA	ULK4	$6.50 \mathrm{E}-11$	0.44	Lung
rs7651190	rs7651190	NA	ULK4	$6.90 \mathrm{E}-11$	1.1	Brain - Putamen (basal ganglia)
rs7651190	rs7651190	NA	ULK4	$1.20 \mathrm{E}-10$	0.89	Brain - Nucleus accumbens (basal ganglia)
rs7651190	rs7651190	NA	ULK4	$1.30 \mathrm{E}-10$	0.69	Pancreas
rs7651190	rs7651190	NA	RPL36P20	$2.30 \mathrm{E}-09$	0.55	Testis
rs7651190	rs7651190	NA	ULK4	$1.20 \mathrm{E}-08$	0.71	Colon - Sigmoid
rs7651190	rs7651190	NA	ULK4	$2.20 \mathrm{E}-08$	0.8	Spleen
rs7651190	rs7651190	NA	ULK4	$2.90 \mathrm{E}-08$	0.73	Brain - Caudate (basal ganglia)
rs7651190	rs7651190	NA	ULK4	$8.60 \mathrm{E}-08$	0.63	Brain - Hypothalamus
rs7651190	rs7651190	NA	ULK4	$1.20 \mathrm{E}-07$	0.63	Heart - Left Ventricle
rs7651190	rs7651190	NA	ULK4	$1.30 \mathrm{E}-07$	0.49	Skin - Not Sun Exposed (Suprapubic)
rs7651190	rs7651190	NA	ULK4	$3.70 \mathrm{E}-07$	0.55	Breast - Mammary Tissue
rs7651190	rs7651190	NA	ULK4	$4.20 \mathrm{E}-07$	0.91	Brain - Cerebellar Hemisphere
rs7651190	rs7651190	NA	ULK4	0.0000014	0.79	Brain - Cerebellum
rs7651190	rs7651190	NA	ULK4	0.0000031	0.57	Artery - Coronary
rs7651190	rs7651190	NA	ULK4	0.0000032	0.62	Esophagus - Gastroesophageal Junction
rs62434120	rs4869927	0.9	PLEKHG1	0.0000068	-0.27	Testis
rs62434120	rs9480528	0.86	PLEKHG1	0.0000068	-0.27	Testis

S10 Table. Primers of candidate genes.
The primers of candidate genes for real-time polymerase chain reaction (RT-PCR) primers were designed based on the latest mouse genome (GRCm38/mm10) using Primer3 (http://bioinfo.ut.ee/primer3-0.4.0/) online. Primers were also designed for isoforms of certain candidate genes

Mouse Genes	Forward Primer	Reverse Primer
Ulk4	TCTTGGAAAGCCTCAAGAACA	AAAGGATGGTGTGGGATCTG
Eya4	GCTTTGAGCGAATAATGCAA	GTGCTTGATGTAGAGCCAAGAG
Tcf21	CTCCAAGCTGGACACTCTCA	TCACCACTTCCTTCAGGTCA
Evxl	CTTTACCCGGGAGCAGATT	GCTGACGCTTGTCCTTCAT
Hoxal-1	GCAGACCTTTGACTGGATGA	GCGCTCGTGTAAGGTACTTG
Hoxal-2	CCCAGACGGCTACTTACCAG	GGAGAAGACGTCTCTGAAGCA
Hoxa5	GCGCAAGCTGCACATTAG	GGCATGAGCTATTTCGATCC
Hoxa7	AAGCCAGTTTCCGCATCTAC	GCTCTTTCTTCCACTTCATGC
Hoxa9	CCACGCTTGACACTCACACT	AGCGAGCATGTAGCCAGTT
Hoxa10-1	TCCAGCCCCTTCAGAAAACA	GCTACGGCTGATCTCTAGGC
Hoxa10-2	TCAAGGCAGTTCCAAAGG	TCACTTGTCTGTCCGTGAGG
Hoxa11	GTCTTCCGGCCACACTGA	CAGTTGCAGACGCTTCTCTTT
Igfbp 3	CGCAGAGAAATGGAGGACA	ACTTGTCCACACACCAGCAG
Cdh17	CCAGTTACTTTCTGCCAGTGTG	CCAGTTACTTTCTGCCAGTGTG
Gpr20	GCGTGGAGAAGAATTCAAGC	TCCTAGAGCCTTGACCTTTGA
Plekhg1	GTCAGCATAGGCCCAGTCA	CAGCCATCCTTCTGAGCTTT
Frmd3-1	TCAGACACCAGAGTTTGAGCA	TCTTGACAACTGAAGGCCAAT
Frmd3-2	AATCCTGACCGGCCATATC	GGATGTGTCCTCCATGTGC
Llph	GAGATAGCAACCGTGGTGGT	TCATCCACACTGGGTACTGG
Tmbim 4	TCTGGTTCTGCAAGCGTTTA	ACCAGCTCCATCGTCTCACT
Hprt	CAAACTTTGCTTTCCCTGGT	CAAGGGCATATCCAACAACA

Single-trait and multi-trait genome wide association analyses identify novel loci for blood pressure in African-ancestry populations

Supplementary Notes

AUTHOR CONTRIBUTIONS

Principal investigators (alphabetically for study names)
Manuscript writing
Phenotyping
Genotyping
Quality control
Software development
Statistical analysis
GWAS Look-ups in other Consortia

DESCRIPTION OF STUDY SAMPLES

1. Discovery COGENT BP studies

CARe

Candidate Gene Association Resource CARe samples were collected from five NHLBIfunded cohort studies where GWAS African American samples were available. (http://public.nhlbi.nih.gov/GeneticsGenomics/home/care.aspx)

ARIC

Atherosclerosis Risk Communities Study The ARIC study is a population-based, biracial prospective cohort study of cardiovascular disease and its risk factors sponsored by National Heart, Lung and Blood Institute (NHLBI) ${ }^{1}$. ARIC included 15,792 European ancestry and African American individuals aged 45-64 years at baseline (1987-89), chosen by probability sampling from four US communities. Cohort members completed four clinic examinations, conducted three years apart between 1987 and 1998. Follow-up for clinical events was annual. The current analysis included only African American individuals with BP measures at baseline examinations. The IRB at each of the study sites approved the study protocols, and written informed consent was obtained from all participants.

BP was measured using a standardized Hawksley random-zero mercury column sphygmomanometer with participants in a sitting position after a resting period of 5 minutes. The size of the cuff was chosen according to the arm circumference. Three sequential recordings for SBP and DBP were obtained; the mean of the last two measurements was used in this analysis, discarding the first reading. BP lowering medication used was recorded from the medication history. Outliers (>4 SDs from the mean) with respect to the SBP and DBP distribution were excluded from the analysis.

CARDIA

The Coronary Artery Risk Development in Young $\underline{\text { Addults Study The CARDIA study is a }}$ population based, prospective cohort examining the development and determinants of clinical and subclinical cardiovascular disease and its risk factors ${ }^{2}$. The CARDIA study initial enrollment consisted of 5,155 European Americans and African American men and women between 18 and 30 years old (52\% African American and 55\% women). The study is multicenter with recruitment in Birmingham, AL; Chicago, IL; Minneapolis, MN; and Oakland, CA. The IRB at each of the study sites approved the study protocols, and written informed consent was obtained from all participants. Baseline measurements were repeated, and additional measurements performed, at Years 2, 5, 7, 10, 15 and 20^{2}. The current analysis included data measured at Year 15 (2000-2001) and only African American male and females.

Seated BP was measured on the right arm following 5 minutes rest using a random-zero sphygmomanometer. SBP and DBP were recorded as Phase I and Phase V Korotkoff sounds.

Three measurements were taken at 1 minute intervals with the average of the second and third measurements taken for the BP values.

CFS
The Cleveland Family Study CFS participants consist of first or selected second-degree relatives of a proband with either laboratory diagnosed obstructive sleep apnea or neighborhood control of an affected proband. Families were selected for genotyping on the bases of genetic informativness, including multigenerational data or individuals from the extremes of the distribution of apnea phenotype ${ }^{3}$. These families include 59 African-American families with 176 individuals (100 females and 76 males) and 66 European-American families with 262 individuals (120 females and 142 males) with genotype and phenotype information. The IRB approved the study and written informed consent was obtained from all participants.

Participants had three supine BP measurements each performed after lying quietly for 10 minutes, before bed (10:00 PM) and upon awakening (7:00 AM), and another three sitting at 11:00 AM, following standardized guidelines using a calibrated sphygmomanometer. BP phenotypes were determined from the average of the nine measurements.

JHS

Jackson Heart $\underline{\text { Study }}$ JHS was initiated in 2000 to investigate prospectively the epidemiology and determinants of cardiovascular disease in African Americans ${ }^{4}$. JHS recruited 5,302 participants after completion of data adjustment, representing more than 5% of African American 35-84 years old living in the Jackson, Mississippi tri-county area. Of this number, $\sim 30 \%$ were prior Jackson participants in the Atherosclerosis Risk in Communities Study. Of the remaining, 23% were recruited by random selection from a commercial listing that represents the overall tri-county population and an additional 23% volunteer sample, in which recruitment was distributed among defined demographic cells in proportions designed to mirror those in the overall population ${ }^{5}$. Those who were overlapping ARIC participants and those with previous MI were excluded from the GWAS. The IRB approved the study protocol, and written informed consent was obtained from all participants.

Seated BP was measured with a random-zero sphygmomanometer three times with the last two measurements averaged.

MESA

 study initiated to study the development of subclinical cardiovascular disease. A total of 6,814 women and men between the age of 45 and 84 year were recruited for the first examination between 2000 and 2002. Participants were recruited in six US cities (Baltimore, MD; Chicago, IL; Forsyth County, NC; Los Angele County, CA; Norther Manhattan, NY; and St. Paul, MN). Those with a history of CVD (defined as physician-diagnosed myocardial infarction, angina, heart failure, stroke, transient ischemic attack or history of invasive procedure for CVD) were
excluded from participation. 38\% are of European ancestry, 28\% African-American, 22\% Hispanic, and 12% Asian, predominantly of Chinese descent. This study was approved by the IRB of each study site, and written informed consent was obtained from all participants ${ }^{6}$. The manuscript utilizes data from African-American MESA participants, genotyped through the CARe project.

BP was measured three times at 1 minute interval after a 5 minute initial rest using a Dinamap PRO 100 automated oscillometric device (Critikon, Tampa, FL) with the subject in seated, and the average of the second and third BP measurements was used in the analysis.

FBPP

Family Blood Pressure Program - AXIOM These 872 African-American subjects were included from HyperGEN and GENOA studies but whom were not genotyped with conventional GWAS platforms. The sample schemes are the same as HyperGEN and GENOA. For BP measures, see HyperGEN and GENOA descriptions. These African-Americans were genotyped using Affymetrix Axiom chips, which included 808,558 SNPs. SNPs were called using Affymetrix Genotyping Console (GTC) by analyzing CEL files from Affymetrix AXIOM arrays (www.affymetrix.com).

HANDLS

 Aging in Neighborhoods of Diversity across the Life Span study (HANDLS) is an interdisciplinary, community-based, prospective longitudinal epidemiologic study examining the influences of race and socioeconomic status (SES) on the development of age - related health disparities among socioeconomically diverse African Americans and European ancestry individuals in Baltimore, Maryland, USA ${ }^{7}$. The HANDLS design is an area probability sample of Baltimore based on the 2000 Census. The study protocol facilitated our ability to recruit 3,720 participants from Baltimore. Among those who completed their examinations, there were no age differences associated with sex and poverty status, but African Americans were negligibly younger than individuals of European descent. The study is currently conducting Wave 4 designed as a second re-examination wave of all participants initially recruited at baseline (20042009). Wave 4 began in September of 2013 and will conclude in June of 2017. Genotyping was focused on a subset of participants self-reporting as African American was undertaken at the Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health. Genotype Imputation was performed using the 1000 Genomes Project phase 1 version 3 multiethnic reference panel, March 2012 release. BP was measured non-invasively using the brachial artery auscultation method with an aneroid manometer, a stethoscope, and an inflatable cuff in individuals resting for 5 minutes. For this analysis, the average of right and left sitting BP values was taken to represent each of SBP and DBP.

CHS
$\underline{\text { Cardiovascular Health } \underline{S} t u d y ~ T h e ~ C H S ~ i s ~ a ~ p o p u l a t i o n-b a s e d ~ c o h o r t ~ s t u d y ~ o f ~ r i s k ~ f a c t o r s ~ f o r ~}$ CHD and stroke in adults ≥ 65 years conducted across four field centers ${ }^{8}$. The original cohort, predominantly Americans of European Ancestry, comprised 5,201 persons who were recruited in 1989-1990 from random samples of the Medicare eligibility lists. Additional 687 individuals, predominantly African-Americans, were enrolled subsequently for a total sample of 5,888. DNA was extracted from blood samples drawn on all participants at their baseline examination in 1989-90 (original cohort) or 1992-93 (African American cohort). A sample of 823 AfricanAmericans satisfying study design criteria, and with genome-wide association data, were used for analysis. Research staff with central training in BP measurement assessed repeated rightarm seated SBP and DBP levels at baseline with a Hawksley random-zero sphygmomanometer. The reported BP is the average of two measurements, which were taken after the participant had been sitting quietly for five minutes. First the technician determined the correct cuff size by measuring the arm circumference at the midpoint between the acromion and the olecranon. After applying the appropriate cuff, the maximum inflation level was determined by inflating the cuff until the radial pulse was no longer felt. The maximum inflation level was then determined to be the pulse obliteration pressure plus 30 mmHg plus the maximum zero level of the instrument. BP was measured by inflating the cuff to the maximum inflation level, waiting 5 seconds, then lowering by $2-3 \mathrm{mmHg}$ per second. The first and fifth Korotkoff sounds were recorded. At least 30 seconds elapsed between each cuff inflation. Medication use was collected by interview. Information on prescription medication use in the previous two weeks was collected directly from the medications. A computer program developed by CHS was used to match the medication names with NDC numbers and then to group medications into analytic variables (e.g. beta blockers, lipid - lowering medications) ${ }^{9}$. Means of the repeated BP measurements from the baseline examination were used for the analyses.

GENOA

The Genetic Epidemiology $\underline{\text { Network of }} \underline{\text { Arteriopathy (GENOA) }}$ (GENOA is one of four networks in the Family Blood Pressure Program (FBPP) which recruited hypertensive African American and non - Hispanic white sibships for linkage and family - based association studies to investigate genetic contributions to BP in multiple racial groups ${ }^{10}$. Recruitment (Exam 1, 1995-2000 and Exam 2, 2000-2005) was population-based in two geographic locations: Jackson, Mississippi and Rochester, Minnesota. African Americans were recruited solely at the Jackson field center. Hypertensive probands were ascertained from the Jackson cohort of the ARIC study if they were in a sibship with two individuals with essential hypertension (SBP $=140 \mathrm{mmHg}$ or DBP $=90 \mathrm{mmHg}$ on the second and third clinic visit), diagnosed prior to age 60, and consented to participate. Index sib - pairs with possible secondary hypertension, including sib - pairs with previously diagnosed kidney disease (defined by serum creatinine level $>2 \mathrm{mg} / \mathrm{dL}$), were excluded. After quality control procedures, and exclusion of all overlapping participants with ARIC, genotype data from a total of 996 African Americans was available for this study.

SBP and DBPs were measured using an automated oscillometric BP measurement device with a consistent protocol across the FBPP networks. BP was measured three times on each participant by trained and certified technicians and then averaged for use in this analysis.

HRS

The Health and Retirement $\underline{\text { Study }}$ The HRS is a longitudinal survey of a representative sample of Americans over age 50 sponsored by the National Institute on Aging (NIA) and conducted by the University of Michigan's Institute for Social Research. The sample for this analysis includes 1,337 African Americans ($\mathrm{N}=483$ males, 36.1\%) interviewed in 2006 or 2008 with BP measured using an Omron HEM-780 Intellisence. Automated BP monitor with ComFit cuff. Participants that had missing values for both SBP and DBP, had missing values for covariates, and one individual that was >5 SDs from the mean of BMI were excluded. Mean SBP and DBP from three measures. Genotyping was performed by the Center for Inherited Disease Research (CIDR) using Illumina's Human Omni2.5-Quad BeadChip methodology. Genotyping quality control was performed by the Genetics Coordinating Center, Department of Biostatistics, University of Washington, Seattle.

HyperGEN

The Hypertension Genetic Epidemiology Network HyperGEN is a multicenter family-based study to research the genetic causes of hypertension and related conditions ${ }^{11}$. HyperGEN recruited African American and Caucasian participants at five field centers, with recruitment based largely on ongoing population-based studies. Study participants were recruited as one of three main types of subjects: 1) as part of a hypertensive sibship with at least two siblings diagnosed with hypertension; 2) random subjects, who were age-matched with hypertensive sibs; or 3) unmedicated adult offspring of one or more of the hypertensive siblings. Subjects were brought into the clinic for a one day exam, and data were collected from questionnaires, a physical exam, and blood and urine samples. This study obtained informed consent from participants and approval from the appropriate IRBs. SBP and DBPs were measured using an automated oscillometric BP measurement device with a consistent protocol across the FBPP networks. BP was measured three times on each participant by trained and certified technicians and then averaged for use in this analysis.

Maywood-Loyola Study Participants were self-identified African Americans from a working class suburb of Chicago, Illinois, USA who were enrolled in studies of BP at the Loyola University Medical Center in Maywood, Illinois, USA as part of the International Collaborative Study on Hypertension in Blacks (ICSHIB) which is described in detail elsewhere ${ }^{12}$. Briefly, nuclear families were identified through middle-aged probands who were not ascertained based on any phenotype. Thereafter all available first-degree relatives 18 years old and above were enrolled into the study cohort of families. A screening exam was completed by trained and certified research staff using a standardized protocol ${ }^{12,13}$. Information was obtained on medical history, age, body weight and height. Protocols were reviewed and approved by the IRB at the Loyola University Chicago Stritch School of Medicine prior to recruitment activities. This present study included
unrelated adults sampled and for whom information on anthropometrics, BP and use of antihypertensive medication was available. BP measurements were obtained using an oscillometric device, previously evaluated in our field settings ${ }^{13}$. Three measurements were taken three minutes apart and the average of the final two was used in the analysis. Individuals with SBP $\geq 140 \mathrm{mmHg}, \mathrm{DBP} \geq 90 \mathrm{mmHg}$ or on anti-hypertensive medication at time of exam were defined as hypertensive. Participants with hypertension were offered treatment after detection at the screening exam.

Maywood-Nigeria Cohort-1 \& Cohort-2 The sampling frame for the Nigeria cohort was also provided by the International Collaborative Study on Hypertension in Blacks (ICSHIB) as described in detail elsewhere ${ }^{12}$. Study participants were recruited from Igbo-Ora and Ibadan in southwest Nigeria as part of a long-term study on the environmental and genetic factors underlying hypertension. The base cohort consists of over 15,000 participants with information available on anthropometrics, BP and use of antihypertensive medication. BP measurements followed the same protocol described in the Loyola-Maywood study. This present study included unrelated adults samples from the cohort and some hypertensive participants who were recruited as controls in the Africa-America Diabetes Mellitus (AADM) Study recruited from Ibadan in similar neighborhoods ${ }^{14}$. Both projects were reviewed and approved by the sponsoring US institutions (Loyola University Chicago and Howard University) and the University of Ibadan. All participants signed informed consent administered in either English or Yoruba. BP measurements were obtained using an oscillometric device, previously evaluated in our field settings ${ }^{13}$. Three measurements were taken three minutes apart and the average of the final two was used in the analysis. Individuals with $\mathrm{SBP} \geq 140 \mathrm{mmHg}, \mathrm{DBP} \geq 90 \mathrm{mmHg}$ or on anti-hypertensive medication at time of exam were defined as hypertensive. Participants with hypertension were offered treatment after detection at the screening exam.

HUFS

The Howard University Family Study HUFS is population based family study of African Americans in the Washington metropolitan area. Investigators enrolled a randomly recruited set of families in addition to a set of unrelated individuals to study genetic and environmental factors of common complex diseases including hypertension. The IRB approved the study protocol, and written informed consent was obtained from all participants. A total of 1,192 unrelated individuals were included in this analysis. Blood pressure (BP) was measured in the sitting position using an oscillometric device (Omron). Three BP readings were taken with a 10 minute interval between readings. The reported SBP and DBP readings were the average of the second and third readings.

WHI

Women's Health Initiative SNP Health Association Resource WHI is a study of postmenopausal women (aged 50-79 years), comprising 161,808 women recruited from 40 U.S. clinical centers to participate in an observational study (WHI-OS) or in clinical trials (WHI-CT). Details of recruitment and follow-up are described elsewhere ${ }^{15,16}$. BP was measured by certified
staff using standardized procedures and instruments. Two BP measures were recorded after 5 minutes rest using a mercury sphygmomanometer. Appropriate cuff bladder size was determined at each visit based on arm circumference. Diastolic BP was taken from the phase V Korotkoff measures. The average of the two measurements, obtained 30 seconds apart, was used in analyses. Women were asked to bring all of their current prescription and over-the-counter medications to each visit. Demographic data, medical history and anthropometric measures were obtained at a baseline clinical visit.

The WHI SNP Health Association Resource (SHARe) minority cohort includes 8,515 selfidentified African American women from WHI who provided written informed consent for study participation and DNA analysis. WHI GARNET(Genome-wide Association Research Network into Effects of Treatment) is a nested case-control genetic study of gene-by-hormone therapy interaction on the risk of CVD events and incident diabetes, where CHD, stroke, venous thromboembolic (VTE) and diabetes cases were matched to controls based on age, race, hysterectomy, enrollment date, and length of follow-up. WHI_WHIMS+ (Women's Health Initiative Memory Study) is composed of hormone therapy trial participants aged ≥ 65 years at randomization and free of dementia at baseline. The Long Life Study is composed of 7,875 women aged 62 or older from the WHI Extension II, who participated in the Hormone Therapy Clinical Trials, and is focused on aging and health/disease conditions. Genotyping was performed using HumanOmniExpress Exome-8v1_B.

GeneSTAR

Genetic Study of Atherosclerosis Risk GeneSTAR is a 27 year prospective family-based study of incident CAD, diabetes, stroke, and other vascular diseases in initially healthy African American and European American adult relatives of probands with angiographically documented coronary disease prior to 60 years of age at the time of hospitalization for an acute CAD event in any of 10 Baltimore area hospitals ${ }^{17}$. The genotyped sample size is 3,200, with $\sim 35 \%$ African American ($\mathrm{n}=1,129$). Participants are siblings of the probands, offspring of the siblings and probands, and coparents of the offspring. All participants were under 60 years of age at the time of enrollment (from 1983 to 2006). Demographic information, self-reported medical history, medication use, and smoking information were obtained from a standardized interview ${ }^{18}$. BP was measured using a standard mercury sphygmomanometer, following the American Heart Association ${ }^{19}$ and JNC 6 guidelines ${ }^{20}$. The mean of three resting BP readings, taken early morning, midday, and late afternoon during the screening day was used to characterize BP measurements. Hypertension was defined as the subject having a mean SBP of $\geq 140 \mathrm{mmHg}$, a mean DBP of $\geq 90 \mathrm{mmHg}$, and/or currently taking an antihypertensive medication.

IPM

Mount Sinai IPM Biobank The BioMe Biobank is an ongoing, prospective, hospital- and outpatient- based population research program operated by The Charles Bronfman Institute for Personalized Medicine (IPM) at Mount Sinai and has enrolled over 33,000 participants since September 2007. BioMe is an Electronic Medical Record (EMR)-linked biobank that integrates
research data and clinical care information for consented patients at The Mount Sinai Medical Center, which serves diverse local communities of upper Manhattan with broad health disparities. BioMe populations include 25% of African ancestry (AA), 36% of Hispanic Latino ancestry (HL), 30% of white European ancestry (EA), and 9% of other ancestry. The BioMe disease burden is reflective of health disparities in the local communities.
BioMe operations are fully integrated in clinical care processes, including direct recruitment from clinical sites waiting areas and phlebotomy stations by dedicated recruiters independent of clinical care providers, prior to or following a clinician standard of care visit. Recruitment currently occurs at a broad spectrum of over 30 clinical care sites. This present study included only unrelated, adult, self-reported African Americans. Information on anthropometrics, demographics, BP and use of antihypertensive medication was derived from participants EMR. The Mount Sinai Biobank Project (IRB \# 07-0529 0001029 ME) operates under an IRBapproved research protocol with IRB-approved informed consent forms. All study participants provided written informed consent. The Mount Sinai IPM Biobank Program is supported by The Andrea and Charles Bronfman Philanthropies.

BioVU BioVU is a DNA biorepository linked to a database of de-identified EMRs (electronic medical records), designed and implemented with the goal of supporting genetic association studies at Vanderbilt University, including the identification of factors that affect disease susceptibility, disease progression, and/or drug response. BioVU is an ongoing study with rapid accrual of DNA specimens, accumulating approximately 27,000 participants per year, and with a current size of over 200,000. The DNA samples were obtained from patients at the Vanderbilt University Hospital, including all clinics that are part of the hospital system. A detailed description of the human subjects protection applied to BioVU is described by Pulley et al ${ }^{21}$. The program is under continuous oversight by the IRB and was reviewed in detail by the federal Office for Human Research Protections (OHRP). Program planning for BioVU started in 2004, and sample accrual started in February 2007.Traits are constructed for BioVU using the Synthetic Derivative (SD) database. This database is only accessible to Vanderbilt investigators and available by IRB approval. The SD database is a research tool developed to enable studies with de-identified clinical data. The SD collection includes information extracted from the EMR systems, and indexed by the same one-way Research Unique Identifier (RUI) used to track samples. The SD contains 2.4 million total records, with highly detailed longitudinal clinical data for approximately one million subjects. The database incorporates data from multiple sources and includes diagnostic and procedure codes (ICD-9 and CPT), basic demographics (age, sex, race), text from clinical care including discharge summaries, nursing notes, progress notes, history and physical examination, problem lists and multi-disciplinary assessments, laboratory values, echocardiogram (ECG) diagnoses, imaging reports, electronically derived trace values, and inpatient medication orders. All clinical data are updated regularly to include new patients and append new data to clinical records of existing patients. BioVU uses discarded blood samples collected during routine patient care, linked to de-identified data extracted and continuously updated from the EMR.

For this blood pressure (BP) study, we used adult (age ≥ 18) BioVU participants with GWAS data. We used the first eligible outpatient measured BP in the EMR, and excluded measures at or after a diagnosis of secondary hypertension (ICD-9 405), chronic kidney or end-stage renal disease (ICD-9 group 585), thyroid disease (ICD-9 groups 240-246), diabetes (ICD-9 group 250), mental disorders (ICD-9 groups 290-319) or heart failure (ICD-9 group 428). We also excluded BP measures when they occurred at the same time as a diagnosis of atrial fibrillation (ICD-9 group 427), stroke (ICD-9 V17.1, 997.0, 992.0, V12.54), migraine (ICD-9 group 346), shock (ICD-9 group 785), myocardial infarction (ICD-9 group 410), poisoning (ICD-9 groups 960-989), and cancer (ICD-9 groups 140-239). We also censored measures taken within 1 year of death for any cause and measures taken in the inpatient clinical setting. To define hypertension cases, participants' measured systolic BP (SBP) or diastolic BP (DBP) \geq 140 mmHg or 90 mmHg respectively, have a diagnosis of hypertension (ICD-9 groups 401-404), or a prescription for antihypertensive medication prior to, or on the date, of BP measurement. Hypertension controls were defined by the absence of case criteria. BP measures were taken in outpatient clinics by sphygmomanometer for sitting patients.

2. Replication multi-ethnic studies

East Asian Samples. Three independent dataset from Korea were used for replication studies. They are called as KARE, HEXA and NC, respectively, and collected from population-based cohorts. The Korea Association Resource (KARE) cohort has 8,842 subjects with 352,228 SNPs genotyped by the Affymetrix Genome-Wide Human SNP Array 5.0. 3,703 subjects were recruited in Health Examinee (HEXA) cohort and genotyped for 646,062 SNPs with Affymetrix Genome-Wide Human SNP Array 6.0. Nong-Chon (NC) cohorts has collected 1,816 subjects who have 606,875 SNPs genotyped by Affymetrix Genome-Wide Human SNP Array 6.0.

In our imputation study for 72 variants, we excluded variants which the HWE p-values were less than 10^{-5}, the minor allele frequencies (MAF) were less than 0.05 or the genotype missing rate were greater than 5% from the study panel. We also discarded subjects whose reported gender were discordant with sex chromosome, call rates were less than 95% or identity by state (IBS) was more than 0.8 . We extracted only variants within $+/-500 \mathrm{~kb}$ of 72 variants to construct study penal. Finally, we used 8,773 subjects with 3,865 SNPs for KARE, 3,702 subjects with 4,228 SNPs for HEXA and 1,814 subjects with 6,569 SNPs for NC as study panels, respectively. We utilized the 1000G Phase I Integrated Release Version 3 for reference panel.

By definition, there are 2,284 HTN patients in KARE, 665 HTN patients in HEXA and 858 HTN patients in NC. The mean and standard deviation (SD) of SBP, DBP and PP in KARE were 121.64 mmHg (18.62), 80.24 mmHg (11.46), and 41.41 mmHg (11.54), respectively. Similarly, HEXA showed 121.68 mmHg (14.37) of SBP, 80.24 mmHg (11.46) of DBP and 44.63 mmHg (9.26) of PP. Finally, the mean and SD of SBP, DBP and PP in NC were 133.81 mmHg (18.03), 83.88 mmHg (10.77) and 49.93 mm Hg (12.89), respectively.

European American Samples

The Atherosclerosis Risk In Communities (ARIC). The Atherosclerosis Risk In Communities Study is a population-based prospective cohort study of cardiovascular disease sponsored by the National Heart, Lung, and Blood Institute (NHLBI). ARIC included 15,792 individuals aged 4564 years at baseline (1987-89), chosen by probability sampling from four US communities 11. Cohort members completed four clinic examinations each spread over about three years, conducted approximately three years apart between 1987 and 1998. The data used in this study are from the first visit in 1987-1989. A detailed study protocol is available on the ARIC study website (http://www.cscc.unc.edu/aric). Blood pressure was measured using a standardized Hawksley random-zero mercury column sphygmomanometer with participants in a sitting position after a resting period of 5 minutes. The size of the cuff was chosen according to the arm circumference. Three sequential recordings for systolic and diastolic blood pressure were obtained; the mean of the last two measurements was used in this analysis, discarding the first reading. Blood pressure lowering medication use was recorded from the medication history. Outliers (>4 SD from the mean) with respect to the systolic or diastolic blood pressure distributions were excluded from the analysis. For this study the sample was restricted to individuals of European descent by self-report and principal component analysis using genomewide genotypes.

African Samples

Uganda Study The Uganda study sought to determine whether a set of genetic loci significantly associated with blood pressure traits could be replicated among samples from the Medical Education Partnership Initiative for Cardiovascular Disease (MEPI-CVD) survey in Uganda, East Africa. The methods of the MEPI-CVD Survey have been described elsewhere ${ }^{22}$. In brief, MEPI-CVD Survey was a cross-sectional study conducted between September 2012 and May, 2013 in Wakiso district of central Uganda among men and women aged 18 years and older. Data on CVD risk factors of interest was collected by trained research nurses using the World Health Organisation (WHO) modified expanded STEPs questionnaire. Subjects were asked to provide information on their age, sex, address, dietary habits, tobacco and alcohol consumption, exercise, smoke exposure, socio-economic status (housing characteristics), family history and symptoms of heart disease including angina. Self-reported history of hypertension diagnosis, diabetes, dyslipidaemia and the treatment for these conditions was also recorded.
Anthropometric measurements collected included height, weight, and waist circumference. Blood pressure, fasting cholesterol and blood sugar measurements were also collected.

Participants were requested beforehand to refrain from smoking, drinking alcohol or caffeinated beverage a half an hour prior to blood pressure measurement. Blood pressure and heart rate was measured with an Omron automated sphygmomanometer model HEM-907. The BP was measured on the left arm after the participant had sat for at least five minutes. The blood pressure was taken in the sitting position, legs uncrossed, the arm resting on a table and the ante-cubital fossa at the level of the lower sternum. Two arm cuffs that fitted arm circumferences 9-13 inches and 13-17 inches were used in the process. Three readings were taken three minutes apart and
the mean of the closest two values were used to describe the blood pressure of the subject. Additional measurements included height which was measured to the nearest 0.1 cm as the perpendicular distance between the top of the head (the vertex) and the bottom of the feet by a SECA 214 portable stadiometer. The weight was measured to the nearest 0.1 kg using a SECA 762 weighing scale with the subjects putting on loose clothing. The waist circumference was measured to the nearest 0.1 cm at the level of the midpoint between the inferior margin of the last rib and the crest of the ilium in the mid-axillary plane using a non-stretchable tape measure. Thirty SNPs were selected for genotyping and association analysis with BP. These SNPs were selected based on the previous association evidence with BP from GWASs or admixture mapping analysis ${ }^{23-28}$.

ACKNOWLEDGEMENTS

BioVU: The dataset(s) used for the analyses described were obtained from Vanderbilt University Medical Center's BioVU which is supported by institutional funding and by the Vanderbilt CTSA grant 1UL1RR024975-01 from NCRR/NIH. Support was also provided by Vanderbilt Clinical and Translational Research Scholar award (5KL2RR024975 to TLE), and Additional support was provided by the Building Interdisciplinary Research Careers in Women's Health career development program (K12HD4383 to DRVE).

CARe Acknowledgement: The authors wish to acknowledge the support of the National Heart, Lung, and Blood Institute and the contributions of the research institutions, study investigators, field staff and study participants in creating this resource for biomedical research. The following nine parent studies have contributed parent study data, ancillary study data, and DNA samples through the Broad Institute (N01-HC-65226) to create this genotype/phenotype data base for wide dissemination to the biomedical research community. This work was also funded by the Center of Excellence in Personalized Medicine (CEPMED), the Canada Research Chair program, the "Fonds de recherche du Québec en Santé (FRQS)", and the "Fondation de 1'Institut de Cardiologie de Montréal" (to GL):

Atherosclerotic Risk in Communities (ARIC): University of North Carolina at Chapel Hill (N01HC-55015), Baylor Medical College (N01-HC-55016), University of Mississippi Medical Center (N01-HC-55021), University of Minnesota (N01-HC-55019), Johns Hopkins University (N01-HC55020), University of Texas, Houston (N01-HC-55017), University of North Carolina, Forsyth County (N01-HC-55018);

Cardiovascular Health Study (CHS): University of Washington (N01-HC-85079), Wake Forest University (N01-HC-85080), Johns Hopkins University (N01-HC-85081), University of Pittsburgh (N01-HC-85082), University of California, Davis (N01-HC-85083), University of California, Irvine (N01-HC-85084), New England Medical Center (N01-HC-85085), University of Vermont (N01HC-85086), Georgetown University (N01-HC-35129), Johns Hopkins University (N01 HC-15103), University of Wisconsin (N01-HC-75150), Geisinger Clinic (N01-

HC-45133), University of Washington (N01 HC-55222, U01 HL080295); Cleveland Family Study (CFS): Case Western Reserve University (RO1 HL46380-01-16);

Coronary Artery Risk in Young Adults (CARDIA): University of Alabama at Birmingham (N01HC-48047), University of Minnesota (N01-HC-48048), Northwestern University (N01-HC48049), Kaiser Foundation Research Institute (N01-HC-48050), University of Alabama at Birmingham (N01-HC-95095), Tufts-New England Medical Center (N01-HC-45204), Wake Forest University (N01-HC-45205), Harbor-UCLA Research and Education Institute (N01-HC05187), University of California, Irvine (N01-HC-45134, N01-HC-95100);

Multi - Ethnic Study of Atherosclerosis (MESA): MESA and the MESA SHARe project are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for MESA is provided by contracts HHSN268201500003I, N01-HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, UL1-TR-001420, UL1-TR-001881, and DK063491. The MESA CARe data used for the analyses described in this manuscript were obtained through Genetics (accession numbers). Funding for CARe genotyping was provided by NHLBI Contract N01-HC-65226

FBPP: Axiom study is supported by the National Institutes of Health, grant number HL086718 from National Heart, Lung, Blood Institute. Z Zhang and X Zhu are supported by HL086718 from National Heart, Lung, Blood Institute and HG003054 from the National Human Genome Research Institute.

GeneSTAR: GeneSTAR was supported by NIH grants through the National Institute of Nursing Research (NR0224103) and the National Heart, Lung, and Blood Institute (HL58625-01A1, HL59684, HL071025-01A1, U01HL72518, and HL087698); and by M01-RR000052 to the Johns Hopkins General Clinical Research Center.

GENOA: Genetic Epidemiology Network of Arteriopathy (GENOA) study is supported by the National Institutes of Health, grant numbers HL087660 and HL100245 from the National Heart, Lung, Blood Institute. Ghana study: The authors wish to acknowledge the support of the study investigators, field staff and study participants in creating this resource for biomedical research. The Ghana Study is funded by NLM grant LM010098.

HANDLS: The Healthy Aging in Neighborhoods of Diversity across the Life Span Study (HANDLS) research was supported by the Intramural Research Program of the NIH, National Institute on Aging and the National Center on Minority Health and Health Disparities (project \# Z01AG000513 and human subjects protocol \# 2009-149). Data analyses for the HANDLS study utilized the high - performance computational capabilities of the Biowulf Linux cluster at the National Institutes of Health, Bethesda, Md. (http://biowulf.nih.gov).

HUFS: The Howard University Family Study was supported by National Institutes of Health grants S06GM008016-320107 to Charles Rotimi and S06GM008016-380111 to Adebowale Adeyemo. We thank the participants of the study, for which enrollment was carried out at the Howard University General Clinical Research Center, supported by National Institutes of Health grant 2M01RR010284. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official view of the National Institutes of Health. This research was supported in part by the Intramural Research Program of the Center for Research on Genomics and Global Health (CRGGH). The CRGGH is supported by the National Human Genome Research Institute, the National Institute of Diabetes and Digestive and Kidney Diseases, the Center for Information Technology, and the Office of the Director at the National Institutes of Health (Z01HG200362). Genotyping support was provided by the Coriell Institute for Medical Research.

HyperGEN: The hypertension network is funded by cooperative agreements (U10) with NHLBI: HL54471, HL54472, HL54473, HL54495, HL54496, HL54497, HL54509, HL54515, and 2 R01 HL55673-12. The study involves: University of Utah (Network Coordinating Center, Field Center, and Molecular Genetics Lab); Univ. of Alabama at Birmingham (Field Center and Echo Coordinating and Analysis Center); Medical College of Wisconsin (Echo Genotyping Lab); Boston University (Field Center); University of Minnesota (Field Center and Biochemistry Lab); University of North Carolina (Field Center); Washington University (Data Coordinating Center); Weil Cornell Medical College (Echo Reading Center); National Heart, Lung, \& Blood Institute. For a complete list of HyperGEN Investigators please see: www.biostat.wustl.edu/hypergen/Acknowledge.html

Loyola-Nigeria: The Loyola-Nigeria study was supported by NIH grant numbers R01HL053353. The authors acknowledge the assistance of the research staff and participants in Ibadan and Igbo-Ora, Oyo State, Nigeria.

Loyola-Maywood: Maywood African-American study is supported by the National Institutes of Health grant number HL074166 from National Heart, Lung, Blood Institute.

Mt Sinai IPM Study: The Mt. Sinai IPM study was supported by The Andrea and Charles Bronfman Philanthropies. The authors would like to thank the participants from New York City, United States, for participating in the Mount Sinai IPM Biobank Program.

WHI: The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services through contracts N01WH22110, 24152, 32100-2, 32105-6, 32108-9, 32111-13, 32115, 32118-32119, 32122, 42107-26, 42129-32, and 44221.

HRS: HRS is supported by the National Institute on Aging (NIA U01AG009740). The genotyping was funded separately by the National Institute on Aging (RC2 AG036495, RC4 AG039029). Genotyping was conducted by the NIH Center for Inherited Disease Research
(CIDR) at Johns Hopkins University. Genotyping quality control and final preparation of the data were performed by the Genetics Coordinating Center at the University of Washington.

SUPPLEMENTARY REFERENCES

1. The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators. Am J Epidemiol 129, 687-702 (1989).
2. Friedman, G.D. et al. CARDIA: study design, recruitment, and some characteristics of the examined subjects. J Clin Epidemiol 41, 1105-16 (1988).
3. Palmer, L.J. et al. A whole-genome scan for obstructive sleep apnea and obesity. Am J Hum Genet 72, 340-50 (2003).
4. Taylor, H.A., Jr. The Jackson Heart Study: an overview. Ethn Dis 15, S6-1-3 (2005).
5. Fuqua, S.R. et al. Recruiting African-American research participation in the Jackson Heart Study: methods, response rates, and sample description. Ethn Dis 15, 56-18-29 (2005).
6. Bild, D.E. et al. Multi-Ethnic Study of Atherosclerosis: objectives and design. Am J Epidemiol 156, 871-81 (2002).
7. Evans, M.K. et al. Healthy aging in neighborhoods of diversity across the life span (HANDLS): overcoming barriers to implementing a longitudinal, epidemiologic, urban study of health, race, and socioeconomic status. Ethn Dis 20, 267-75 (2010).
8. Fried, L.P. et al. The Cardiovascular Health Study: design and rationale. Ann Epidemiol 1, 263-76 (1991).
9. Psaty, B.M. et al. Assessing the use of medications in the elderly: methods and initial experience in the Cardiovascular Health Study. The Cardiovascular Health Study Collaborative Research Group. J Clin Epidemiol 45, 683-92 (1992).
10. Province, M.A. et al. A meta-analysis of genome-wide linkage scans for hypertension: the National Heart, Lung and Blood Institute Family Blood Pressure Program. Am J Hypertens 16, 144-7 (2003).
11. Williams, R.R. et al. NHLBI family blood pressure program: methodology and recruitment in the HyperGEN network. Hypertension genetic epidemiology network. Ann Epidemiol 10, 389-400 (2000).
12. Cooper, R. et al. The prevalence of hypertension in seven populations of west African origin. Am J Public Health 87, 160-8 (1997).
13. Cooper, R. et al. Evaluation of an electronic blood pressure device for epidemiological studies. Blood Press Monit 2, 35-40 (1997).
14. Rotimi, C.N. et al. A genome-wide search for type 2 diabetes susceptibility genes in West Africans: the Africa America Diabetes Mellitus (AADM) Study. Diabetes 53, 838-41 (2004).
15. Design of the Women's Health Initiative clinical trial and observational study. The Women's Health Initiative Study Group. Control Clin Trials 19, 61-109 (1998).
16. Shumaker, S.A. et al. The Women's Health Initiative Memory Study (WHIMS): a trial of the effect of estrogen therapy in preventing and slowing the progression of dementia. Control Clin Trials 19, 604-21 (1998).
