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Knowledge of the genetic basis of the type 2 diabetes (T2D)-related quantitative traits fasting glucose (FG) and insulin (FI) in African

ancestry (AA) individuals has been limited. In non-diabetic subjects of AA (n ¼ 20,209) and European ancestry (EA; n ¼ 57,292), we per-

formed trans-ethnic (AAþEA) fine-mapping of 54 established EA FG or FI loci with detailed functional annotation, assessed their rele-

vance in AA individuals, and sought previously undescribed loci through trans-ethnic (AAþEA) meta-analysis. We narrowed credible

sets of variants driving association signals for 22/54 EA-associated loci; 18/22 credible sets overlappedwith active islet-specific enhancers

or transcription factor (TF) binding sites, and 21/22 contained at least one TFmotif. Of the 54 EA-associated loci, 23 were shared between

EA and AA. Replication with an additional 10,096 AA individuals identified two previously undescribed FI loci, chrX FAM133A

(rs213676) and chr5 PELO (rs6450057). Trans-ethnic analyses with regulatory annotation illuminate the genetic architecture of glycemic

traits and suggest gene regulation as a target to advance precision medicine for T2D. Our approach to utilize state-of-the-art functional

annotation and implement trans-ethnic association analysis for discovery and fine-mapping offers a framework for further follow-up

and characterization of GWAS signals of complex trait loci.
Introduction

The global burden of type 2 diabetes (T2D [MIM:

125853]) is borne disproportionately by populations
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with little genetic European ancestry (EA), especially Afri-

can Americans.1 Although environmental and behavioral

factors account for a large portion of these observed race-

ethnic disparities, genetic variation also contributes2,3
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but remains understudied in persons of mostly or all ge-

netic African ancestry (AA).2–4 A few studies have exam-

ined the association signals of EA-associated loci with

levels of fasting glucose (FG) and insulin (FI) in ethnic

minorities, but on a relatively small scale.5–7 Genome-

wide association studies (GWASs) with meta-analysis in

EA populations have identified more than 50 loci associ-
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ated with T2D-related quantitative traits (QTs), particu-

larly levels of fasting glucose (FG) and insulin (FI).8 Asso-

ciated SNPs at these loci are common, with modest effect

sizes.8–10 At most SNPs the causal action remains un-

known, because most lie in non-coding regions of the

genome. Now, these have been annotated for regulatory

function.11–14 We collected a large sample of AA
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individuals for genetic study and, taking advantage of

differences in linkage disequilibrium (LD) patterns across

EA and AA, used a trans-ethnic analytic approach to

improve mapping resolution15 and narrow the number

of potential causal SNPs at associated loci.15,16 We then

characterized predicted SNP function with detailed anno-

tation information from diverse sources. We hypothe-

sized that a trans-ethnic approach would identify SNPs

with high likelihood of having regulatory, causal func-

tion, with results illuminating mechanisms underlying

glycemic regulation in African Americans as well as

whites of European ancestry.

We created the African American Glucose and Insulin

Genetic Epidemiology (AAGILE) Consortium, with up

to 20,209 AA individuals from 16 cohorts, to conduct a

fixed effects meta-analysis of association summary statis-

tics at 3.3 million (HapMap2) SNPs for levels of FG and

body mass index (BMI)-adjusted FI. We then combined

meta-analysis results from AAGILE with those from the

EA Meta-Analyses of Glucose and Insulin-related traits

Consortium (MAGIC, n ¼ 57,292)10 with three aims in

mind: (1) conduct trans-ethnic fine-mapping of 54

T2D QT loci (36 FG, 16 FI, 2 associated with both FG

and FI) identified from EA and combine fine-mapping

with annotation resources including RegulomeDB,

ENCyclOpedia of DNA Elements (ENCODE), Islet Regu-

lome, and Functional ANnotation of The mammalian

genOMe Consortium (FANTOM);11–14 (2) assess the bio-

logic relevance (allelic heterogeneity, transferability, pop-

ulation genetic selection, and consistency of association

with T2D or insulin resistance traits) of the 54 EA FG

and FI loci in AA individuals; and (3) identify additional

FG and FI variants by combining association results from

AAGILE and MAGIC using Meta-Analysis of TRans-

ethnic Association Studies (MANTRA)15 followed by de

novo or in silico replication in additional AA samples

(n up to 10,096) for 62 potential additional SNPs that

met pre-specified significance levels from the trans-

ethnic meta-analysis. The study design is illustrated in

Figure S1 and characteristics of each participating cohort

are described in Table S1.
Material and Methods

Research Participants
A total of 20,209 (for FG) and 17,871 (for FI) non-diabetic men and

women of African ancestry (AA) from 16 cohorts participated in

stage 1 (Table S1). Additionally, up to 10,096 (for FG) and 6,669

(for FI) non-diabetic individuals from 14 cohorts were included

in a stage 2 replication analyses. Participants were excluded from

this study if they had a diagnosis of T2D by a physician, were on

any diabetes treatment, or had a FG concentration equal to or

greater than 7 mmol/L. HbA1c levels were not used as diagnostic

criteria. FG and FI GWAS data for 57,292 (FG) and 52,328 (FI) EA

individuals were obtained from MAGIC.10 Each participating

study has obtained institutional review board approval and all

subjects provided written informed consent.
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Genetic Variants
Genotyping was conducted in each cohort using commercially

available genome-wide SNP arrays with quality control criteria

for variants before imputation listed in Table S1. In all stage 1

discovery analyses, imputation was performed to infer ungeno-

typed variants and fill in missing genotypes. We used phased

haplotype data from the CEU and YRI HapMap phase 2 samples

for the majority of contributing studies, using MACH17 or

IMPUTE2.18 Variants with lower imputation quality scores

(MACH r2 < 0.30 or IMPUTE2 information score < 0.40) were

excluded from further analyses. Approximately 3.3 million

directly genotyped or imputed SNPs, including ~78,000 from the

X chromosome, passed the quality control filters and were evalu-

ated for association.

Traits and Covariates
In all cohorts, fasting blood samples were obtained from par-

ticipants after an overnight (R8 hr) fast. Detailed descriptions

of study-specific FG and FI measurements are given in

Table S1. Analyses of untransformed levels of FG and natural

logarithm-transformed FI were adjusted for age, age squared,

sex, and principal components (PC) for ancestry. In addition,

we adjusted FI levels for BMI to reduce confounding by

obesity.10 SNP-trait associations were tested using additive ge-

netic models. Additional cohort-specific covariates (like study

center for cohorts with multiple sites or relatedness for studies

containing families) were included at the discretion of each

cohort (Table S1).

Overview of Study Design and Analysis Strategy
The overall study design is shown in Figure S1. We first performed

fixed-effect meta-analyses of FG and FI in AA samples. We then

conducted trans-ethnic meta-analyses by combining the fixed-ef-

fect meta-analysis results from AAGILE with MAGIC. We fine-

mapped FG and FI loci previously identified in EA by constructing

99% credible sets.15 Second, we used results from the fixed-

effect meta-analysis in AA to assess whether FG and FI loci

identified in EA populations have genetic concordance or biolog-

ical relevance in AA. Third, we carried forward 62 SNPs (not previ-

ously described to be associated with FG or FI in persons of EA)

based on low fixed-effect meta-analysis p values in AA or high

log-Bayes factor (log(BF)) in the combined AA and EA trans-ethnic

analysis for follow-up in additional non-diabetic samples of AA to

identify additional FG and FI association signals. Specifically, the

threshold for SNP promotion to replication was a fixed-effect

meta-analysis p < 10–6 in AA samples, or p < 10–5 with log(BF)

> 5 in MANTRA. Meta-analyses were performed at two different

sites and summary statistics were crosschecked to ensure consis-

tency of results.

Meta-analysis of Samples from AAGILE and MAGIC

Consortia
Each participating study from the AAGILE consortium performed

a cohort-specific association analysis under an additive genetic

model to test the genetic association of each genetic variant

with FG and FI. The cohort-specific genome-wide association re-

sults were corrected with genomic control, unless lGC < 1, before

meta-analyzing the GWAS results.17We then conducted a fixed-ef-

fects meta-analysis with inverse-variance weighting implemented

in the programMETAL to aggregate the cohort-specific association

results.19



To leverage differential patterns of LD between common vari-

ants in EA and AA populations, we meta-analyzed GWAS results

from AA in AAGILE and previously published EA results from

MAGIC10 using the Meta-ANalysis of Trans-ethnic Association

Studies (MANTRA) software.15,20 The results from MANTRA were

used to fine-map the 54 loci (36 FG, 16 FI, 2 associated with

both FG and FI) previously identified in EA samples and to priori-

tize variants for discovery of previously undescribed variants asso-

ciated with FG and FI in AA samples.
Construction of 99% Credible Sets
To improve fine-mapping resolution, we first constructed 99%

credible sets for previously reported FG and FI loci identified in

EA samples (36 FG, 16 FI, 2 associated with both FG and FI).8–10

We identified the genomic region 250 kb upstream and 250 kb

downstream of the lead SNP from the EA meta-analysis and

defined BFk, obtained from MANTRA analysis, as the Bayes factor

for SNP k. We calculated the posterior probability that SNP k is

functional or tagging an unobserved causal SNP by BFk=
P

iBFi,

where i indexes SNPs in the locus of interest. The 99% credible

sets are the collection of the minimum number of variants

providing a cumulative posterior probability greater or equal to

0.99 for representing the causal variant at a given locus.21
Annotation of Credible Set SNPs
We focused our annotation analysis on loci that showed a 99%

credible set reduction of at least 20% in the length of the genomic

interval spanned by the variants in the credible set or in the num-

ber of variants included in the credible set (13 FG, 8 FI loci, and 1

locus for both FG and FI). When examining the distribution of

credible set reduction across all 54 FG and FI loci, we noted that

there appeared to be a natural break point between 20% and

12%, so we selected 20% reduction as a threshold defining loci

with substantial reduction. At these loci, we classified SNPs in

the credible set into two groups: one group with SNPs included

in the 99% credible set from the trans-ethnic fine-mapping with

MANTRA and a second group that included only SNPs that were

included in the 99% credible set using EA samples (MAGIC) but

were excluded from the trans-ethnic 99% credible set. For brevity,

we henceforth refer to these categories of SNPs as the ‘‘narrowed

sets’’ and ‘‘excluded sets,’’ respectively.

To compare functional annotation of the narrowed versus

excluded credible sets, we annotated SNPs from the narrowed

and excluded sets separately using the HaploReg tool that searches

for dbSNP annotation (synonymous substitution, non-synony-

mous substitution, lying within an intron, 50 UTR, 30 UTR, or

lncRNA, conservation in mammals, or having unknown position

or function), genomic position, distance to the nearest named

known protein-coding gene, eQTL data, and transcription factor

motif, transcription factor binding site (TFBS), DNASe hypersensi-

tivity (DHS), and histonemarks associated with promoters and en-

hancers derived from the ENCODE and Roadmap Epigenomics

consortia.12 We dichotomized the data from HaploReg for each

SNP in the narrowed and excluded sets based on whether there

was evidence of each specific annotation. To compare the narrow

and excluded sets of SNPs for each trait, we performed a Fisher’s

exact test to assess differences in proportions of SNPs in each set

with a specific annotation characteristic.

We visually examined overlap between trait association and reg-

ulatory annotation by plotting association statistics and regulato-

ry data together. For each of the 22 loci with a reduction in the size
Th
of at least 20% (either length of or the count of SNPs included in)

of the 99% credible set after trans-ethnic analysis, we used Regulo-

meDB to generate a single numeric score summarizing the

strength of regulatory data associated with each SNP in the locus

(within 250 kb on either side of the index SNP for that locus

from MAGIC).11 In brief, RegulomeDB uses data from ENCODE

and other published literature to annotate SNPs based on overlap

with TFBS, TF motifs, DHS, eQTLs, and promoter histone marks

and creates a score for each SNP ranging from 1 to 7, with 1 corre-

sponding to the strongest degree of regulatory annotation, 6 cor-

responding to the weakest degree of regulatory annotation, and

7 representing no data available. We then used statistical software

R to make regional association plots as described above using the

log(BF) for each SNP as the association statistic, with the color of

each plotted SNP corresponding to its RegulomeDB score and

the size of each plotted SNP corresponding to LD with the MAGIC

index SNP in the YRI population. Finally, to visually examine over-

lap between the 99% credible regions at these 22 loci and regula-

tory data derived from pancreatic islets, we used the Islet Regu-

lome Browser to generate plots with the same coordinates as

represented in the regional plots and aligned the schematic repre-

sentation of islet-derived regulatory annotation from the Islet Reg-

ulome Browser to the regional association plot.13

We performed additional annotation analyses for the narrowed

set (from the trans-ethnic meta-analysis). The starting and ending

chromosome position of the 99% credible region from the trans-

ethnic analysis for each of the 22 loci with substantially reduced

99% credible sets were entered into the Islet Regulome Browser,

and we cataloged the presence/absence of binding sites for five

transcription factors (FOXA2, MAFB, NKX2.2, NKX6.1, PDX1) or

the insulator protein CTCF, and histone marks associated with

promoters, active enhancers, and inactive enhancers.11,13 In

addition to examining overlap between credible set SNPs and reg-

ulatory annotation, we also manually annotated the credible set

intervals for the 22 loci with substantially reduced 99% credible

sets. The genomic interval for each narrowed trans-ethnic credible

set was examined in the UCSCGenome Browser, and we cataloged

RNA expression, DHS sites, TFBS, and promoter and enhancer his-

tone marks in cell types relevant to FG and FI, namely liver,

pancreatic, adipose, and muscle.
Genomic Annotation Enrichment Analysis
We tested for enrichment of chromatin statemarks and TFBS using

all variants in the trans-ethnic meta-analysis credible sets. We

pooled chromatin states for promoter (TssA, TssFlnk) and

enhancer (EnhA, EnhWk) elements for 93 cell types (after

excluding cancer lines) from the Roadmap Epigenomics Con-

sortium22 and used TF binding data for 165 proteins from

ENCODE23 and the Islet Regulome.13 For a given annotation, we

calculated the cumulative posterior probability of annotated vari-

ants at each locus and then averaged these values across all loci.

We then generated a null distribution for this procedure by

randomly shuffling the probabilities among variants at each locus,

recalculating the average probability for annotated variants, and

repeating this procedure 1,000,000 times. We estimated fold-

enrichment for each annotation by dividing the observed value

by the permuted value averaged across all permutations. We

then calculated a p value for the enrichment as the proportion

of permutations for which the resulting value was greater than

or equal to that observed. We applied a corrected significance

threshold of 0.00019 (0.05/257 annotations).
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Interrogation of Transferability across Populations
We investigated the transferability to AA of EA FG- and FI-associ-

ated SNPs and loci. To evaluate SNP transferability, we tested in

AA the association of index FG and FI SNPs from EA individuals

in MAGIC8–10 (i.e., EA FG or FI SNPs with p < 5 3 10–8). We

defined SNP transferability as an EA index SNP showing in AA

an association that was statistically significant (p < 0.05) and

consistent in direction of effect as in the EAmeta-analysis. To eval-

uate locus transferability, given differences in local LD structure

across populations, we also interrogated the flanking 5250 kb re-

gions of the index SNP in AA to search for any SNPs with a smaller

association p than the EA index SNP. For locus transferability, we

used a Bonferroni corrected p to determine the significance for

each locus by adjusting for the effective number of independent

tests within that locus, using the Li and Ji approach.24

Conditional Analysis of Signals with Significant SNP

Associations in AA
We performed approximate conditional association analyses at

loci with significant QT associations in AAGILE in order to test

whether the associated AAGILE SNP was the same association

signal as the MAGIC SNP. We used genome-wide complex trait

analysis (GCTA)25 for this analysis, because it allows approximate

conditional analyses in results from meta-analysis without the

need for individual cohort data to conduct the tests. GCTA

approximated the variance-covariance matrix of genotype using

estimated allele frequency from the meta-analysis results and LD

between SNPs from a reference sample. We calculated the associa-

tion of the AA best SNP conditional on the EA index SNP within

the same locus in AA samples.

Concordance Analysis across Ancestry Groups
For this analysis, we considered SNPs that passed QC and had a

MAF > 1% in both EA- and AA-specific meta-analyses. We further

excluded (1) EA-associated FG or FI loci, defined as those lying 500

kb upstream or downstream of previously reported SNPs for each

loci as described,16 and (2) AT/GC SNPs to avoid the potential

bias introduced by the strand misalignment between EA- and

AA-specific meta-analysis. We then classified all the remaining

SNPs into categories based on the association p value in the

MAGIC EA samples: p % 0.01, 0.01 < p % 0.5, and 0.5 < p % 1.

For the SNPs within each category, we then selected a set of inde-

pendent SNPs by identifying the most significant SNP, omitting

the SNPs within 500 kb region apart from the most significant

SNP, and then repeating this process until there were no more

SNPs left. We then determined the direction of effect for the EA

trait-raising allele between EA and AA samples and we calculated

the proportion of these selected SNPs that share the same direction

of effect. To determine the significance of the excess in concor-

dance (with 50% expected), we then conducted one-sided bino-

mial tests.

Population Differentiation and Natural Selection at

QT Loci
We applied several approaches to evaluate population differentia-

tion and natural selection at index FG or FI SNPs, using the trait-

raising allele in EA as the risk allele. First, we compared the risk-

allele frequencies in EA versus AA by calculating the absolute value

difference between the risk-allele frequency in EA and the risk-

allele frequency in AA for each index SNP. Second, we used

Wright’s fixation index26 (Fst) to measure the degree of the popu-
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lation differentiation due to genetic drift and reflected by the

divergent allele frequencies. A value of Fst lying in range of 0 to

0.05 indicates little genetic differentiation; a value 0.05 to 0.15,

moderate differentiation; and a value greater than 0.15, greater

population differentiation.27,28 We calculated Fst using risk-allele

frequencies obtained from AAGILE cohorts for AAs and from

MAGIC8–10 for EAs. We also calculated the Fst using CEU and

YRI HapMap2 data from two samples of equal size to ensure that

the imbalance in sample size of our EA and AA samples does not

obscure the population differentiation at any locus. Third, we

used Haplotter29 to calculate the integrated haplotype score

(iHS) in HapMap2 data to measure the amount of extended haplo-

type homozygosity and hence the evidence of recent positive se-

lection at the index SNP. Fourth, we compared the effect alleles

from the index SNP of each locus against the human genome to

determine whether it was the major or minor allele using the

UCSC Genome Browser GRCh37/hg19 version, produced by the

Genome Reference Consortium in 2009.30
Associations of QT Loci with T2D and Insulin

Resistance-Related Traits in AA Individuals
As described below, we assembled new African ancestry cohort

data sources for triglycerides and initiated collaborations with

new and existing consortia for body mass index (BMI), waist-to-

hip ratio adjusted for BMI (WHRadjBMI), systolic and diastolic

blood pressure, hypertension (HTN), and low-density and high-

density lipoprotein cholesterol (LDL-C and HDL-C) to investigate

the association of T2D QT SNPs with T2D and insulin resistance-

related traits (BMI, WHRadjBMI, HTN, LDL-C, HDL-C, and triglyc-

erides) in AA individuals. Specifically, we investigated the associa-

tion of 25 SNPs, including 24 most associated SNPs (14 FG, 9 FI,

and 1 SNP, rs780094, associated with both FG and FI) residing in

the regions demonstrating locus transferability in AA and 1 previ-

ously undescribed FI SNP (rs6450057). We also tested the associa-

tion of the FI SNP on chromosome X, rs213676, with lipid traits

(the only traits available for chromosome X). HapMap2-imputed

GWASmeta-analysis summary statistics for 25 SNPs were obtained

from theMeta-analysis of T2D in African Americans (MEDIA) con-

sortium for T2D31 (n up to 23,818), the African Ancestry Anthro-

pometry Genetics Consortium (AAAGC) for BMI32 (n up to

39,141) andWHRadjBMI32,33 (n up to 19,049), and the Continen-

tal Origins and Genetic Epidemiology Network (COGENT) for

HTN and blood pressure34 (n up to 29,828). HapMap-imputed

GWASmeta-analysis summary statistics for 26 SNPs were obtained

from the Candidate gene Association Resource (CARe) consortium

for LDL-C and HDL-C35 (n up to 8,090) and the ElectronicMedical

Records and Genomics Network (eMERGE) for triglycerides36 (n

up to 2,838). SNPs with p < 0.05 and same direction of effect

(i.e., FG/FI-increasing alleles associated with T2D or higher levels

of the quantitative insulin-resistance traits, except for HDL-C

where FG/FI-increasing alleles were expected to be associated

with lower HDL-C) were considered significant.
Discovery and Replication of Previously Undescribed

FG and FI SNPs in AA
For identification of additional FG- and FI-associated loci in AA, we

took a two-stage (discovery followed by replication) approach

(Figure S1). In the discovery stage, we used fixed-effect meta-anal-

ysis results in AA and the trans-ethnic meta-analysis (MANTRA) re-

sults as described in the Meta-analysis of Samples from AAGILE

and MAGIC Consortia section. We identified 62 variants, not



previously reported to be associated with FG or FI in any ancestry,

classified into three tiers of decreasing restrictiveness based on low

fixed-effect meta-analysis p values in AA or high trans-ethnic

meta-analysis (MANTRA) log(BF) in the combined AA and EA re-

sults, for follow-up in 10,096 additional AA samples from 16 addi-

tional, independent cohorts (Table S1). Identified variants were

classified into three tiers to take forward to the replication stage.

Tier 1 was variants with a fixed-effect meta-analysis p < 10–6 in

AA samples, or p < 10–5 with log(BF) > 5 in MANTRA; tier 2 was

variants with log(BF) > 4 and fixed-effect p < 10–5; and tier 3

was variants with log(BF) > 4 or fixed-effect p < 10–5 (Figure S1).

The 16 additional independent replication cohorts are listed in

Table S1. For replication, we sought either in silico look-ups of the

62 SNPs that met criteria for one of the three tiers from the discov-

ery stage in the cohorts with extant genotyping array data or con-

ducted de novo genotyping for SNPs in tier 1 in additional cohorts

with DNA and trait levels. Each participating replication cohort

implemented the same model used for discovery analyses to

evaluate associations between SNPs and traits. First we compared

discovery and replication results for significance and direction of

effect. Then we meta-analyzed the discovery and replication stage

results to obtain a combined, fixed effect inverse variance estimate

for each of the 62 SNPs. Genome-wide statistical significance was

set at p % 5 3 10–8, and associations were considered to be previ-

ously undescribed if they were not in LD (r2 < 0.3 or not within

500 kb of a previously reported glycemia-associated SNP).

Finally, we performed a trans-ethnic meta-analysis in MANTRA

combining fixed effects estimates from the AAGILE discovery and

replication combined meta-analysis with published EA results

from MAGIC to get a trans-ethnic total effect size using all avail-

able data for 62 SNPs. We considered an association to have

reached genome-wide significance if the p % 5 3 10–8 in fixed-ef-

fect meta-analysis or log(BF) from MANTRA was greater than 6,

and we considered the association to be previously undescribed

if the variants were not in LD (r2 < 0.3) or not within 500 kb of

a SNP previously reported to be associated with FG or FI.
Results

Trans-ethnic Fine-Mapping and Annotation of

Glycemic QT Loci Established in EA Populations

To fine-map 54 loci previously associated with FG or FI in

EA,8–10 we constructed 99% credible sets, the smallest set

of SNPs that accounts for 99% of the posterior probability

of containing the causal variant at the locus, using meta-

analysis results only from MAGIC EA samples and trans-

ethnic meta-analysis results from both MAGIC EA samples

and AAGILE AA samples (Table S2). Reflecting increased

sample size and differences in LD structure between

ancestry groups, trans-ethnic meta-analyses yielded more

than 20% reduction in either the number of SNPs or the

genomic interval spanned by the SNPs in credible sets for

22/54 loci (13 FG, 8 FI, and 1 associated with both FG

and FI; Table 1 and Figures S2 and S3) while we also

observed some loci with substantially enlarged credible

sets. For 4 of these 22 loci (GCK [MIM: 138079] and

ADCY5 [MIM: 600293] for FG, PPP1R3B [MIM: 610541]

for FI, and GCKR [MIM: 600842] for both) with a >20%

reduction in the credible set, the credible set included a sin-
Th
gle SNP. We observed the greatest reduction (95%) in the

number of SNPs in the credible set at the FOXA2 locus,

where the genomic width of the credible set was also

greatly reduced (from ~46 kb to ~4 kb; 92% reduction),

and the extent of LD surrounding the index SNP was less

in AA than EA (Figure 1). The narrowed trans-ethnic CSs

contained previously described functional variants at

several loci, including the coding SNP rs1801282 (Gen-

Bank: NC_000003.12; g.12351626C>G [p.Pro12Ala]) in

PPARG (MIM: 601487)37 and rs7903146 in TCF7L2

(MIM: 602228), which has been shown to overlap an islet

enhancer and modify enhancer activity.38 In contrast, the

coding SNP rs1260326 at the GCKR locus, presumed to be

causal based on prior studies,39,40 was excluded from the

99% credible set. With the exception of non-synonymous

variants at DPYSL5 (MIM: 608383), COBLL1 (MIM:

610318)-GRB14 (MIM: 601524), and PPARG (Table 2), the

greatly reduced credible sets mapped predominantly to

non-coding sequences.

At 22 loci with a >20% reduction in the credible set, we

compared functional annotations of SNPs in the trans-

ethnically generated credible sets (‘‘narrowed’’ set) to those

of SNPs excluded from the EA-only credible sets

(‘‘excluded’’ set) using HaploReg annotation.12 For the nar-

rowed set of nine FI loci, the SNP annotation from dbSNP

indicated only a reduction in intronic SNPs and an in-

crease in unknown function SNPs compared to the

excluded set (Table S3). However, regulatory annotation

data showed that the narrowed set of nine FI loci was en-

riched for enhancer-associated chromatin marks and

eQTLs when compared to the excluded set (76.3% versus

66.0%, p ¼ 0.004 for enhancer marks; 39.4% versus

28.5%, p ¼ 0.002 for eQTLs [Table S3]). At the 14 FG loci,

we observed an enrichment of SNPs in 30 UTR of genes,

but no enrichment of regulatory annotations in the nar-

row set compared to the excluded set (Table S4). Table S5

provides annotation information from HaploReg for each

SNP in these 22 derived credible sets, and the Supple-

mental Note and Table S6 show results from more exten-

sive annotation from publicly available regulatory data.

As an example, manual annotation of the FOXA2 locus

shows that the top SNP lies just upstream of an lncRNA,

LINC00261, with evidence for expression in liver and

pancreas and overlapping numerous TFBSs in liver cell

lines (Supplemental Note). This and prior evidence that

this lncRNA can regulate FOXA2 expression41 implicate

the lncRNA as a possible causal transcript at this locus.

To more specifically examine whether variants at the 22

loci with greatly narrowed credible sets were enriched for

individual TFBS or cell-type-specific chromatin marks, we

employed a permutation test. We observed significant

enrichment (p < 1.9 3 10–4) for FG loci at binding sites

for MAFB (p ¼ 2 3 10–6), NKX2-2 (p ¼ 2 3 10–6), FOXA2

(p ¼ 1.6 3 10–5), and PDX1 (p ¼ 1.0 3 10–4) as well as

for chromatin marks in pancreatic islets (p ¼ 1.2 3 10–4)

(Figure 2A, Table S7). Among FI loci, we observed nomi-

nally significant enrichment for chromatin marks in
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Table 1. 22 EA-Associated Type 2 Diabetes Quantitative Traits Loci with Substantially Reduced 99% Credible Sets Based on Trans-ethnic
Fine Mapping

Locusa Chr

99% Credible Set: European Ancestry Only 99% Credible Set: Trans-ethnic 99% Credible Set Reduction

# SNPsb Rangec (bp) # SNPsb Rangec (bp) % SNPsd % Rangee

Fasting Glucose-Associated Loci

FOXA2 20 40 46,365 2 3,872 95.0 91.6

GCK 7 7 25,107 1 1 85.7 100.0

KL 13 696 496,262 147 492,550 78.9 0.7

ADCY5 3 4 31,042 1 1 75.0 100.0

GCKR 2 2 11,663 1 1 50.0 100.0

PROX1 1 11 18,286 6 13,550 45.5 25.9

DPYSL5 2 87 294,065 50 269,667 42.5 –8.3

IGF2BP2 3 64 317,522 38 355,236 40.6 –11.9

CDKN2B-ANRIL 9 7 5,914 5 4,515 28.6 23.7

ADRA2A 10 33 68,716 26 68,110 21.2 0.9

TCF7L2 10 5 36,312 4 15,268 20.0 58.0

FADS1 11 20 58,394 16 57,823 20.0 1.0

DGKB-TMEM195 7 11 143,605 10 2,182 9.1 98.5

CRY2 11 10 57,088 11 14,850 –10.0 74.0

Fasting Insulin-Associated Loci

ARL15 5 319 498,585 22 33,535 93.1 93.3

PPP1R3B 8 8 9,510 1 1 87.5 100.0

COBLL1-GRB14 2 14 51,528 3 11,540 78.6 77.6

IRS1 2 43 137,640 13 68,951 69.8 49.9

GCKR 2 3 11,663 1 1 66.7 100.0

FAM13A 4 43 243,374 21 243,374 51.2 0.0

ANKRD55-MAP3K1 5 417 497,027 218 487,103 47.7 2.0

UHRF1BP1 6 13 217,136 9 136,609 30.8 37.1

PPARG 3 14 60,448 11 56,618 21.4 6.3

The 22 EA-associated T2D QT loci include 13 fasting glucose, 8 fasting insulin, and 1 associated with both. Substantial reduction is defined as greater than 20%
reduction in its genomic length or the number of SNPs.
aFor ease of comparison to previous studies, the loci are named based on the historically identified nearest protein-coding gene or genes to the index SNP in Eu-
ropean ancestry.
b# SNPs is the number of SNPs included in the 99% credible set.
cRange is defined as the maximum genomic distance based on hg18 among the SNPs included in the 99% credible set.
d%SNPs is (the number of SNPs in the EA-based 99% credible set� the number of SNPs in the trans-ethnic analysis-based 99% credible set)/the number of SNPs in
the EA-based 99% credible set.
e%Range is (the range of the EA-based 99% credible set � the range of the trans-ethnic analysis-based 99% credible set)/the range of the EA-based 99%
credible set.
adipose cells (p ¼ 0.048) and for several TFBSs such as

MAFK (p ¼ 0.0038) and RXRA (p ¼ 0.0071) (Figure 2A,

Table S7).

We incorporated information from RegulomeDB and the

Islet Regulome Browser11,13 to better visualize the relation-

ship between trait association and regulatory annotation

at the 22 loci with >20% reduction in the 99% credible

sets. Of the 14 FG loci, seven (CRY2 [MIM: 603732],

DPYSL5, FADS1 [MIM: 606148], FOXA2, GCKR, IGF2BP2

[MIM: 608289], and KL [MIM: 604824]) contained a SNP

with a RegulomeDB score % 3, consistent with moderate
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evidence for regulatory function (Figure S4). At four of

these seven loci (CRY2, FADS1, FOXA2, and GCKR), the

same SNP with strong regulatory annotation also had

genome-wide significant evidence of association in the

trans-ethnic meta-analysis (log(BF) > 6) (Figures 2B, 2C,

and S4). Similarly, of the nine FI loci with reduced credible

set size, six of the credible regions (ANKRD55 [MIM:

615189]-MAP3K1 [MIM: 600982], ARL15, FAM13A [MIM:

613299], GCKR, PPARG, and UHRF1BP) contained a SNP

with a RegulomeDB score % 3, and at three of these loci

(GCKR, PPARG, and UHRF1BP1), the SNP with strong



Figure 1. Trans-ethnic Analysis of
Glycemic Quantitative Loci Provides Nar-
rowed Intervals Spanned by the 99%
Credible Set
Data are 500 kb regional association plots
for fasting glucose at FOXA2, centered at
the index SNP identified from European
ancestry (EA) samples. The x axis denotes
genomic position and the y axis denotes
the log (BF), recombination rate, and
varLD information61 (a measure to quan-
tify LD variation differences comparing
populations). The red diamond data point
represents the index SNP within the region
previously reported from EA samples. The
color of each data point indicates its LD
value (r2) with the index SNP based on
HapMap2 (YRI for AA results and CEU
for EA results): white, r2 not available;
blue, r2 ¼ 0.0–0.2; brown, r2 ¼ 0.2–0.5; or-
ange, r2 ¼ 0.5–0.8; red, r2 ¼ 0.8–1.0. The
blue line represents the recombination
rate. The green line shows the varLD score
at each SNP and is highlighted with dark
brown if the varLD score is >95th per-
centile of the genome-wide varLD score,
comparing LD information between YRI
and CEUHapMap2 samples.61 The interval
spanned by the 99% credible set is high-
lighted in pink.
(A) Association results for fasting glucose in
the FOXA2 region in EA individuals. The
99% credible set contains 40 SNPs that
span an interval of 46,365 bp.
(B) Association results for fasting glucose in
the FOXA2 region in AA individuals. The
association signal is weaker than in EA
samples, leading to a wider interval
spanned by the 99% credible set.
(C) Association results for fasting glucose
in the FOXA2 region in both EA and AA in-
dividuals. The 99% credible set contains 2
SNPs and spans an interval of 3,872 bp, a
95% reduction in the number of SNPs
and a 91.6% reduction in the length of
the credible set interval.
regulatory annotation also had genome-wide significant

evidence of association in the trans-ethnic analysis

(Figure S4). Then, from overlay of Islet Regulome Browser

data, we found that 8 of 14 substantially narrowed credible

sets for FG and 3 of 9 for FI had either a TFBS or an active

islet-specific enhancer within the narrowed credible region
The American Journal of H
(Figures 2B, 2C, and S4). For example,

the narrowed credible region at the

FOXA2 locus, which also overlaps an

lncRNA as noted above, falls within

an active C3 enhancer cluster and

contains binding sites for both

NKX2-2 and FOXA2, raising the possi-

bility that the causal genetic mecha-

nism at this locus involves regulation

of FOXA2, the lncRNA at the locus,

or both (Figure 2B). The narrowed
credible region at the CRY2 locus also overlaps a C3

enhancer cluster in islets that contains an NKX2-2 TFBS

(Figure 2C). Furthermore, at three FG loci (GCK, ADCY5

[MIM: 600293], and GCKR) and both FI loci (GCKR and

PPP1R3B [MIM: 610541]) whose 99% credible set was nar-

rowed to a single variant, the remaining credible set SNP
uman Genetics 99, 56–75, July 7, 2016 63



Table 2. Genomic Annotation Characteristics at 22 EA-Associated Type 2 Diabetes Quantitative Traits Loci with Substantially Reduced
99% Credible Sets Based on Trans-ethnic Fine Mapping

Locusb # SNPsc Syn

dbSNP

Intronic eQTL TF Motif

ENCODE23

Promoter Enhancer DHS

Islet Regulome Browser13,a

Non-Syn TFBS PIACTd

Fasting Glucose-Associated Loci

FOXA2 2 0 0 1 0 2 2 2 2 2 AT

GCK 1 0 0 0 1 1 0 0 1 1 PT

KL 147 1 0 53 24 122 19 18 94 36 PIACT

ADCY5 1 0 0 1 0 0 0 1 1 1 T

GCKR 1 0 0 1 1 1 1 0 1 0 I

PROX1 5 0 0 0 6 5 1 1 4 1 PAT

DPYSL5 50 1 1 37 23 44 7 9 42 24 PIACT

IGF2BP2 38 0 0 30 32 34 8 8 35 15 PIACT

CDKN2B-ANRIL 5 0 0 0 3 5 0 0 4 2 AT

ADRA2 26 0 0 0 1 22 0 1 12 6 IT

TCF7L2 4 0 0 3 0 2 0 1 3 2 AT

FADS1 16 0 0 12 16 15 7 6 16 10 PAT

DGKB-TMEM195 10 0 0 0 2 8 0 3 10 0 A

CRY2 2 0 0 1 2 2 0 1 2 0 PACT

Fasting Insulin-Associated Loci

ARL15 22 0 0 22 18 18 3 3 17 5 IT

PPP1R3B 1 0 0 1 1 1 0 0 1 0 –

COBLL1-GRB14 3 0 1 0 3 3 1 0 1 0 T

IRS1 13 0 0 0 13 11 1 0 7 2 C

GCKR 1 0 0 1 1 1 1 0 1 0 I

FAM13A 21 0 0 21 18 15 3 8 20 6 PIACT

ANKRD55-MAP3K1 200 0 0 0 63 161 20 17 147 67 IAT

UHRF1BP1 9 0 0 8 9 8 2 0 4 5 PAT

PPARG 11 0 1 10 11 8 2 4 11 5 –

Abbreviations are as follows: Syn, synonymous SNP; non-syn, non-synonymous SNP; eQTL, expression quantitative trait loci; TF motif, transcription factor motif;
TFBS, transcription factor binding site; DHS, DNase l-hypersensitive sites.
aThe information was obtained on December 1, 2014.
bFor ease of comparison to previous studies, the loci (13 fasting glucose, 8 fasting insulin, and 1 more for both) are named based on the historically identified
nearest protein-coding gene or genes to the index SNP in EA.
c#SNPs: the number of SNPs in trans-ethnic analysis-based 99% credible set.
dPIACT: P, I, A, C, and T represent promoter, inactive enhancer, active enhancer, CTCF insulator, and transcription factor binding site (TFBS), respectively.
overlapped with regulatory annotation in either ENCODE,

Roadmap, or the Islet Regulome (Table 2). Based on data

derived from the Islet Regulome Browser, all 14 FG and 7

of 9 FI loci had evidence of regulatory function in pancre-

atic islets within the credible set (Table 2). Nearly all loci

with narrowed credible sets contained at least one tran-

scription factor (TF) motif within the 99% credible set

(13/14 FG and 9/9 FI) and had at least one variant associ-

ated with cis-eQTL data (11/14 FG and all 9 FI). In addition,

all 14 FG and 9 FI loci contained some regulatory evidence;

in contrast, only three of the loci (DPYSL5, COBLL1-

GRB14, and PPARG) contained a nonsynonymous variant

in their credible sets (Table 2).
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Relevance of European T2D QT Loci for African

Americans

To evaluate the relevance in AA individuals of genetic de-

terminants of FG and FI identified from EA studies, we

examined SNP and locus association transferability, allele

frequency differences, and patterns of association between

FG/FI SNPs and glycemia-related traits. We tested SNP

transferability (defined as whether the index EA SNP was

associated with the same trait in AA, with the same direc-

tion of effect, and p < 0.05) at 54 EA-associated FG or FI

loci. Of 36 EA FG index SNPs, 11 SNPs reached SNP trans-

ferability criteria (binomial p ¼ 9.87 3 10–8 for observing

11/36 meeting SNP transferability criteria) (Table 3). Of



Figure 2. Trans-ethnic Fine-Mapping of Glycemic Quantitative Trait Loci Highlights Overlap between Trait-Associated SNPs and Pre-
dicted Regulatory Function
(A) Analysis for enrichment of posterior probabilities in SNPs overlapping transcription factor binding sites (TFBSs) and cell-type-specific
enhancer and promoter marks at 22 (13 FG, 8 FI, and 1 both FG and FI) substantially narrowed 99% credible sets. x axis shows fold-
enrichment above null, the y axis shows –log10(P) for enrichment, and FI and FG are indicated by yellow and blue points, respectively.
TFBSs and cell types with enhancer or promoter marks with p value for enrichment below 0.01 are labeled.
(B) Regional association plots for fasting glucose after trans-ethnic analysis demonstrating overlap between regulatory annotation and
narrowed credible regions at the FOXA2 locus.
(C) Regional association plots for fasting glucose after trans-ethnic analysis demonstrating overlap between regulatory annotation and
narrowed credible regions at the CRY2 locus.

(legend continued on next page)
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18 EA index FI SNPs, 2 met SNP transferability criteria

(Table 3). We also found excess concordance in direction

of effect of the SNPs comparing EA with AA samples, irre-

spective of the strength of association: of 36 EA FG index

SNPs, 28 SNPs shared the same direction of effect in the

AA sample (binomial p ¼ 5.97 3 10–4); of 18 EA FI index

SNPs, 14 SNPs shared the same direction of effect in the

AA sample (binomial p¼ 0.015) (Figure S5). For both traits,

SNPs that met transferability criteria tended to have larger

effect sizes than those not meeting the criteria, and the

magnitudes of effect in EAwere similar to those in AA sam-

ples (Figure S5). There was genome-wide excess of direc-

tional concordance of SNP effects comparing EA with AA

(binomial p ¼ 0.021 for FG and binomial p ¼ 0.016 for

FI) when considering SNPs independent of previously re-

ported T2DQTassociations and with p% 0.01 in EA (Table

S8). This evidence supports the hypothesis that trans-

ethnic meta-analysis in large samples could reveal addi-

tional SNPs associated with glycemic traits.

We also evaluated locus transferability (defined as

whether any SNP within 5250 kb of the index EA SNP

was associated with the same trait in AA at a Bonferroni-

corrected p < 0.05) at the 54 EA-associated FG or FI loci.

Loci were transferable from the EA to AA individuals (ad-

justing for the effective number of SNPs tested in each re-

gion) for 15/38 FG loci and for 10/18 FI loci (Table 4,

Figure S2). At six FG loci (GCK, ADCY5, GCKR, CRY2,

PPP1R3B, and MTNR1B [MIM: 600804]) and two FI loci

(PDGFC [MIM: 608452] and GCKR), the index SNPs from

the EA sample and the most significantly associated SNPs

in the AA sample were either in LD (r2 R 0.20) in YRI or

were the same SNP (Table 4). In contrast, for the remaining

loci, the index SNP from the EA sample and the most asso-

ciated SNP in the AA sample were not in LD (r2 < 0.20 in

AA sample). For these loci with low LD between EA index

SNP and the most associated AA SNP, we found a change

in effect size > 10% for the AA SNP after conditioning on

the index SNP in EA at only three FG loci (SLC30A8

[MIM: 611145], PPP1R3B, and GCK) (Table S9). These re-

sults show ancestrally derived allelic heterogeneity giving

more than one variant signal at these FG loci.

Allele Frequency Differences and Selection

FG-raising (38 SNPs) and FI-raising (18 SNPs) allele fre-

quencies for EA index SNPs differed widely comparing

AA with EA populations (absolute allele frequency differ-

ences ranged from 0.007 to 0.825 for FG index SNPs and

0.017 to 0.540 for FI index SNPs) (Table S10, Figure S5).

We estimated Wright’s fixation index (FST)
26 to demon-

strate whether selection pressure has resulted in widely

different allele frequencies at any SNPs in AA versus EA
(B and C) The index SNP in European ancestry (MAGIC) is represente
resented by a triangle. SNPs are colored according to the score assign
level of evidence supporting regulatory function; data from the Isl
regional association plots. The interval spanned by the 99% credib
pink regions; interval spanned by the narrowed 99% credible set aft
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populations. FST estimates were consistent with moderate

to substantial population differentiation for a minority of

FG and FI SNPs: FST > 0.15 at four FG loci (ADRA2A

[MIM: 104210], PCSK1 [MIM: 162150], OR4S1, and

ARAP1 [MIM: 606646]) and at one FI locus (UHRF1BP1)

in the AAGILE and MAGIC data. There was also evidence

of recent positive selection (absolute value of iHS > 2) for

one FG locus (FOXA2) and three FI loci (UHRF1BP1, HIP1

[MIM: 601767], and MAP3K19) in the EA, yet no evidence

of recent selection in AA (Table S10).

Associations between FG/FI SNPs and Insulin

Resistance-Related Metabolic Traits

Many FG/FI-associated loci identified in EA samples were

also associated with T2D and other insulin resistance-

related traits.8,9 We investigated these associations in AA

individuals at 25 SNPs, including 24 AA SNPs (14 FG, 9

FI, and 1 associated with both FG and FI) at loci that

showed transferability, plus the previously undescribed FI

SNP (rs6450057) described in the next section. A second

FI SNP (also described in the next section), rs213676, was

not interrogated for association with metabolic traits due

to scant chromosome X data. Table S11 summarizes the

association results of these 25 FG/FI SNPs with T2D,

body mass index (BMI), BMI-adjusted waist-to-hip ratio

(WHR), blood pressure, hypertension (HTN), and lipid

levels in AA from several consortia.32–36,42 14 of 25 (56%)

FG/FI SNPs were associated with T2D or an insulin resis-

tance-related trait (p < 0.05 with an effect in the expected

direction [e.g., FG-raising SNP associated with increased

risk of T2D]). Six SNPs (24%; 4 [ADCY5, RREB1 (MIM:

602209), MTNR1B (MIM: 600804), and FOXA2] of 15 FG

SNPs and 2 [COBLL1-GRB14 and ARL15] of 11 FI SNPs)

were associated with higher odds of T2D in AA samples

(n up to 23,818).31 40% (6/15) of the FG-raising alleles

and 45% (5/11) of the FI-raising alleles were associated

with insulin resistance-related traits in AA samples. The

FI SNP rs6717858 (COBLL1-GRB14) was associated with

three traits (T2D, BMI-adjusted WHR, and HDL-C).

rs17811863 (PDGFC), also an FI SNP, was associated with

both systolic and diastolic blood pressure.

Previously Undescribed Glycemic Quantitative

Trait Loci

The strategy we used for glycemic loci discovery in AAGILE

is shown in Figure S1. Results of the discovery analysis are

shown in Figure S6. AAGILE GWAS results were combined

with MAGIC EA GWAS results10 in a two-stage meta-anal-

ysis approach. In the discovery stage, results from 16

studies (n ¼ 20,209) in the AAGILE AA GWAS fixed effects

meta-analysis were combined with results from 29 studies
d by a diamond; the best SNP in African ancestry (AAGILE) is rep-
ed in RegulomeDB11 with lower score corresponding to stronger

et Regulome Browser13 for the genomic interval is shown below
le set using EA data only is represented by combining blue and
er trans-ethnic analysis is shown in pink.



Table 3. SNP Transferability in AA Individuals at 13 EA-Associated Type 2 Diabetes Quantitative Trait SNPs

Locusb Index SNPc Chr Allelesd

EA Associationa AA Associationa

EAFe Effectf SE EAFe Effectf SE p

Fasting Glucose-Associated Loci

MTNR1B rs10830963 11 G/C 0.30 0.067 0.003 0.08 0.089 0.012 9.29 3 10–15

G6PC2 rs560887 2 C/T 0.70 0.075 0.003 0.93 0.059 0.013 2.67 3 10–06

ADCY5 rs11708067 3 A/G 0.78 0.027 0.003 0.85 0.036 0.008 6.27 3 10–06

GCKR rs780094 2 C/T 0.62 0.029 0.003 0.82 0.032 0.008 2.03 3 10–05

GCK rs4607517 7 A/G 0.16 0.062 0.004 0.11 0.041 0.010 6.84 3 10–05

GLIS3 rs7034200 9 A/C 0.49 0.018 0.003 0.63 0.019 0.006 1.82 3 10–03

KL rs576674 13 G/A 0.15 0.017 0.003 0.60 0.018 0.006 2.06 3 10–03

SLC30A8 rs13266634 8 C/T 0.68 0.027 0.004 0.90 0.024 0.010 1.82 3 10–02

MADD rs7944584 11 A/T 0.75 0.021 0.003 0.95 0.029 0.014 3.37 3 10–02

DGKB-TMEM195 rs2191349 7 T/G 0.52 0.030 0.003 0.60 0.013 0.006 3.70 3 10–02

GRB10 rs6943153 7 T/C 0.34 0.015 0.002 0.68 0.012 0.006 4.81 3 10–02

Fasting Insulin-Associated Locig

COBLL1-GRB14 rs7607980 2 T/C 0.87 0.027 0.004 0.84 0.042 0.008 2.85 3 10–07

GCKR rs780094 2 C/T 0.62 0.032 0.004 0.82 0.025 0.008 1.92 3 10–03

SNP transferability is defined as the association p< 0.05 in AA and sharing the same trait-raising allele between EA and AA. 13 EA-identified T2DQT SNPs in 12 loci,
including 10 fasting glucose loci, 1 fasting insulin locus, and 1 locus associated with both.
aEA Association results refer to the association results using samples of European ancestry in previous publications;8–10 AA Association results refer to the association
results using AAGILE samples of African ancestry assembled in this study.
bFor ease of comparison to previous studies, the loci are named based on the historically identified nearest protein-coding gene or genes to the index SNP in Eu-
ropean ancestry.
cIndex SNPs are the most significant SNPs previously reported in MAGIC publications. All of these SNPs reach genome-wide significant level (p < 53 10–8) in the
original study.
dEA trait-raising allele/other allele.
eFrequency of EA trait-raising allele.
fEffect of EA trait-raising allele ([mmol/L] for fasting glucose and [pmol/L] for fasting insulin per trait-raising allele).
gThe association with BMI-adjusted fasting insulin.
(n ¼ 57,292) from the MAGIC EA GWAS10 for trans-ethnic

meta-analysis using MANTRA. A total of 62 SNPs met pre-

specified multi-tiered criteria for stage 2 follow-up, with 12

SNPs in tier 1, 10 in tier 2, and 40 in tier 3 (Figure S1 and

Table S12). Follow-up in the second stage, with up to

10,096 additional AA samples from 14 studies (Table S1),

yielded two previously undescribed SNPs in loci associated

with FI that exceeded GWAS significance thresholds (Table

5). We found no previously unknown FG loci.

In the fixed effects meta-analysis of AA samples, we iden-

tified a previously undescribed SNP (rs213676) on chromo-

some X near FAM133A associated with FI (p ¼ 2.4 3 10–8)

(Figure 3A). This FI SNP was not included in the trans-

ethnic meta-analysis because MAGIC10 did not report

chromosome X results. Although rs213676 is in a region

without known genes, this region might be of regulatory

significance because it is known to harbor a TFBS in

pancreatic islets11,13 (Figure 3A).

The other previously undescribed FI SNP, rs6450057 on

chromosome 5 (Figure 3B), resides near four putative

lncRNA genes and the PELO (MIM: 605757) (or ITGA1

[MIM: 192968]) gene. In trans-ethnic analyses, this locus

achieved genome-wide significance (log(BF) ¼ 7.1) and
Th
trans-ethnic fine-mapping reduced the credible set at this

locus from 229 SNPs to just 3 SNPs. Interestingly, the

rs6450057 T allele is associated with higher FI (p ¼ 3.1 3

10–6) in AA samples but with lower FI (p ¼ 9.2 3 10–5) in

EA samples in ancestry-specific fixed-effect meta-analyses

(Table 5). The discordant direction of effect at this locus

was observed across nearly all SNPs at the locus, regardless

of LD with rs6450057 (Figure 3C). However, the direction

of effects did not show a clear pattern in the association

analysis after conditioning on rs6450057, implying that

the signal at this locus was driven by rs6450057

(Figure S7). As withmany of the glycemic QT loci described

above, the 99% credible set at this locus did not include

coding variants but did overlap an active C3 enhancer in

pancreatic islets11,13 (Figure 3D).
Discussion

We assembled a large sample of AA individuals, combined

resulting data with published data from EA individuals,

and used trans-ethnic finemapping to narrow the genomic

interval containing putative causal SNPs for 22 of 54
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previously identified FI and FG loci. We demonstrated that

many of the genetic variants associated with FG and FI are

predicted to have regulatory function, with few having

predicted protein-coding function. The results show that

although a substantial portion of the genetic architecture

underlying these T2D-associated traits is shared across EA

and AA populations, allelic heterogeneity suggests that

there are also genetic variants unique to AA populations.

Finally, we identified two previously undescribed FI loci,

bringing to 56 the number of FG- and FI-associated loci

in humans.

Fine mapping combined with regulatory annotation

provides a plausible functional explanation for the many

T2D-associated GWAS loci that reside in non-protein-cod-

ing regions of the genome.43–45 Previous GWAS findings

from MAGIC show complete overlap of loci associated

with HOMA-B (a measure of beta cell function46) and

FG,9 so it would be expected that fine-mapping of FG

loci might identify regulatory function in islets. On the

other hand, FI is typically considered a marker of insulin

resistance.47 However, insulin resistance does not account

for all of the variability in FI,48,49 and fasting hyperinsuli-

nemia itself, due to hypersecretion of insulin by beta cells,

might be causal in the pathogenesis of T2D.50–52 Our

finding that some FI loci had predicted regulatory function

in islets is supportive of this evidence. At many loci, for

instance at FOXA2 and PPP1R3B, the narrowed credible

sets from trans-ethnic analysis coupled with genomic

annotation focused attention on lncRNA transcripts rather

than the nearest protein-coding gene, by convention

generally assumed to be the putative causal transcript. At

the FOXA2 locus, the trans-ethnic credible set combined

with genomic annotation highlights regulatory function-

ality in glycemia-related tissues—enhancer marks and

TFBS in pancreas and liver—as well as an lncRNA that

might affect FOXA2 expression, raising two possible causal

regulatory mechanisms for altered FG.12,13,41 Awareness of

the regulatory nature of some genetic determinants of FG

and FI provides insight into novel approaches for the regu-

lation of glucose homeostasis. In particular, regulatory tar-

gets might be amenable to post-genomic manipulation

(e.g., by genome editing, use of antisense oligonucleotides,

or enzyme hijacking) as suggested in other areas.53,54 For

instance, by knowing that polymorphisms in aldehyde de-

hydrogenase 2 (ALDH2) enzyme are associated with poor

alcohol metabolism in some Asian populations, the

enzyme hijacking technique has been used to upregulate

a related, but naturally unimportant, enzyme (ALDH3A1),

thereby improving alcohol metabolism and reducing can-

cer risk in mice.53 Such techniques could in the future be

extended to T2D prevention and control if accessible regu-

latory pathways are elucidated.

At the GCKR locus, trans-ethnic fine mapping provided

added information to the prior knowledge of this locus

identified from studies in EA populations. The 99% cred-

ible set constructed using trans-ethnic analysis results at

GCKR contained only one non-coding SNP, rs780094
68 The American Journal of Human Genetics 99, 56–75, July 7, 2016
(GenBank: NC_000002.12; g.27518370T>C), the most

strongly FG-associated SNP in both EA and AA. However,

prior fine-mapping39 in EA and functional studies40 have

implicated rs1260326, a nonsynonymous variant (Gen-

Bank: NC_000002.12; g.27508073T>C [p.Leu446Pro]), as

a likely causal SNP at this locus. This missense variant

was excluded from the narrowed credible set. This could

imply that the lead non-coding SNP rs780094, which has

strong evidence as residing in a TFBS, is also a causal

variant at the locus (Table S5). On the basis of statistical ev-

idence, we were unable to distinguish the association of

these two SNPs in EA samples due to high LD (r2 ¼ 0.93).

However, in AA the evidence of association with FG was

several orders of magnitude stronger for the non-coding

SNP, rs780094 (p ¼ 2.2 3 10–5), than the coding SNP,

rs1260326 (p ¼ 0.03) and their LD is weaker (r2 ¼ 0.47).

Both SNPs may play a role at the GCKR locus; a causal

variant tagged by rs780094 might be common to both

ancestries, resulting in the narrowed trans-ethnic credible

set observed here, while the nonsynonymous variant

rs1260326 might have greater functional impact in EA

than in AA individuals. Alternatively, the actual causal

SNP could be in LD with both of these SNPs, and more

dense imputation or deep sequencing might reveal addi-

tional SNPs carried on haplotypes with these SNPs. Since

crystal structural analysis of the GCKR protein has not

identified the 446 residue as critical for binding of

regulating molecules (fructose 1-phosphate and fructose

6-phosphate), genetic heterogeneity involving both cod-

ing and regulatory functional variation at the locus re-

mains a plausible hypothesis.55

Analyses of the relevance of glycemic QT loci in AA

suggest that genetic determinants of human glucose regu-

lation are more similar than different across human popu-

lations. We observed an excess of consistency in direction

of effect of FG and FI SNPs comparing AA with EA, regard-

less of statistical significance of SNPs in AA, and a substan-

tial portion (50% for FG and 56% for FI) of EA index SNP or

loci were transferable to AA individuals. As in previous

studies in EA individuals,8,9 most of the transferable T2D

EA loci were also associated with T2D or insulin resis-

tance-related traits in AA individuals, demonstrating com-

mon genetic pathways underlying glycemic QTs and other

metabolic traits. We also found that several FG-raising and

FI-raising alleles were at least nominally associated with

lower odds of T2D or ‘‘better’’ metabolic trait profiles in

the AA samples. Many of the loci previously observed

to have this discordant pattern of associations across traits

in EA, including GCKR,9,39,40,56,57 MADD (MIM: 603584),9

PDGFC,10 and FOXA2,10 had a similar pattern in our

AA sample, demonstrating that the complexity of the ge-

netic architecture of these traits is shared across

populations.

By combining AA with EA information, including chro-

mosome X variants in AA, we identified two previously un-

described FI SNPs near FAM133A and PELO, increasing the

total number of human FG/FI-associated loci from 54 to



Table 4. Locus Transferability in African Individuals for 24 EA-Identified Type 2 Diabetes Quantitative Traits Associations

Locusb

SNP Information Best SNP Association

adj-ph Effectc
i % Change in Effectj

LDa in YRI and CEU

Index SNP in EAc Best SNP in AAd Best SNP Allelese EAFf Effectuc
g SE p R2

YRI D’YRI R2
CEU D’CEU

Fasting Glucose-Associated Loci

MTNR1B rs10830963 rs10830963 G/C 0.079 0.089 0.012 9.3 3 10–15 3.5 3 10–3 NA NA 1.00 1.00 1.00 1.00

GCK rs4607517 rs1799884 T/C 0.174 0.047 0.007 2.0 3 10–10 8.6 3 10–3 0.038 19.3 0.47 1.00 1.00 1.00

G6PC2 rs560887 rs830193 C/T 0.816 0.037 0.008 1.2 3 10–6 2.9 3 10–3 0.035 5.2 0.00 0.08 0.07 0.58

FOXA2 rs6048205 rs1203907 T/C 0.505 0.027 0.006 3.7 3 10–6 3.3 3 10–3 0.025 7.7 0.18 0.92 0.66 1.00

RREB1 rs17762454 rs557074 G/T 0.455 0.027 0.006 4.2 3 10–6 4.1 3 10–3 0.025 4.4 0.01 0.48 0.02 0.51

SLC30A8 rs13266634 rs10505311 G/T 0.837 0.036 0.008 5.6 3 10–6 3.7 3 10–3 0.025 30.8 0.19 1.00 NA NA

ADCY5 rs11708067 rs11708067 A/G 0.846 0.036 0.008 6.3 3 10–6 4.5 3 10–3 NA NA 1.00 1.00 1.00 1.00

GCKR rs780094 rs780094 C/T 0.819 0.032 0.008 2.0 3 10–5 1.4 3 10–2 NA NA 1.00 1.00 1.00 1.00

CRY2 rs11605924 rs11038651 T/C 0.828 0.033 0.008 3.8 3 10–5 5.3 3 10–3 0.030 9.4 0.55 0.85 0.12 0.44

MADD rs7944584 rs1052373 T/C 0.481 0.022 0.006 1.4 3 10–4 1.1 3 10–2 0.022 0.0 NA NA 0.15 1.00

PPP1R3B rs4841132 rs7004769 A/G 0.228 0.024 0.007 2.7 3 10–4 2.2 3 10–3 0.018 26.1 0.44 1.00 0.38 1.00

PROX1 rs340874 rs2282387 C/G 0.519 0.021 0.006 4.6 3 10–4 3.4 3 10–3 0.021 –1.2 0.01 0.27 0.00 0.09

IKBKAP rs16913693 rs7038936 C/T 0.669 0.021 0.006 5.3 3 10–4 3.9 3 10–3 NAk NA 0.04 0.29 0.01 0.39

ADRA2A rs10885122 rs12569523 A/T 0.368 0.021 0.006 5.4 3 10–4 3.6 3 10–3 0.020 1.9 0.01 0.11 0.00 0.25

PCSK1 rs13179048 rs7722200 T/C 0.773 0.023 0.007 8.2 3 10–4 7.0 3 10–3 0.023 –0.9 0.04 1.00 0.66 0.83

Fasting Insulin-Associated Loci

COBLL1-GRB14 rs7607980 rs6717858 T/C 0.281 0.036 0.007 8.6 3 10–8 5.3 3 10–3 0.034 6.4 0.06 1.00 0.22 1.00

ARL15 rs4865796 rs6876198 C/T 0.295 0.031 0.007 2.0 3 10–6 3.8 3 10–3 0.030 4.0 0.11 0.89 0.09 0.87

PPP1R3B rs4841132 rs9949 G/A 0.231 0.029 0.007 6.9 3 10–5 2.2 3 10–3 0.027 6.7 0.11 0.51 0.01 0.23

IRS1 rs2943634 rs4413154 G/A 0.041 0.062 0.016 1.2 3 10–4 4.9 3 10–3 0.062 1.3 0.01 1.00 0.08 1.00

ANKRD55-MAP3K1 rs459193 rs7700714 A/G 0.436 0.023 0.006 1.8 3 10–4 2.3 3 10–3 0.024 –3.6 0.00 0.03 0.04 0.29

FAM13A rs3822072 rs17799176 C/G 0.934 0.043 0.012 4.3 3 10–4 5.8 3 10–3 0.043 0.2 0.00 0.22 0.02 0.43

HIP1 rs1167800 rs11465341 C/T 0.035 0.060 0.017 4.5 3 10–4 8.1 3 10–3 0.060 0.0 0.00 1.00 NA NA

MAP3K19 rs1530559 rs13405563 T/C 0.924 0.043 0.013 5.5 3 10–4 8.8 3 10–3 0.045 –3.6 0.00 0.79 0.04 1.00

PDGFC rs4691380 rs17811863 G/A 0.333 0.022 0.006 6.2 3 10–4 4.7 3 10–3 0.020 8.9 0.21 0.49 0.77 0.93

GCKR rs780094 rs780094 C/T 0.817 0.025 0.008 1.9 3 10–3 1.4 3 10–2 NA NA 1.00 1.00 1.00 1.00

(legend on next page)
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56. The lead SNP at the PELO locus, rs6450057, had discor-

dant effects in the AA and EA samples: the FI-raising allele

in AA lowered FI in EA. Discordant effects of common var-

iants on complex human traits have been observed in

other traits such as breast cancer58 and serum protein

levels59 but not in T2D QT. This may be due to the lack

of trans-ethnic study of T2D QT, the use of fixed-effects ap-

proaches that do not adequately account for heterogeneity

in LD or allelic frequencies across populations, gene-envi-

ronment interactions with differential exposures across

ancestral populations, or gene-gene interactions with sub-

stantially different allele frequencies for the interacting

variants across ancestries. Alternatively, EA and AA groups

may have different causal variants that are in moderate LD

with the lead SNP, thus boosting the association signal in

trans-ethnic meta-analyses that take account of the hetero-

geneity in allelic effects between ancestry groups. Haplo-

type analysis in both EA and AA samples did not clearly

elucidate differential SNP contributions to FI levels at the

PELO locus. Although our analyses are unable to distin-

guish between possible mechanisms driving the discor-

dant effects of rs6450057 in EA and AA populations, eval-

uation of the locus, with high-density imputation and/or

whole-genome sequencing data from individuals of EA

and AA as well as laboratory-based examination of the clus-

tered enhancer in pancreatic islets at this locus, could help

explain the observed divergent associations.

A major strength of this investigation was the large sam-

ple size of AA, a hitherto under-studied ancestral group

with a heavy burden of hyperglycemia, insulin resistance,

and T2D. The large sample of AA individuals allowed

genome-wide trans-ethnic discovery, fine-mapping, and

(combined with new annotation resources) detailed pre-

diction of regulatory function. Yet, despite the large sample

size, our study still had modest power to detect loci with

small effects. With sample size of 30,305 (discovery þ
follow up) in AA, we had only 15% power to detect an

EA-identified median FG effect size of 0.0196 mmol/L

with SD of 0.5 mmol/L, for variants with MAF of 0.3. In

addition, the reduced size of LD blocks in AA populations

decreased the probability that a tagging SNP resided on the

same haplotype as a causal variant, further limiting power

for discovery. Also, reduced LD haplotype and correspond-

ing greater genetic diversity made imputation for AA sam-

ples more challenging. The HapMap2 panel, used as the

imputation panel for majority of contributing studies in

this analysis, did not provide complete coverage of com-

mon and low-frequency genetic variation in AA samples;

the latest reference panels from 1000 Genomes Phase 3

should provide better coverage although whole-genome

sequencing and laboratory analysis of genetic function

are going to be necessary to unequivocally determine

causal variants that may have similar or different effects

across ancestral groups. As for other trans-ethnic ef-

forts,16,60 we have reported the improvement in fine-map-

ping resolution in terms of the reduction in the number of

SNPs or the length of the genomic interval to which they
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Th
map. The improvement from trans-ethnic analysis varied

from one locus to another as shown in Table S2. We used

20% reduction in credible set size to provide an overall

assessment of fine-mapping resolution (albeit crude). How-

ever, fine-mapping resolutions depends on many factors,

such as the size of LD blocks and the availability of high-

quality read-depth for the reference datasets used in the

imputation, and will therefore vary from one locus to

another. Furthermore, the improvement in resolution

offered by trans-ethnic meta-analysis relies on the extent

of LD differences with the causal variant between ancestry

groups and the increase in sample size. However, impor-

tantly, credible set sizes can increase after trans-ethnic

meta-analysis, which most often occurs due to different

underlying causal variants across ancestry groups. In this

scenario, the credible set captures multiple association sig-

nals driven by each causal variant, which will therefore be

larger than that observed for ethnic-specific analyses.

In conclusion, by using AA and EA trans-ethnic analysis,

we narrowed the genomic interval containing likely causal

variants for a large number of biologically plausible FG and

FI loci and demonstrated that many FG and FI loci prob-

ably have regulatory, rather than protein-coding, function.

The observed effects of genetic variants on glycemic traits

might result from multiple regulatory functions residing

in the same genomic region; for example, concurrent pres-

ence of an enhancer and lncRNA at the FOXA2 locus, an

attribute that could lead to synergy in function. We also

showed that there are probably both shared and unique ge-

netic determinants of T2D QTs across European and Afri-

can ancestral populations. We identified two previously

undescribed FI loci, bringing the total number of identified

FG and FI loci in humans to 56. Our finding of the pre-

dicted regulatory significance of many FG and FI loci is

particularly noteworthy, given the prior uncertainty about

the functional relevance of most GWAS findings for T2D

and related QTs. Our study provides a framework for

further follow-up of GWAS signals seen in EA and other

ancestral populations. This approach using trans-ethnic

meta-analysis for discovery and transferability combined

with trans-ethnic fine-mapping and state-of-the-art anno-

tation will lead the way to an understanding of the func-

tional, and ultimately therapeutic, implications of genetic

variation underlying glucose homeostasis, T2D risk, and

other complex disorders.
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Figure 3. Regional Association Plots and Functional Annotation for Two Previously Undescribed Loci
(A) Regional association plot of a previously undescribed chromosome X locus associated with fasting insulin in AA individuals. The
nearest gene is FAM133A. Top panel shows association signal on the y axis (�log(P)) and genomic position on chromosome X on the
x axis. The red diamond data point represents the lead SNP (rs213676) within the region. The blue line represents the recombination

(legend continued on next page)
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Participating consortia and investigators  

The data used in the current report were derived from published results from The Meta-Analyses 
of Glucose and Insulin-related traits Consortium (MAGIC)1 and from unpublished meta-analyses 
from the African American Glucose and Insulin genetic Epidemiology (AAGILE) consortium. Only 
non-diabetic individuals were included in the trans-ethnic meta-analysis that combined data from 
MAGIC and AAGILE consortium. All data on participants of European ancestry (EA) were 
obtained from MAGIC (n = 51,750) while all data on participants of African ancestry (AA) were 
obtained from the AAGILE Consortium (n = 20,209). Cohorts that contributed data to the MAGIC 
consortium and names of the steering committee members are listed on the consortium website: 
http://www.magicinvestigators.org/.   

The AAGILE consortium includes AA individuals from 16 cohorts. Key characteristics for 
each discovery and replication study sample are shown in Table S1. Investigators from AAGILE 
consortium are listed in the author list while those from the MAGIC consortium are shown below. 

 

  

http://www.magicinvestigators.org/


 

MAGIC investigator 1 

 

Manning AK, Hivert MF, Scott RA, Grimsby JL, Bouatia-Naji N, Chen H, Rybin D, Liu CT, Bielak 
LF, Prokopenko I, Amin N, Barnes D, Cadby G, Hottenga JJ, Ingelsson E, Jackson AU, Johnson 
T, Kanoni S, Ladenvall C, Lagou V, Lahti J, Lecoeur C, Liu Y, Martinez-Larrad MT, Montasser 
ME, Navarro P, Perry JR, Rasmussen-Torvik LJ, Salo P, Sattar N, Shungin D, Strawbridge RJ, 
Tanaka T, van Duijn CM, An P, de Andrade M, Andrews JS, Aspelund T, Atalay M, Aulchenko Y, 
Balkau B, Bandinelli S, Beckmann JS, Beilby JP, Bellis C, Bergman RN, Blangero J, Boban M, 
Boehnke M, Boerwinkle E, Bonnycastle LL, Boomsma DI, Borecki IB, Böttcher Y, Bouchard C, 
Brunner E, Budimir D, Campbell H, Carlson O, Chines PS, Clarke R, Collins FS, Corbatón-
Anchuelo A, Couper D, de Faire U, Dedoussis GV, Deloukas P, Dimitriou M, Egan JM, Eiriksdottir 
G, Erdos MR, Eriksson JG, Eury E, Ferrucci L, Ford I, Forouhi NG, Fox CS, Franzosi MG, Franks 
PW, Frayling TM, Froguel P, Galan P, de Geus E, Gigante B, Glazer NL, Goel A, Groop L, 
Gudnason V, Hallmans G, Hamsten A, Hansson O, Harris TB, Hayward C, Heath S, Hercberg S, 
Hicks AA, Hingorani A, Hofman A, Hui J, Hung J, Jarvelin MR, Jhun MA, Johnson PC, Jukema 
JW, Jula A, Kao WH, Kaprio J, Kardia SL, Keinanen-Kiukaanniemi S, Kivimaki M, Kolcic I, Kovacs 
P, Kumari M, Kuusisto J, Kyvik KO, Laakso M, Lakka T, Lannfelt L, Lathrop GM, Launer LJ, 
Leander K, Li G, Lind L, Lindstrom J, Lobbens S, Loos RJ, Luan J, Lyssenko V, Mägi R, 
Magnusson PK, Marmot M, Meneton P, Mohlke KL, Mooser V, Morken MA, Miljkovic I, Narisu N, 
O'Connell J, Ong KK, Oostra BA, Palmer LJ, Palotie A, Pankow JS, Peden JF, Pedersen NL, 
Pehlic M, Peltonen L, Penninx B, Pericic M, Perola M, Perusse L, Peyser PA, Polasek O, 
Pramstaller PP, Province MA, Räikkönen K, Rauramaa R, Rehnberg E, Rice K, Rotter JI, Rudan 
I, Ruokonen A, Saaristo T, Sabater-Lleal M, Salomaa V, Savage DB, Saxena R, Schwarz P, 
Seedorf U, Sennblad B, Serrano-Rios M, Shuldiner AR, Sijbrands EJ, Siscovick DS, Smit JH, 
Small KS, Smith NL, Smith AV, Stančáková A, Stirrups K, Stumvoll M, Sun YV, Swift AJ, Tönjes 
A, Tuomilehto J, Trompet S, Uitterlinden AG, Uusitupa M, Vikström M, Vitart V, Vohl MC, Voight 
BF, Vollenweider P, Waeber G, Waterworth DM, Watkins H, Wheeler E, Widen E, Wild SH, 
Willems SM, Willemsen G, Wilson JF, Witteman JC, Wright AF, Yaghootkar H, Zelenika D, 
Zemunik T, Zgaga L; DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium; 
Multiple Tissue Human Expression Resource (MUTHER) Consortium, Wareham NJ, McCarthy 
MI, Barroso I, Watanabe RM, Florez JC, Dupuis J, Meigs JB, Langenberg C. 

 

  



 

Sources of data for pleiotropy studies  

 

Consortia that contributed results for associations between fasting glucose or fasting insulin SNPs 
and insulin-related traits (i.e., hypertension, systolic and diastolic blood pressure, triglycerides, 
high density lipoprotein cholesterol, low density lipoprotein cholesterol, body mass index and 
waist-to-hip ratio-adjusted for BMI) are shown below: 

 

1. Continental Origins and Genetic Epidemiology Network (COGENT) consortium2 

The COGENT consortium provided association results for hypertension and for systolic 
and diastolic blood pressure. 

2. Electronic Medical Records and Genomics Network (eMERGE)3 

The eMERGE consortium provided triglyceride data from BioVU at Vanderbilt University 
Medical Center (https://victr.vanderbilt.edu/pub/biovu/) and triglyceride and blood 
pressure (hypertension and systolic and diastolic blood pressure) data from Mt. Sinai 
School of Medicine.  

3. The National, Heart, Lung and Blood Institute’s Candidate gene Association 
Resource (CARe)4 

The CARe consortium contributed association results for high density lipoprotein 
cholesterol and low density lipoprotein cholesterol. 

4. MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium5   

The MEDIA consortium provided association results for type 2 diabetes. 

5. African Ancestry Anthropometry Genetics (AAAG) Consortium6,7  

The AAAG consortium provided association results for body mass index and waist-hip-
ratios. 
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Author contributions 

The contributions of authors are summarized below: 

Assembling and steering the consortium: AA, APM, BMP, CNR, CTL, DJC, DKA, DS, DWB, EB, 
EPB, IM, JBM, JCF, JD, JGW, JIR, JSP, LEW, LF, MAN, MAP, MMS, RJFL, SSR, YIC 
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SNP annotation  

Following trans-ethnic meta-analysis of data from MAGIC (EA participants) and the AAGILE 
consortium (AA participants), we identified 14 fasting glucose (FG) and 9 fasting insulin (FI) loci 
(Table S5) in which the number of SNPs in a locus or the size of the genomic region likely to 
harbor the causative SNP was reduced by at least 20%. For each of the SNPs in the narrowed 
region, referred to as the 99% credible set, we used HaploReg V2 to annotate their biological 
relevance. HaploReg provides useful annotation information for the SNP of interest as well as 
those within a user-specified LD. The fully operational web version is available at 
http://www.broadinstitute.org/mammals/haploreg/haploreg.php. HaploReg reports any evidence 
for regulatory chromatin marks, DNAse I hypersensitivity sites (DHSI), transcription factor binding 
sites (TFBS), transcription factor binding motifs, or expression quantitative trait loci (eQTL) 
overlapping with each SNP of interest and thus gives mechanistic insights into how non-coding 
SNPs may lead to a given disease condition. Ward and Kellis provide more detailed information 
on HaploReg and its usage.8 

After HaploReg we performed additional annotation manually using annotation resources 
in the public domain (i.e., RegulomeDB, ENCODE, Islet Regulome and FANTOM) to further 
characterize potential regulatory functions of the variants in the credible sets. Use of HaploReg 
together with manual annotation revealed whether a given SNP lies in a location with a histone 
mark suggestive of regulatory activity, a DHSI, TFBS, or if the SNP is in a gene expressed in a 
diabetes-relevant tissue, e.g., the liver or pancreas. In the case of histone marks we also 
evaluated whether the histone mark corresponds to an enhancer or promoter. Finally, we 
catalogued other traits with significant associations reported within the credible set from the 
NHGRI GWAS Catalog. Below we provide detailed information on the potential biological 
relevance of SNPs in each of the 14 FG and 9 FI loci that we annotated; the index SNP in EA 
indicated in parentheses.  

 

1. FOXA2 (rs6048205) 
a. Credible set interval in hg18: chr20:22505099-22508971 
b. Credible set interval in hg19: chr20:22557099-22560971 
c. The region contains the 5’ end of TCONS_00028636 (lincRNA) 

i. Displays especially high expression in liver cell lines 
ii. Is accompanied by moderate to high transcription levels (RNA-seq) only in HepG2 

cell lines 
iii. The EST BG655894 indicates expression in pancreatic Islets 

d. There are five broad and weak H3K4Me1 peaks in the region 
i. Especially prominent in Embryonic stem cells 

e. There are 51 TFBSs in the region, all but 2 are expressed in liver cell lines 
f. The lead SNP is 20bp telomeric (p arm) to a DHSI (19/125) which is found in pancreatic 

islet cell lines 
g. The lead SNP sits inside 10 TFBSs 

i. They are all found in liver cell lines 
ii. Includes FOXA1 and FOXA2  

h. The RNA-seq information from the TFBSs in the region as well as the expression profile 
of the lincRNA indicate that the locus plays a role in the liver. The lead SNPs position in 
several binding sites may lead to a disruption in the binding of TFBSs. 

 

2. GCK (rs4607517) 

http://www.broadinstitute.org/mammals/haploreg/haploreg.php
http://www.regulomedb.org/
http://www.genome.gov/10005107
http://gattaca.imppc.org/isletregulome/regulome/cgi-bin/regulome.cgi
http://fantom.gsc.riken.jp/4/


 

This credible set contained a single SNP; annotation overlap for the SNP can be found in 
Supplemental Table 5. 

 

3. CRY2 (rs11605924) 
a. Credible set interval in hg18: chr11:45820718-45835568 
b. Credible set interval in hg19: chr11:45864142-45878992 
c. Contains 5’ end of CRY2 
d. There is one NHGRI SNP 

i. rs11605924 – fasting glucose traits 
e. There are 7 moderate to weak HK4Me1 peaks in the region 
f. There are 3 weak and 1 strong H3K4Me3 peaks in the region 
g. There are 2 weak and 2 strong H3K27Ac peaks in the region 
h. The lead SNP is 1kbp upstream of a weak H3K4Me1 peak 

i. DHSI (27) found in liver cell lines 
ii. 9 TFBSs 

i. 5.6kbp upstream of weak H3K4Me1 and H3K27Ac peaks 
i. DHSI (57) found in muscle and pancreatic islets 
ii. 3TFBSs 

j. 1kbp downstream of a weak H3K4Me1 peak 
i. DHSI (3) and (32) 

k. 3.8kbp downstream of dual H3K4me1, H3K4Me3, and H3K27Ac peaks 
i. DHSI (111) and (125) 
ii. 101 TFBSs 

l. 6.5kbp telomeric (p arm) to the SNP is a strong H3K4Me3 peak 
m. 8kbp telomeric to the SNP are weak H3K4Me1, H3K27Ac, H3M4Me3 peaks 

i. DHSI (125) 
ii. 49 TFBSs 

n. The lead SNP lies in the promoter region of CRY2, which explains its proximity to several 
H3K4Me1 peaks. Because CRY2 impacts metabolism, a polymorphism in the gene’s 
promoters may alter the function. 

 

4. KL (rs576674) 
a. Credible set interval in hg18: chr13:32209005-32701555 
b. Credible set interval in hg19: chr13:33311005-33803555 
c. Four genes in the region 

i. 3’ end of PDS5B 
ii. KL 
iii. STARD13 
iv. TCONS_00021632 (lincRNA) 

d. Four NHGRI GWAS SNPs 
i. rs2555603 – BMI 
ii. (not related) rs2555603 – aneurysm 
iii. (not related) rs642899 –behavioral disinhibition 
iv. (not related) rs990324 – total ventricular volume 

e. There are 29 H3K4Me1 peaks throughout the region 
f. There are two H3K4Me3 peaks (weak) 
g. 15 H3K27Ac peaks throughout the region 
h. The lead SNP lies within a FOXA2 binding site found in liver cell lines 

i. This is clustered near three other binding sites, all found in liver cell lines 



 

i. 10.5kbp telomeric (q arm) to a moderate H3K4Me1 peak and weak H3K4Me3 and 
H3K27Ac peaks 

i. DHSI (66) found in muscle and pancreatic cells 
ii. 6 TFBSs 

j. 4.6kbp upstream of a DHSI (26) in pancreatic islets 
i. 12 TFBSs 

k. The lead SNP is in an intergenic region, and may serve as a bidirectional, distant regulator 
to both TCONS_00021632 and KL. The SNP may impact the binding of FOXA2 to its 
TFBS, and exert its effects primarily in the liver. 

 

5. ADCY5 (rs11708067) 

This credible set contained a single SNP; annotation overlap for the SNP can be found in 
Supplemental Table 5. 

 

6. GCKR (rs780094) 

This credible set contained a single SNP; annotation overlap for the SNP can be found in 
Supplemental Table 5. 

 

7. PROX1 (rs340874) 
a. Credible set interval in hg18: chr1: 212212012-212230298 
b. Credible set interval in hg19: chr1:214145389-214163675 
c. Contains the 5’UTRs of PROX-AS1 and PROX1 
d. Exonic to the mRNA AK096113, overlaps PROX-AS1. Found in liver cell lines 
e. The 5’UTR of PROX-AS1 overlaps the mRNA AK096113, which comes from human liver 

cells 
f. There are 2 NHGRI SNPs in the region 

i. rs2075423 – Type 2 Diabetes 
ii. rs340874 – Fasting glucose traits 

g. There are 4 H3K4Me1 peaks throughout the region 
h. There is one weak and one strong H3K4Me3 peaks 
i. There are two H3K27Ac peaks 
j. The 5’UTR of PROX1 is overlaps with a level of moderate transcription according to RNA-

seq, especially strong in HepG2 cell lines (2.2kbp telomeric to (p arm) lead SNP) 
i. There are also moderate H3K4Me1 and H3K27Ac peaks and a strong H3K4Me3 

peak 
ii. There is a DHSI (116/125) with 36 TFBSs (31 present in liver cells) 

1. TFBSs include FOXA1 and FOXA2 
k. 12.5kbp downstream, there is a large H3K4Me1 peak, with a DHSI (25/125) found in 

HSMM cells and one TFBS 
l. 8.2kbp downstream, there are strong H3K4Me1 dual peaks and small H3K37Ac peaks. 

There is a DHSI (27/125) and 9 TFBSs 
m. The lead SNP lies within an area of mild H3K4Me1 expression and several different DHSI 

and 41 TFBSs (31 expressed in liver cells) 
i. The SNP is within two TFBSs: EZH2 and CTBP2 

n. The histone modifications are consistent with the location of the SNP within the promoter 
region of PROX1 and PROX1-AS1. This area may play an important role in the liver, as 
indicated by the tissue specificity of TFBSs, RNA-seq, and human mRNA. 



 

 

8. DPYSL5 (rs1371614) 
a. Credible set interval in hg18: chr2: 26957635-27251700 
b. Credible set interval in hg19: chr2:27104131-27398196 
c. Contains 12 different genes 

i. DPYSL5 
ii. MAPRE3 
iii. TMEM214 
iv. OST4 
v. KHK 
vi. EMILIN1 
vii. AGBL5 
viii. CGREF1 
ix. ABHD1 
x. PREB 
xi. C2orf53 
xii. TCF23 

d. The 3’UTR of DYPSL5 contains high transcription levels, according to RNA-seq 
e. Two NHGRI SNPs 

i. rs1371614 – Fasting glucose traits 
ii. (not related) rs7588926 – Response to cytadine analogues 

f. There are 23 H3K4Me1 peaks throughout the region 
g. There are 12 H3K4Me3 peaks throughout the region 
h. There are 14 H3K27Ac peaks throughout the region 
i. The lead SNP lies with a DHSI (3) and 2 TFBSs, FOXA1 and FOXA2, both found in liver 

cell lines 
j. 4kbp downstream of a small H3K4Me1 peak  

i. DHSI (26) found in liver, muscle, and pancreatic cell lines 
ii. 23 TFBSs, all found in liver cell lines 

k. 13kbp upstream of an area of weak H3K4Me1 modification 
i. DHSI (113) and 13 TFBSs 

l. This is a larger transethnic region, with explains the large amount of genes with associated 
histone modifications. The SNP may impact the binding of FOXA1 and FOXA2, specifically 
in liver cells, which would affect liver metabolism. 

 

9. IGF2BP2 (rs7651090)  
a. Credible set interval in hg18: chr3: 186750043-187067565 
b. Credible set interval in hg19: chr3:185267349-185584871 
c. Five genes in the region 

i. LIPH 
ii. SENP2 
iii. IGF2BP2 

1. Human mRNA BC021290 indicates expression in pancreas 
iv. C3Orf65 
v. TCONS_00006340 (lincRNA) 

d. Five NHGRI GWAS SNPs 
i. (not related) rs720390 – height 
ii. rs1374910 – Type 2 Diabetes 
iii. rs6769511 – Type 2 Diabetes 



 

iv. rs1470579 – Type 2 Diabetes 
v. rs4402960 – Type 2 Diabetes 

e. There are 24 H3K4Me1 peaks throughout the region 
f. There are 3 H3K4Me3 peaks throughout the region 
g. There are 15 H3K27Ac peaks throughout the region 
h. The lead SNP is intronic to IGF2BP2 
i. 1.3kbp downstream of large H3K4Me1 and H3K27Ac peaks 

i. DHSI (93) and 28 TFBSs 
j. 12kbp downstream of a DHSI (87)  

i. 29 TFBSs 
k. 4.7kbp upstream of a moderate H3K4Me1 peak 

i. DHSI (12) 
l. 13kbp upstream of an area of moderate H3K4Me1  

i. DHSI (60) found in muscle and pancreatic cells 
ii. 5 TFBSs 

m. The large Type 2 Diabetes SNP cloud indicates the importance of the region in that 
disease. The lead SNP is intronic to IGF2BP2, and 27 kbp from the nearest exon. Its role 
may be with the nearby putative promoter, located 1.3 kbp away. Further validation could 
show if this promoter is associated with IGF2BP2, or the downstream lincRNA 
TCONS_00006340. 

 

10. CDKN2B (rs10811661) 
a. Credible set interval in hg18: chr9: 22118180-22124094 
b. Credible set interval in hg19: chr9:22128180-22134094 
c. No genes within the region 
d. 4 NHGRI GWAS SNPs 

i. rs7020996 – Type 2 diabetes 
ii. rs2383208 – Type 2 Diabetes 
iii. rs10965250 – Type 2 Diabetes 
iv. rs10811661 – Type 2 Diabetes 

e. There are three moderate, broad H3M4Me1 peak, especially prominent in blood vessel 
cells 

i. 4kbp, 4.6kbp, and 5.4kbp telomeric (p arm) to the lead SNP 
f. 4.5kbp telomeric to the SNP, there is a DHSI (36/125) which is in HSMM and pancreatic 

islet cells. There are three TFBSs nearby, including FOXA2 
g. The entire region is intergenic and contains a large Type 2 Diabetes SNP cloud. This 

indicates the importance of the enhancer region, which overlaps a DHSI site with tissue 
specificity in diabetes-relevant tissues.  

 

11. ADRA2A (rs10885122) 
a. Credible set interval in hg18: chr10: 112960941-113029657 
b. Credible set interval in hg19: chr10:112970951-113039667 
c. No genes in region 
d. Only histone modification is a very small H3K4Me1 peak between 113,005,278-

113,007,774 only in HSMM cells 
e. There is a DHSI (8/125) in HSMM and PanIsletD.  
f. There are 9 TFBSs in the region, and 7 are present in liver cell lines 
g. **When using lift over, the lead SNP lies just outside the credible region** (113042093) 



 

h. This trans-ethnic region contains little biological information, being both intergenic and 
having little regulatory information. However, the information that is available shows tissue 
specificity to diabetes-relevant tissues, and may impact a genomic element not currently 
reported.  

 

12. TCF7L2 (rs7903146) 
a. Credible set interval in hg18: chr10: 114742493-114778805 
b. Credible set interval in hg19: chr10:114752503-114788815 
c. The entire region is intronic to TCF7L2 

i. Human mRNA FJ010174 indicates expression in pancreatic, hepatic, renal, muscle 
and adipose cells 

d. There are five NHGRI GWAS SNPs 
i. rs12243326 – 2 hour glucose challenge 
ii. (not related) rs7904519 – Breast cancer 
iii. rs7903146 – Type 2 diabetes 
iv. rs4506565 – fasting glucose traits/Type 2 Diabetes 
v. rs7901695 – Type 2 diabetes 

e. There are 5 H3K4Me1 peaks (two strong, three weak) 
i. The weak peaks are located 2.3kbp, 3.8kbp, and 5kbp downstream from the lead 

SNP 
f. 8.8kbp downstream, there is a DHSI (8/125) preset in liver cell lines with 21 TFBSs, all 

present in liver cell lines 
i. This coincides with a very strong peak of conservation 

g. The large Type 2 Diabetes SNP cloud, along with the tissue specificity information from 
the human mRNA, confirms the region’s importance in diabetes. The SNP may play a role 
in the promoter regions and impact the transcription of TCF7L2, which is important in 
maintaining blood glucose levels. (http://www.ncbi.nlm.nih.gov/gene/6934) 

 

 

13. FADS1 (rs174550) 
a. Credible set interval in hg18: chr11: 61307932-61366326 
b. Credible set interval in hg19: chr11:61551356-61609750 
c. There are five genes in the region 

i. MYRF 
ii. FEN1 

1. EST CA868349 indicating expression in pancreas 
iii. TMEM258 
iv. FADS1 
v. FADS2 

1. EST BP237803 indicating expression in liver 
d. There are 20 NHGRI GWAS SNPs 

i. rs174541 – metabolite levels 
ii. rs4246215 – platelet counts, phospholipid levels 
iii. rs174538 – blood metabolite levels 
iv. rs102275 – blood cholesterol/metabolite levels, metabolic syndrome 
v. (not related) rs174537 – colorectal cancer 
vi. rs174556 – blood metabolite levels 
vii. rs174555 – blood fatty acid levels 



 

viii. rs174550 – fasting glucose related traits 
ix. rs174548 – blood metabolite levels 
x. rs174547 – metabolic traits 
xi. rs174546 – metabolic syndrome, cholesterol 
xii. rs174578 – blood metabolite levels 
xiii. rs2727271 – blood metabolite levels 
xiv. rs2727270 – fatty acid levels 
xv. (not related) rs174583 – response to statins 
xvi. (not related) rs174577 – P wave duration 
xvii. rs174574 – phospholipid levels 
xviii. rs1535 – metabolic syndromw 
xix. (not related) rs174570 – glycated hemoglobin levels 
xx. rs968567 – blood metabolite levels 

e. Seven H3K27Ac peaks 
i. Two are associated with H3K4Me1 peaks  

f. There are three H3KeMe3 peaks, all associated with H3K27Ac peaks 
g. There are eleven H3K4Me1 peaks, seven are associated with H3K27Ac peaks 
h. The lead SNP is intronic to FADS1 
i. The lead SNP is inside of a H3K4Me1 peak 
j. 12kbp upstream are strong H3K4Me3 and H3K27Ac peaks 

i. associated with several DHSI (55,117,124,125,14). The 14/125 DHSI is in both 
hepatocytes and pancreatic cells. There are over 150 associated TFBSs 

ii. On either side of this region are H3K4Me1 peaks 
k. 3.9kbp upstream of H3K4Me1 and K3K17Ac peaks 

i. DHSI (12) found in pancreatic islet cells 
ii. 42 TFBSs 

l. 11kbp telomeric (q arm) to H3K4Me3 and H3K27Ac peaks 
i. DHSI (125) and (116) 
ii. 87 TFBSs 

m. This region contains an expansive SNP cloud, which strengthens the case for the 
importance of the region in Type 2 Diabetes. Furthermore, several of the genes in the 
region are associated with metabolism and cholesterol, including FADS1 and FADS2. The 
location of the lead SNP within a promoter region may impact the transcription of these 
elements. 

 

 

14. DGKB-TMEM195 (rs2191349)  
a. Credible set interval in hg18: chr7: 14888532-15032137 
b. Credible set interval in hg19: chr7:14922007-15065612 
c. Contains the 5’ end of DGKB 
d. Contains 3 NHGRI SNPs 

i. rs10244051 – metabolic traits 
ii. rs2191349 – fasting glucose related traits 
iii. rs6947830 – metabolic syndrome 

e. There are three small H3K4Me1 peaks 
i. 8.7kbp telomeric (p arm) there is a DHSI (104) with HSMM, HepG2, and PanIslets cell 

lines. There are 16 TFBSs   
f. This transethnic region is mostly intergenic, with few biological elements. However, the 

presence of a SNP cloud indicates the importance of this region to Type 2 diabetes. The 



 

SNP cloud is clustered around a small H3K4Me1 peak, which may be involved in distant 
regulation. 

 

 

15. ARL15 (rs4865796) 
a. Credible set interval in hg18: chr5: 53059217-53557802 
b. Credible set interval in hg19: chr5:53023460-53522045 
c. There are two genes in the region 

i. TCONS_l2_00022897 (lincRNA) 
ii. 3’ end of ARL15 

1. EST AV660016 indicating expression in liver 
d. There are 5 NHGRI SNPs in the region 

i. rs4311394 – adiponectin levels 
ii. rs6450176 – adiponectin levels/cholesterol 
iii. (not related) rs273218 – migraine 
iv. rs702634 – Type 2 diabetes 
v. (not related) rs255758 – rheumatoid arthritis 

e. There are 14 H3K4Me1 peaks 
i. There is one small peak located 1.5kbp downstream of the SNP 
ii. 7kbp upstream there is a small peak, associated with a DHSI (42) present 

in HepG2 Cells and 7 TFBSs 
f. There are 3 H3K17Ac peaks, each corresponding to a H3K4Me1 peak 
g. There are numerous DHSI and TFBS throughout the region, as well as low-levels of 

transcription according to RNA-seq 
h. The lead SNP is located near a promoter region intronic to ARL15. While this may regulate 

the gene, which is shown to have tissue specificity to the liver and play a role in glucose 
levels via adiponectin (PMID: 20011104), it may also impact regulation of the downstream 
lncRNA TCONS_l2_00022897. 

 

 

16. PPP1R3B (rs4841132) 

This credible set contained a single SNP (rs1461729); annotation overlap for the SNP can be 
found in Supplemental Table 5. 

 

17. COBLL1-GRB14 (rs7607980) 
a. Credible set interval in hg18: chr2: 165214970-165266498 
b. Credible set interval in hg19: chr2:165506724-165558252 
c. There are two genes in the region 

i. 3’ end of COBLL1 
1. EST CB270545 indicates expression in adipose tissue 

ii. TCONS_00004484 (lncRNA) 
1. Increased expression in liver and adrenal tissue. 

d. Five NHGRI GWAS SNPs 
i. rs10195252: Triglycerides 
ii. rs13389219: Waist hip ratio 
iii. (not related) rs6717858: sexual dimorphism is anthropometric traits 



 

iv. rs12328675: cholesterol 
v. rs7607980: fasting insulin traits 

e. Between 165,536,302-165,558,065 (coinciding with COBLL1), there is moderate to high 
transcription according to RNA-seq 
i. This is especially prominent in HepG2 cells 

f. 1.3kbp downstream, there is a DHSI (5/125) present in HepG2 cells, with 25 TFBSs (17 
present in liver cells) 

g. 3.1kbp upstream, there is a DHSI (32) present in HSMM, PANC-1, and HepG2, associated 
with 7 TFBSs (all in liver cells) 

h. There is a moderate H3K4Me1 peak and small H3K27Ac peak in the region 
i. This trans-ethnic region shows several instances of tissue specificity in liver tissue, 

including information from TFBSs, DHSI, and lncRNA expression profiles. The lead SNP 
is exonic to COBLL1, which plays a role in cholesterol levels (PubMed: 17903299). This 
variant may impact the function of this gene. 
 
 

18. IRS1 (rs2943634)  
a. Credible set interval in hg18: chr2: 226735108-226872748 
b. Credible set interval in hg19: chr2:227026864-227164504 
c. There are three genes in the region 

i. TCONS_l2_00015614 (lncRNA) – especially prominent in thyroid 
ii. TCONS_00003502 (lncRNA) 
iii. TCONS_00004599 (lncRNA) 

d. There are seven NHGRI GWAS SNPs 
i. rs2972146 – triglycerides/HDL cholesterol 
ii. rs2943641 – Type 2 Diabetes 
iii. rs2943650 – adiposity 
iv. rs1515110 – adiponectin levels 
v. rs2972146 – triglycerides/HDL cholesterol 
vi. (not related) rs2943636 - sexual dimorphism is anthropometric traits 
vii. rs2943634 – fasting insulin traits 

e. There are five H3K4Me1 peaks 
i. 12.7kbp centromeric (q arm) – especially prominent in HSMM cell lines 
ii. 10kbp telomeric – especially prominent in HSMM cell lines 

f. There are three H3K27Ac peaks, each coinciding with a H3K4Me1 peak 
i. 12.7kbp centromeric (q arm) – especially prominent in HSMM cell lines 
ii. 10kbp telomeric – especially prominent in HSMM cell lines 

g. 12.7kbp centromeric is a DHSI (21)  with 9 TFBS (all in liver cells) 
h. 10kbp telomeric are two DHSIs with 27 TFBSs 
i. This region contains only non-coding SNPs, highlighting their importance in metabolic 

disorders. The SNP cloud resides in an intergenic area of the region, with relatively few 
genomic features. However, the genomic features that are present display tissue 
specificity to Type 2 Diabetes relevant tissues. Further validation could uncover if this area 
serves as a distant regulator to another genomic area involved in Type 2 Diabetes. 

 

19. GCKR (rs780094) 

This credible set contained a single SNP; annotation overlap for the SNP can be found in 
Supplemental Table 5. 

 



 

20. ANKRD55-MAP3K1 (rs459193) 
a. Credible set interval in hg18: chr5: 55595454-56092481 
b. Credible set interval in hg19: chr5:55559697-56056724 
c. There are five genes in the region 

i. TCONS_00009667 (lncRNA) 
ii. TCONS_00010339 (lncRNA) – especially prominent in kidney and adrenal 
iii. TCONS_00009669 (lncRNA) – especially prominent in kidney and adrenal 
iv. TCONS_00010343 (lncRNA) – especially prominent in kidney and adrenal 

1. 3’ end located less than 1kbp from lead SNP 
v. TCONS_00010346 (lncRNA) 

d. There are 11 NHGRI GWAS SNPs 
i. rs9686661 – triglycerides 
ii. (not related) rs11743303 - sexual dimorphism is anthropometric traits 
iii. rs6867983 – waist circumference/triglycerides 
iv. rs30360 – fasting insulin/insulin resistance 
v. (not related) rs456867 – urate levels 
vi. (not related) rs1020388 – Celiac’s disease 
vii. (not related) rs889312 – breast cancer 
viii. (not related) rs16886181 – breast cancer 
ix. (not related) rs16886165 – breast cancer 
x. (not related) rs16886034 – breast cancer 
xi. (not related) rs16886113 – breast cancer 

e. There are approximately 28 H3K4Me1 peaks 
f. The region has 1 H3K4Me3 peak 
g. There are seven H3K27Ac peaks, each coinciding with a H3K4Me1 peak 
h. 6kbp centromeric (q arm) is an area of high conservation and transcription according to 

RNA-seq. While there is no gene, histone mod, or TFBS corresponding to this region, 
there are 41 ESTs 

i. 9kb centromeric there is a H3K4Me1 peak. There is a DHSI (41) with 10 TFBSs 
i. The DHSI is present in HSMMtube and PanIsletD cell lines 

j. 3.1kbp centromeric is a DHSI (6) present in HepG2 cells. There are 6 TFBSs, all present 
in liver cell lines 

k. 5.5 kbp telomeric is a H3K4Me1 peak. There is a DHSI (48) with 11 TFBSs.  
i. The DHSI is present in HSMM and HepG2 cell lines 

l. 15 kbp telomeric is a broad H3K4Me1 peak. This encompasses several DHSI and TFBSs 
m. This region contains numerous lncRNA and regulatory elements, further emphasizing their 

importance. The tissue specificity of these elements in Type 2 Diabetes tissues, such as 
liver and muscle tissue, indicates that these features may be playing a role in the metabolic 
disorder. Further validation could be done to identify the specific targets of these areas. 

 

21. FAM13A (rs3822072) 
a. Credible set interval in hg18: chr4: 89840095-90083469 
b. Credible set interval in hg19: chr4:89621072-89864446 
c. Contains two genes 

i. 3’ end of HERC3 
ii. FAM13A 

1. The entire region of the gene shows transcription levels particularly prominent in 
HepG2 cell lines 

d. There are two NHGRI GWAS SNPs 
i. (not related) rs2609255 – lung disease 



 

ii. rs3822072 – HDL cholesterol 
e. The region has 15 H3K4Me1 peaks 
f. There are 2 H3K4Me3 peaks (each coinciding with an Me3 peak) 
g. There are 6 H3K27Ac peaks (each coinciding with an Me3 peak) 
h. The lead SNP is intronic to FAM13A, is within a DHSI (4) and a TFBS (GATA3) 
i. 3.3kbp upstream there are peaks for each form of histone modification. 

i. DHSI (119) and approximately 70 TFBSs 
j. 9kbp downstream is a DHSI (17) with 11 TFBSs, all present in liver cells 
k. The lead SNP in this region resides in the promoter region of the short isoform FAM13A, 

and may impact its rate of transcription. The tissue-specificity of the RNA-seq and TFBSs 
to the liver indicates where this effect may occur.  

 

22. UHRF1BP1 (rs4646949) 
a. Credible set interval in hg18: chr6: 34872900-35090036 
b. Credible set interval in hg19: chr6:34764922-34982058 
c. Contains three genes 

i. 3’ end of UHRF1BP1 
ii. TAF11 
iii. 5’ end of ANKS1A 

d. There are 6 NHGRI GWAS SNPs 
i. (not related) rs3734266 – lupus 
ii. (not related) rs2140418 – alcoholism 
iii. (not related) rs1535001 – lupus 
iv. (not related) rs847845 – lung cancer 
v. (not related) rs12205331 – CAD 
vi. rs4646949 – fasting insulin traits 

e. There are 18 H3K4Me1 peaks 
f. There is one H3K4Me3 peak 
g. There are eight H3K27Ac peaks 
h. The lead SNP is inside an area of high transcription according to RNA-seq and in between  

the short isoform of UHRF1BP1 and TAF11, but intronic to the long isoform of UHRF1BP1 
i. 1kbp telomeric (p arm) is a small H3K4Me1 peak 

i. DHSI (1) with 6TFBSs 
j. 12kbp telomeric are strong H3K4Me1 and H3K27Ac peaks 

i. DHSI (33) In HSMM and PanIsletD cell lines 
ii. 33 TFBSs, with 32 in blood tissue 

k. 10kbp centromeric are strong H3K4Me3 and H3K27Ac peaks, and a moderate H3K3Me1 
peak 
i. There are several DHSIs (35,20,125,110) 
ii. Over 100 TFBSs 

l. The lead SNP resides near the 3’ end of two different genes, which explains its high rate 
of transcription. However, the small H3K4Me1 peak where the lead SNP resides may be 
a distant regulator of the downstream target ANKS1A, which has been previously 
identified in an obesity and Type 2 diabetes study (PMCID: PMC3364960).  
 

23. PPARG (rs17036328) 
a. Credible set interval in hg18: chr3: 12311507-12371955 
b. Credible set interval in hg19: chr3:12336507-12396955 
c. The entire region is intronic to PPARG 
d. There are 2 NHGRI GWAS SNPs 



 

i. (not related) rs11128603 - PAI-1 levels 
ii. rs1801282 – Fasting glucose and Type 2 Diabetes 

e. The region has only one strong H3K4Me1 peak, and six other weak peaks 
f. There are 3 weak H3K27Ac peaks, each coinciding with a Me1 peak 
g. The lead SNP is 3kbp downstream of the strong H3K4Me1 peak and a weak Me3 peak 

i. There is a DHSI (67) found in muscle and pancreatic cell lines 
ii. There are 17 TFBSs 

h. 1.7kbp Upstream of a DHSI (51) found in muscle and pancreatic cell lines. There are 27 
TFBSs 

i. 4.4 kbp upstream of a DHSI (40) found in HepG2 and HSMM cell lines 
i. There are 24 TFBSs  

j. While the region is intronic to the long isoform of PPARG, the lead SNP is 2.7kbp upstream 
of the 5’ end of the short isoform. The nearby promotor signals, DHSI, and TFBSs may be 
involved in the regulation of this isoform. Genetic variations impacting PPARG may 
increase the risk for Type 2 Diabetes (PubMed: 15797964, PubMed 15592662, PubMed: 
12882888).  
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Legend of Supplemental Figures 

Figure S1. Schematic study diagram.36 fasting glucose (FG) loci, 16 fasting insulin (FI) loci, 
and 2 loci associated with both FG and FI previously identified in European ancestry (EA) samples 
were fine-mapped by combining association statistics from EA and African ancestry (AA) samples 
using Meta-ANalysis of TRans-ethnic Association studies (MANTRA) software. Substantially 
reduced trans-ethnic credible sets were further examined for evidence of regulatory annotation or 
enrichment of regulatory marks. Known loci from EA samples were also analysed for 
transferability to AA samples, for evidence of independent signals in AA populations, and for 
evidence of selection. Novel FG- and FI-associated loci were identified in fixed effects GWAS 
meta-analysis in AA samples alone and in trans-ethnic analyses combining EA and AA samples. 
Two novel loci associated with FI and 24 loci known from EA samples were examined for 
association with other cardiometabolic traits.  

 

Figure S2. Venn diagram of trans-ethnic analysis and transferability results. Venn diagram 
showing loci exhibiting transferability between EA and AA in brown, loci at which 99% credible 
set was reduced by at least 20% shown in blue, and overlapping loci in the central area.  

 

Figure S3. Trans-ethnic fine-mapping of 22 loci (13 FG, 8 FI, and 1 both FG and FI) with 
greater than 20% reduction in the 99% credible set. Trans-ethnic analysis of glycemic 
quantitative loci provides narrowed intervals spanned by the 99% credible set. 500 kb regional 
association plots centered at the index SNP identified from EA samples at each locus. The X-axis 
denotes genomic position and the Y-axis denotes the log (Bayes factor), recombination rate and 
varLD information. The red diamond data point represents the index SNP within the region 
previously reported from the EA sample. The color of each data point indicates its LD value (r2) 
with the index SNP based on HapMap 2 (YRI for AA results and CEU for EA results): white, r2 not 
available; blue, r2=0.0-0.2; brown, r2=0.2-0.5; orange, r2=0.5-0.8; red, r2=0.8-1.0. The blue line 
represents the recombination rate. The green line shows  the varLD score at each SNP and is  
highlighted with dark brown if the varLD score is  > 95th percentile of the genome-wide varLD 
score, comparing LD information between YRI and CEU HapMap2 samples52. The interval 
spanned by the 99% credible set is highlighted in pink. For each locus, three figures were provided. 
Panel A. Association results using EA samples. Panel B. Association results using AA 
samples. Panel C. Association results using both EA and AA samples. 

Figure S4. Overlay of regional association plots with regulatory annotation at 22 loci (13 
FG, 8 FI, and 1 both FG and FI) with greater than 20% reduction in the 99% credible set. 
Top panel: 500 Kb genomic span showing the top SNP in EA (MAGIC) with a diamond, the top 
SNP in AA (AAGILE) with a triangle, the EA-only 99% credible set bounded by the blue and pink 
boxes, and the narrowed trans-ethnic 99% credible set indicated by the pink boxes. SNPs are 
colored according to score assigned in RegulomeDB with lower score corresponding to stronger 
level of evidence supporting regulatory function. Lower panel (where shown): A zoomed in 
region of the locus, showing either a 100 Kb or a 50 Kb genomic span. Again, the top SNP in EA 
(MAGIC) is represented by a diamond, SNPs are colored according to score assigned in 
RegulomeDB with lower score corresponding to stronger level of evidence supporting regulatory 
function, and the blue box indicates the span of the EA-only 99% credible set while the pink box 
indicates the narrowed trans-ethnic 99% credible set. Data from the Islet Regulome Browser for 
the genomic interval are shown below the regional association plots. 

Figure S5. Concordance of effect size and Comparison of EA trait-raising allele Frequency 
in EA and AA. We show the concordance of effect (Figures S5A and S5B) and comparison of 



 

frequency (Figures S5C and S5D) for each EA trait-raising allele between EA and AA samples. 
The blue rectangles represent the SNPs meeting SNP transferability criteria from EA to AA, i.e. 
association P < 0.05 in AA and sharing the trait-raising allele in EA and AA. Grey circles represent 
SNPs without evidence of SNP transferability. In Figures S5A and S5B, X-axis is the effect size 
in EA and Y-axis is the effect size in AA for the EA trait-raising allele. There is evidence of excess 
concordance of effect between EA and AA. Specifically, of 36 EA FG index SNPs, 28 SNPs share 
the same direction in AA (binomial test P of 5.96 x 10-4), (Figure S5A); of 18 EA FI index SNPs, 
14 SNPs share the same direction in AA (binomial test P of 1.544E-2), (Figure S5B). Also, for 
both traits, SNPs that meet the transferability criteria tended to have larger effect size of similar 
magnitudes in both the EA and AA samples than those not meeting criteria. In Figures S5C and 
S5D, X-axis is the frequency in EA and Y-axis is the frequency in AA for the EA trait-raising allele. 
There is wide variation in the frequency of the EA trait-raising allele between EA and AA; the 
majority of SNPs with locus transferability from EA to AA exhibit higher frequency of the EA trait-
raising allele in AA than in EA.  

Figure S6. Genome-wide association plots and quantile-quantile (QQ) plots for FG and FI. 
Figures S6A and S6C display the Miami plots of association, which mirror the results of AA (on 
the top) and EA (on the bottom). The X-axis is the chromosome and position and the Y-axis is the 
–log-scale of association P. Figures S6B and S6D are the QQ plots for FG and FI, respectively. 
Both associations of FG and FI are minimally inflated with lambda of 1.018 and 1.028, respectively. 
Figures S6E and S6F are the genome-wide association plots of trans-ethnic meta-analysis 
results for FG and FI, respectively. The X-axis is the chromosome and position and the Y-axis is 
the –log-scale of association P.   

Figure S7. Conditional analysis at PELO/rs6450057. The product of the sign of the beta-
coefficient for FI level and –log(P-value) for each SNP residing ±250kb of the top SNP, rs6450057, 
at the locus in EA samples (MAGIC) and in AA samples (AAGILE) plotted on the X- and Y-axis, 
respectively. Figures S7A and 7C show the comparison for unconditional association results with 
HapMap 2 CEU and YRI LD information, respectively. Figures S7B and S7D show the 
comparison for conditional association results with HapMap 2 CEU and YRI LD information, 
respectively. There is a clear pattern in the discordant directions of effect between EA and AA. 
However, after conditional analysis on the top SNP, this discordant pattern disappears, implying 
that the top SNP rs6450057 drives the original association signal. 
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