Human Obesity Associated with an Intronic SNP in the Brain-Derived Neurotrophic Factor Locus

Highlights

- BDNF rs12291063 minor C allele is associated with obesity in children and adults
- Minor C allele disrupts binding and transactivation by hnRNPD0B
- Minor C allele is associated with lower human hypothalamic BDNF expression
- BDNF augmentation could be a CC genotype-specific targeted therapy for obesity

Authors

Zongyang Mou, Thomas M. Hyde, Barbara K. Lipska, ..., Joel E. Kleinman, Jack A. Yanovski, Joan C. Han

Correspondence

jhan14@uthsc.edu

In Brief

Mou et al. show that brain-derived neurotrophic factor (BDNF) rs12291063 minor C allele disrupts binding and transactivation by the transcriptional regulator, heterogeneous nuclear ribonucleoprotein D0B, and it is associated with lower ventromedial hypothalamic BDNF expression and obesity. BDNF augmentation may be specifically beneficial for treating obesity in individuals with the CC genotype.
Human Obesity Associated with an Intronic SNP in the Brain-Derived Neurotrophic Factor Locus

Zongyang Mou,1,2 Thomas M. Hyde,3,4,5 Barbara K. Lipska,6 Keri Martinowich,3,4 Peter Wei,1,7 Chiew-Jen Ong,1,7 Lindsay A. Hunter,1,7 Gladys I. Palagauachi,1,7 Eva Morgun,1,2 Rujia Teng,1 Chen Lai,1,7 Tania A. Condurco,2 Andrew P. Demidowich,2 Amanda J. Krause,2 Leslie J. Marshall,8 Karin Haack,9 V. Saroja Voruganti,9,10 Shelley A. Cole,9 Nancy F. Butte,11 Anthony G. Comuzzie,9 Michael A. Nalls,12 Alan B. Zonderman,13 Andrew B. Singleton,12 Michele K. Evans,14 Bronwen Martin,15 Stuart Maudsley,16,17,18 Jack W. Tsao,2,7,19 Joel E. Kleinman,3,4,5 Jack A. Yanovski,2 and Joan C. Han1,2,20,21,*

1Unit on Metabolism and Neuroendocrinology
2Section on Growth and Obesity
Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD 20892, USA
3The Lieber Institute for Brain Development
4Department of Psychiatry and Behavioral Sciences
5Department of Neurology
Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
6Human Brain Collection Core, National Institute of Mental Health (NIMH), NIH, Bethesda, MD 20892, USA
7Departments of Neurology and Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
8Preclinical Microbicide & Prevention Research Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
9Department of Genetics, Texas Biomedical Research Institute and Southwest National Primate Research Center, San Antonio, TX 78245, USA
10Department of Nutrition and UNC Nutrition Research Institute, University of North Carolina, Chapel Hill, Kannapolis, NC 28081, USA
11USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA
12Department of Genetics, Texas Biomedical Research Institute and Southwest National Primate Research Center, San Antonio, TX 78245, USA
13Behavioral Epidemiology Section
14Health Disparities Research Section
15Metabolism Unit
16Receptor Pharmacology Unit
NIA, Baltimore, MD 21224, USA
17Translational Neurobiology Group, VIB Department of Molecular Genetics
18Laboratory of Neurogenetics, Institute Born-Bunge
University of Antwerp, 2610 Wilrijk, Belgium
19Department of Neurology
20Department of Pediatrics
University of Tennessee Health Science Center, Memphis, TN 38163, USA
21Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
*Correspondence: jhan14@uthsc.edu
http://dx.doi.org/10.1016/j.celrep.2015.09.065
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

SUMMARY

Brain-derived neurotrophic factor (BDNF) plays a key role in energy balance. In population studies, SNPs of the BDNF locus have been linked to obesity, but the mechanism by which these variants cause weight gain is unknown. Here, we examined human hypothalamic BDNF expression in association with 44 BDNF SNPs. We observed that the minor C allele of rs12291063 is associated with lower human ventromedial hypothalamic BDNF expression (p < 0.001) and greater adiposity in both adult and pediatric cohorts (p values < 0.05). We further demonstrated that the major T allele for rs12291063 possesses a binding capacity for the transcriptional regulator, heterogeneous nuclear ribonucleoprotein D0B, knockdown of which disrupts transactivation by the T allele. Binding and transactivation functions are both disrupted by substituting C for T. These findings provide a rationale for BDNF augmentation as a targeted treatment for obesity in individuals who have the rs12291063 CC genotype.

INTRODUCTION

Genetic factors play a role not only in the predisposition to obesity (Loos, 2012), but also in the effectiveness of obesity treatments (Choquet and Meyre, 2011). Genetic variation of the brain-derived neurotrophic factor (BDNF) locus is an important potential therapeutic target because BDNF plays a key role in energy...
homeostasis by functioning as a downstream regulator of the leptin-proopiomelanocortin pathway (Xu et al., 2003). Bdnf+/– mice (Lyons et al., 1999) and BDNF+/– humans (Han et al., 2008) exhibit hyperphagic behavior and obesity. BDNF is abundantly expressed in the ventromedial hypothalamus (VMH) (Xu et al., 2003), and selective deletion of Bdnf from the VMH and dorsomedial hypothalamus leads to obesity in mice (Unger et al., 2007). In human studies, associations have been observed between obesity and SNPs of the BDNF gene locus, most of which are intronic (Gong et al., 2013; Speliotes et al., 2010).

With the emerging evidence that non-coding genetic variants play an important role in gene regulation (Cooper, 2010), we hypothesized that SNPs within intronic regions of the BDNF locus could alter hypothalamic BDNF expression and, thereby, influence energy balance and serve as potential therapeutic targets for genotype-specific treatment of obesity. We examined the association of the BDNF locus SNPs with human VMH BDNF expression and body composition in multiple pediatric and adult cohorts. We then investigated the mechanistic role of intronic SNP rs12291063, which emerged as the strongest predictor of hypothalamic BDNF expression and body mass index (BMI).

RESULTS

The rs12291063 CC Genotype Is Associated with Decreased BDNF Expression in Human VMH

Relative expressions of the five most abundant BDNF transcripts in human hypothalamus (I, IIb, IIc, IV, and VIb) (Han et al., 2008) were measured by quantitative real-time PCR in postmortem human VMH-region tissue obtained from 84 adults (Table S1). Subjects were genotyped for 44 SNPs within or near the BDNF locus (Table S2). Of the 44 SNPs examined, only rs12291063 was significantly associated with BDNF expression after correction for multiple comparisons. Minor allele rs12291063 CC genotype was significantly associated with lower BDNF transcript IIb and nominally associated with lower BDNF transcript VIb expressions (Figure 1A). Upstream of coding exon IX, rs12291063 is located within the intron between noncoding exons VIII and VIIIh (Figure S1). Additional BDNF SNPs showing nominal associations with BDNF expression that were not significant after correction for multiple comparisons are indicated in Table S2. Because minor allele frequency (MAF) for rs12291063 is higher in African-American compared to Non-Hispanic Caucasian subjects, we confirmed the nominal associations of rs12291063 with BDNF transcripts IIb and VIb in the sub-cohort of 54 African-American subjects (p = 0.002 and p = 0.006, respectively).
The rs12291063 CC Genotype Is Associated with Greater BMI and Adiposity

Postmortem Adult Cohort

Subjects with the rs12291063 CC genotype had significantly greater BMI compared to subjects with the TT genotype (p = 0.007; Figure 1B) and a trend toward greater BMI compared to CT subjects (p = 0.06; Figure 1B). BMI was not significantly different between CT and TT groups (p = 0.19). After adjustment for age, sex, and race, the CC genotype remained significantly associated with higher BMI when compared with combined CT and TT subjects (p = 0.03; Figure 1C). We also confirmed the association of rs12291063 with BMI in the sub-cohort of African-American subjects (p = 0.04 in one-tailed analysis; data not shown).

Adult African-American Cohorts

Because the MAF of rs12291063 is higher in African-American compared to Caucasian cohorts (Sherry et al., 2001), we examined the association between rs12291063 and obesity in a sample of 29,151 adult subjects of African-American race who were enrolled in the Population Architecture using Genomics and Epidemiology (PAGE) consortia study (Gong et al., 2013). The rs12291063 MAF for C was 0.30 in this cohort. The number of C alleles was positively associated with BMI (adjusted for age, sex, and race; p = 0.00008, β = +0.007; Table S3).

In a sample of 677 adult subjects of African-American race who were enrolled in the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) study (Evans et al., 2010), rs12291063 MAF for C was 0.30. In one-tailed replication analyses, the number of C alleles was positively associated with percentage fat (adjusted for age, sex, and the first ten component vectors from multidimensional scaling to account for population substructure; p = 0.02, β = +0.01) and fat mass (additionally adjusted for height²; p = 0.04, β = +0.06), and a trend toward association was observed for BMI (p = 0.07, β = +0.02).

Healthy Pediatric Cohort

The association between rs12291063 and obesity was further studied in a cohort of 837 healthy children (age 12.6 ± 3.3 years; 58% female; 53% Non-Hispanic Caucasian, 36% African-American; BMI-Z 1.24 ± 1.18) recruited as volunteers for clinical studies at the NIH (Table S4). The rs12291063 MAF for C was 0.02, 0.34, and 0.17 for Non-Hispanic Caucasian, African-American, and Asian/Hispanic/other subjects, respectively. Genotype distributions within racial/ethnic subgroups were consistent with Hardy-Weinberg equilibrium (HWE) (p values > 0.05). The rs12291063 CC subjects had significantly higher BMI and higher BMI-Z than CT and TT subjects (p values < 0.01; Figures 2A and 2B). BMI also was higher in the CT subjects compared to the TT subjects (p = 0.049), but BMI-Z was not significantly different (p = 0.13). We also confirmed the association of rs12291063 with BMI-Z in the sub-cohort of African-American children (p = 0.04 in one-tailed analysis; data not shown). Among 726 children who underwent body composition analysis, subjects with the rs12291063 CC genotype had a significantly greater percentage of body fat and fat mass compared to the CT and TT subjects (p values < 0.05; Figures 2C and 2D). CT and TT subjects had similar adjusted percentage of body fat (p = 0.84) and similar adjusted fat mass (p = 0.96).
We then performed EMSA supershift experiments using purified recombinant hnRNPD0B protein (Figure 4D). We observed that hnRNPD0B bound to both the T and C allele sequences, but with lower intensity for the C allele sequence. These DNA-protein complexes were supershifted by the addition of a pan-hnRNP antibody, but the supershifted band intensities still remained consistently lower for the C allele. The addition of mouse IgG induced supershifted bands of comparably lower molecular weight to form, but the original DNA-protein complexes were still present, suggesting that IgG nonspecifically binds to a site on the biotin-labeled oligonucleotide distinct from the DNA site that binds hnRNPD0B.

Minor C Allele of rs12291063 Decreases Luciferase Reporter Gene Expression

Because hnRNPD0B has been shown to enhance transcription in vitro (Tolnay et al., 2000), we hypothesized that substitution of T with C at rs12291063 leads to decreased binding of hnRNPD0B, resulting in decreased gene expression. We cloned the T or C allele and the identical 250-bp flanking sequence of rs12291063 into pGL3-SV40 luciferase reporter vectors...
The construct containing the C allele exhibited 46% lower luciferase activity compared to the construct containing the T allele (p = 0.003; Figure 5 B).

Transactivation Function of the Major T Allele of rs12291063 is Disrupted by Reduction of hnRNPD Protein Expression

We performed small interfering RNA (siRNA)-mediated knockdown of hnRNPD0B to confirm that the observed decrease in expression was due to diminished hnRNPD0B binding at the C allele. siHNRNP0B significantly decreased hnRNPD protein expression (p < 0.01) in both T and C allele construct-containing cells (Figure 5C). The siHNRNP0B treatment was associated with 22% lower luciferase expression induced by the major T allele compared to siControl (p < 0.01; Figure 5D). However, there was no significant difference in luciferase expression between siHNRNP0B and siControl in cells containing the minor C allele (p = 0.2; Figure 5D), thus supporting a specific transactivation activity induced by binding of hnRNPD0B with the major T allele of rs12291063. Furthermore, cells co-transfected with the minor C allele and siControl showed a significant decrease in luciferase activity compared to cells co-transfected with the major T allele and siControl (p = 0.000005; Figure 5D), which serves as secondary confirmation that the minor C allele causes decreased gene expression.

DISCUSSION

We observed that the rs12291063 CC genotype was associated with lower expressions of BDNF transcripts IIb and VIb in human VMH and higher BMI and adiposity in multiple racially diverse pediatric and adult cohorts. Our in vivo and clinical findings indicate
that BDNF rs12291063, which had an MAF of ∼30% within our Hispanic and African-American cohorts, could play an important role in the pathogenesis of obesity in these populations. Mechanistically, our data suggest that diminished binding of hnRNPD0B at the rs12291063 locus in individuals with the CC genotype could cause decreased BDNF mRNA expression and protein concentrations within the hypothalamus, potentially leading to excessive energy intake and weight gain.

Regulation of BDNF expression is complex, with multiple promoters responding to a variety of control mechanisms, giving rise to distinctly regulated mRNA variants with different brain region expression patterns (Pruunsild et al., 2007; Zheng et al., 2012). BDNF transcripts IIb and VIb comprise 38% of the total BDNF mRNA expression in the hypothalamus (Han et al., 2008). Thus, decreased expression of these two transcripts could have significant impact on body weight regulation.

Our findings provide a clinically relevant potential mechanism for the obesity risk associated with a common noncoding variant of BDNF. Genetic association studies have identified many genetic variants associated with obesity, but their clinical utility for obesity treatment is currently limited (Loos, 2012). Elucidation of the functional consequences of these genetic variants are needed to advance personalized remedies targeting specific deficits on an individual basis (El-Sayed Moustafa and Froguel, 2012). With this goal in mind, our observations could serve as the basis for developing therapies aimed at potentiating hypothalamic BDNF signaling as a specific treatment for obesity in individuals who have the rs12291063 CC genotype.

EXPERIMENTAL PROCEDURES

Please see the Supplemental Experimental Procedures for additional details.

Human Brain Sample Subjects

Brain tissue was obtained from the Offices of the Chief Medical Examiner of Washington, DC, and of Northern Virginia (Clinical Brain Disorders Branch, IRP, NIMH collection) at autopsy from non-neurologic non-psychiatric control subjects who suffered sudden deaths. All the tissues were donated with informed consent from the next of kin. Further details on cohort selection have been reported previously (Butte et al., 2006). Informed consent and assent were obtained from children and adolescents of Hispanic heritage from the Viva La Familia longitudinal study (Erlich et al., 2006); the region of VMH was dissected from frozen brain specimens using anatomic landmarks. The qPCR and SNP genotyping were performed (see the Supplemental Experimental Procedures).

Human Subjects

The following four cohorts were investigated: (1) adults of African-American race from the PAGE consortia (Gong et al., 2013; Table S3); (2) adults of African-American race from the HANDLS study (Evans et al., 2010); (3) pediatric volunteers participating in clinical studies conducted at the NIH; and (4) children and adolescents of Hispanic heritage from the Viva La Familia longitudinal study (Butte et al., 2006). Informed consent and assent were obtained from adult subjects and parents/guardians of minors. All methods for obtaining clinical data from the subjects were approved by the respective Institutional Review Board at each site.

Bioinformatics

SNPInspector software (Genomatix Software) was used to identify candidate transcription factors at the SNP loci.

Protein Isolation and Identification

A streptavidin-agarose bead pull-down procedure, as previously described (Deng et al., 2003), was used to isolate nuclear proteins that bind to the
EMSA
The 5′-biotinylated and unlabelled 25-bp oligonucleotides containing the major and minor allele sequences at the rs12291063 locus were obtained from Invitrogen. Recombinant hnRNPD0B protein expressed in E.coli was obtained from OriGene Technologies. EMSAs with competition and supershift assays were performed using LightShift Chemiluminescent EMSA kit (Pierce Protein Biology Products) and results were digitized and quantified as previously described (Schneider et al., 2012).

 Luciferase Reporter and siRNA Knockdown Assays
The 250-bp sequences containing either the major or the minor allele of rs12291063 were cloned into pGL3 luciferase reporter vector driven by an SV40 promoter (Promega) at the HindIII site between the promoter and the firefly Luc gene. HEK293 cells were cultured and transiently transfected with the constructs using FuGENE HD Transfection Reagent (Promega). For luciferase assay activity with hnRNPD depletion, HEK293 cells were transiently co-transfected with hnRNPD siRNA or Control siRNA (SignalSilence, Cell Signaling Technology). Dual Luciferase Reporter Assay System (Promega) was used to quantify firefly luciferase activity. Efficiency of siRNA knockdown for hnRNPD was verified by western blot using pan-hnRNP antibody and GAPDH antibody (Santa Cruz Biotechnology).

Statistical Analyses
SPSS Statistics Version 17.0 software (IBM) was used for statistical analyses. Univariate analyses of covariance (ANOCOVAs) with post hoc pairwise least significant difference (LSD) comparisons were performed to assess the association of genotype with BDNF expression, BMI, BMI-Z, body fat percentage, and fat mass. EMSA band intensities from three separate experiments were compared using ANOVA with post hoc LSD. Firefly luciferase activity and hnRNPD protein expression were compared using two-tailed, independent sample t-tests.

SUPPLEMENTAL INFORMATION
Supplemental Information includes Supplemental Experimental Procedures, one figure, and five tables and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2015.09.065.

AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS
This research was supported by the Intramural Research Program of NICHD and NIH with supplemental funding from the NIH Bench to Bedside Program to J.C.H. and the National Institute of Health and Human Disparities to J.A.Y. The Viva la Familia studies were supported by the NIH (R01 DK59264 and R01 DK80457 to N.F.B.). A.J.K. is supported by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) and the NIH Division of Nutrition Research Coordination. The PAGe program is funded by National Human Genome Research Institute (NHGRI), supported by U01HG004803 (CALICO), U01HG004798 (EAGLE), U01HG004802 (MEC), U01HG004790 (WHI), and U01HG004801 (Coordinating Center), and their respective NHGRI American Recovery and Reinvestment Act (ARRA) supplements. We thank Ms. Amy Deep-Soboslay and Drs. Lewellyn B. Bigelow and Mary M. Herman for their contributions in assembling the postmortem human brain cohorts for study, Dr. Amanda Preston for editorial assistance, and the families of the decedents for their generous donation of tissue. J.A.Y. is a Commissioned Officer of the United States Public Health Service. The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Public Health Service, Department of the Navy, Department of Defense, or Department of Health and Human Services.

Received: September 24, 2014
Revised: August 27, 2015
Accepted: September 23, 2015
Published: October 29, 2015

REFERENCES

