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Abstract

Several genetic variants associated with platelet count and mean platelet volume (MPV) were recently reported in people of
European ancestry. In this meta-analysis of 7 genome-wide association studies (GWAS) enrolling African Americans, our aim
was to identify novel genetic variants associated with platelet count and MPV. For all cohorts, GWAS analysis was performed
using additive models after adjusting for age, sex, and population stratification. For both platelet phenotypes, meta-
analyses were conducted using inverse-variance weighted fixed-effect models. Platelet aggregation assays in whole blood
were performed in the participants of the GeneSTAR cohort. Genetic variants in ten independent regions were associated
with platelet count (N = 16,388) with p,561028 of which 5 have not been associated with platelet count in previous GWAS.
The novel genetic variants associated with platelet count were in the following regions (the most significant SNP, closest
gene, and p-value): 6p22 (rs12526480, LRRC16A, p = 9.161029), 7q11 (rs13236689, CD36, p = 2.861029), 10q21 (rs7896518,
JMJD1C, p = 2.3610212), 11q13 (rs477895, BAD, p = 4.961028), and 20q13 (rs151361, SLMO2, p = 9.461029). Three of these
loci (10q21, 11q13, and 20q13) were replicated in European Americans (N = 14,909) and one (11q13) in Hispanic Americans
(N = 3,462). For MPV (N = 4,531), genetic variants in 3 regions were significant at p,561028, two of which were also
associated with platelet count. Previously reported regions that were also significant in this study were 6p21, 6q23, 7q22,
12q24, and 19p13 for platelet count and 7q22, 17q11, and 19p13 for MPV. The most significant SNP in 1 region was also
associated with ADP-induced maximal platelet aggregation in whole blood (12q24). Thus through a meta-analysis of GWAS
enrolling African Americans, we have identified 5 novel regions associated with platelet count of which 3 were replicated in
other ethnic groups. In addition, we also found one region associated with platelet aggregation that may play a potential
role in atherothrombosis.
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Introduction

While platelets play a fundamental role in hemostasis, they are

also important in the development of atherosclerosis and arterial

thrombosis [1]. An elevated platelet count has been associated

with adverse clinical outcomes after thrombolysis or coronary

intervention in patients presenting with acute myocardial

infarction and moderate reductions in platelet count by thrombo-

poietin inhibition were associated with reduced thrombogenesis in

a primate model [2–4]. The heritability of variation in platelet

count is substantial with estimates ranging from 54% to more than

80% [5–8]. In the GeneSTAR study, a cohort included in the

current meta-analysis, the heritability of platelet count is 67% [9].

Like platelet count, an elevated mean platelet volume (MPV) is

also associated with adverse cardiovascular events and its reported

heritability is as high as 73% [8,10–12]. The heritability of MPV

in the GeneSTAR cohort was 71% [9]. Recent genome-wide

association studies (GWAS) and meta-analyses have identified

genetic variants associated with these two platelet traits in

Caucasians and a Japanese population [13–15]. A recent meta-

analysis in the CARe Project, involving genotyping of about

50,000 single nucleotide polymorphisms (SNPs) in 2,100 candidate

genes, also reported two genetic variants associated with platelet

count in African Americans [16]. The genetic variants reported to

date explain only a small fraction of the heritability in platelet

count and MPV, providing an opportunity for new studies to

discover additional genetic variants of importance [15]. Moreover,

African Americans have higher platelet counts than Caucasians

and additional genetic variants may contribute to this difference

[17]. Because of the different allele frequencies and linkage

disequilibrium patterns in populations of European and African

ancestry, we anticipated that we might discover new genetic loci

associated with platelet count and MPV in an African American

population compared to Caucasians [18].

We performed a meta-analysis of 7 GWAS studies that included

African-American subjects in the Continental Origins and Genetic

Epidemiology Network (COGENT) in order to identify novel

genetic variants associated with platelet count and MPV.

Results

We performed a GWAS analysis of platelet count in an African

American discovery sample of 16,388 individuals from 7

population-based cohorts (Table 1). The MPV meta-analysis

included all subjects from three cohorts and a subset of subjects

from two other cohorts (n = 4,531). Following stringent genotyping

and imputation quality control procedures (as outlined in the

Methods section), over 2.2 million SNPs were available for analysis

in each cohort (Table 1). The results of association studies and the

genomic-control corrected QQ plot for the combined African-

African GWAS analysis for platelet count and MPV are shown in

Figure 1 and Figure 2 and study specific QQ plots and genomic

inflation factors are reported in Figures S3 and S4 and Table S1.

The Jackson Heart Study (JHS) cohort contains a few hundred

related individuals. This resulted in a high genomic inflation factor

for platelet count and a few other traits, as previously described in

Lettre et al [19]. Within the CARe Consortium, Lettre et al have

done several analyses involving simulated phenotypes as well as

empirical data (lipids, BMI) and have shown that for JHS, genomic

control-correction is an appropriate way to control for the small

sub-group of related individuals. A list of all genome-wide

significant SNPs with regional plots for platelet count and MPV

can be found in Tables S2 and S3 and Figure S1. Cohort-specific

QQ-plots and association results for index SNPs associated with

platelet count or MPV are summarized in Figure S2 and Table S4.

Of the 10 loci on 7 chromosomes that reached GWAS threshold

(p,561028) in the platelet count meta-analysis, five have not been

reported in previous platelet count GWAS studies in any

population and 8 loci have not been reported previously in

African Americans (Figure 1). The MPV meta-analysis identified

three loci, each one on different chromosomes; two of these loci

were also associated with platelet count at GWAS threshold in the

current study (Figure 2). One MPV-associated locus has been

reported in African Americans before, and two of these three loci

have been associated with MPV in Caucasians in prior studies

[15,16]. A sex-specific meta-analysis did not reveal any heteroge-

neity for the allelic effect between the two sexes and did not

uncover any additional loci. Thus, the sex-specific results are not

reported here.

Identification of novel loci associated with platelet count
and replication in European Americans and Hispanic
Americans

The first of the novel loci from platelet count meta-analysis is

located on chromosome 6p22. The best SNP (rs12526480;

p = 9.161029) in this region is located in the intron of the

leucine-rich repeat containing 16A gene (LRRC16A). The minor

allele (G) of rs12526480 was associated with decreased platelet

count. Ten additional SNPs in the region had p,1026 (Table 2

and Table S2). The LRRC16A gene encodes a protein called

‘capping protein ARP2/3 and myosin-I linker’ (CARMIL), which

GWAS of Platelet Count and MPV in African Americans
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plays an important role in cell-shape change and motility. Genetic

variants in LRRC16A have been previously reported to be

associated with serum uric acid levels [20], nephrolithiasis [21]

and markers of iron status [22] but there have been no reports of

any association with either platelet count or other platelet

phenotypes. In the three European American cohorts,

rs12526480 was statistically significant in one cohort (p = 0.01)

and near nominal significance in the combined meta-analysis

(p = 0.06) with an effect size and direction similar to that observed

in African Americans. In Hispanic Americans, rs12526480 was

not significantly associated with platelet count (Table 3). Given the

proximity of the LRRC16A gene to the hemochromatosis (HFE)

gene and the well-known reciprocal relationship between platelet

count and iron stores, we additionally assessed the association

between rs12526480 and red cell phenotypes in the COGENT

African Americans. There was no evidence of association between

LRRC16A genotype and hemoglobin, hematocrit, red cell count or

mean corpuscular volume in the 16,388 African Americans, nor

was there any evidence of association between rs12526480

genotype and serum ferritin in 672 African Americans from

CARDIA or 2,126 from JHS. Nor did adjustment for red cell

phenotype or iron status alter the relationship between platelet

count and rs12526480 genotype. Finally, we had uric acid levels

available in 943 African Americans from CARDIA; again there

was no association with LRRC16A genotype (Table S5).

The second locus is on chromosome 7q11 where two SNPs in

intronic regions of the CD36 gene (rs13236689; p = 2.861029 and

rs17154155; p = 1.161028) reached GWAS significance threshold,

while 8 additional SNPs had p,1026. rs13236689 and

rs17154155 are in close linkage disequilibrium (r2 = 0.90 in the

HapMap Yoruban population). After conditioning on rs13236689

in the association analysis, rs17154155 did not remain statistically

significant (p = 0.39). Of the three European American cohorts,

rs13236689 was statistically significant in the WHI cohort

(p = 0.05) but not in the meta-analysis of all three studies

(p = 0.07, Table 3). The CD36 gene encodes a thrombospondin

receptor (platelet glycoprotein IV) which is present on the surface

of platelets and several other cells [23]. rs17154155 has been

reported to be associated with platelet function as well as with

platelet expression of CD36 [24,25].

In the third locus on chromosome 10q21, 71 SNPs reached

GWAS threshold and 57 additional SNPs had p,1026. Two non-

synonymous common variants of unknown functional significance,

rs 10761725 (resulting in serine to threonine substitution) and

rs1935 (resulting in glutamate to aspartate substitution), in this

region also crossed the GWAS threshold. All 128 SNPs in this

region appear to be in strong linkage disequilibrium based on

Yoruban HapMap data. The most significant SNP in this region,

rs7896518 (p = 2.3610212), is located in an intron of the jumonji

domain containing 1C (JMJD1C) gene. SNPs in this region have

been reported to be associated with MPV (rs2393967) and with

native platelet aggregation in platelet-rich plasma (rs10761741 in

Caucasians and rs2893923 in African Americans) but not with

platelet count [15,26]. For rs7896518, data were available from 2

European American cohorts and meta-analysis found a significant

association reaching GWAS threshold (p = 2.6161029) with

similar direction of effect size (Table 3).

The fourth novel locus was located on chromosome 11q13. The

most significant SNP (rs477895; p = 4.961028) was in an intron of

the BCL2-associated agonist of cell death (BAD) gene, while 23

other SNPs had p,1026. For rs477895, all replication cohorts had

effect sizes in a direction similar to African Americans and one

European American and the Hispanic cohorts reached statistical

Author Summary

The majority of the variation in platelet count and mean
platelet volume between individuals is heritable. We
performed genome-wide association studies in more than
16,000 African American participants from seven popula-
tion-based cohorts to identify genetic variants that
correlate with variation in platelet count and mean platelet
volume. We observed statistically significant evidence (p-
value,561028) that 10 genomic regions were associated
with platelet count and 3 were associated with mean
platelet volume. Of the regions that were significantly
associated, we found 5 novel regions that were not
reported previously in other populations. Three of these 5
regions were also associated with platelet count in
European Americans and Hispanic Americans. All these
regions contain genes that are either known to have or
potentially may have a role in determining platelet count
and/or mean platelet volume. We further found that one
of these regions was also associated with agonist-induced
platelet aggregation. Further studies will determine the
exact role played by these genomic regions in platelet
biology. The knowledge generated by this and other
studies will not only help us better understand platelet
biology but can also lead us to the discovery of new anti-
platelet drugs.

Table 1. Characteristics of COGENT African-American meta-analysis cohorts.**

ARIC CARDIA GeneSTAR HANDLS Health ABC JHS WHI

Sample size 2664 943 934 862 898 1992 8095

Study design* unrelated unrelated family unrelated unrelated unrelated unrelated

Age, years 53.4 (5.8) 24.4 (3.8) 45.2 (12.6) 48.2 (9.0) 73.4 (2.8) 50.0 (12.1) 61.6 (7.0)

Female (%) 63.2 58.7 61.6 56.0 58.8 61.2 100

SNPs (N) 2,799,937 2,813,829 3,181,434 3,021,329 3,129,972 2,819,255 2,486,528

Platelet count (109/L) 256.4 (65.7) 279.7 (71.4) 265.3 (67.0) 268.7 (76.8) 237.6 (71.6) 256.6 (64.5) 250.3 (60.1)

MPV*** 9.3 (0.9) fL NA 7.9 (0.9) fL 9.2 (1.0) fL 10.9 (1.6) fL 9.2 (0.9) fL NA

*All studies are population-based, in addition, JHS has a small group of related individuals.
**Mean (SD), and units (untransformed) that were used in the regression models for each trait.
***For MPV, complete cohorts of GeneSTAR, HANDLS, and JHS were included, while only a subset of ARIC (n = 644) and Health ABC (n = 182) were included.
NA = not available; MPV = mean platelet volume.
doi:10.1371/journal.pgen.1002491.t001

GWAS of Platelet Count and MPV in African Americans
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significance (p = 4.4861023 and p = 0.04 respectively). Meta-

analysis of the three European American cohorts also found

significant association of rs477895 with platelet count

(P = 1.7161023, Table 3). The protein encoded by the BAD gene

inhibits the activity of the BCL-xL and BCL-2 proteins and thus

has a pro-apoptotic effect [27]. Phospholipase C b3 protein

Figure 1. Manhattan plot of the genome-wide association results for meta-analysis. (a) platelet count; (b) mean platelet volume. SNPs are
plotted on the x-axis according to their position on each chromosome against the negative log10 of p-values on y-axis. Names of the genes that
contain the significant SNPs or are located close to the significant SNPs are indicated on the plot adjacent to the significant SNPs. Names of genes in
the novel regions are in red.
doi:10.1371/journal.pgen.1002491.g001

Figure 2. Quantile–quantile (QQ) plots. (a) platelet count meta-analysis with all SNPs included; (b) platelet count meta-analysis after removing 1
million base pairs around the top SNPs from the 10 loci; (c) mean platelet volume meta-analysis. Blue dots are SNPs plotted on the x-axis of expected
p-value under the null hypothesis against the observed p-value in the study (p-values are plotted here as negative logarithm 10). The red diagonal
line represents the line of unity, the region where expected and observed p-values are the same under the null hypothesis. Black lines above and
below the red diagonal line bound 95% confidence intervals. Under the null hypothesis, SNPs should follow the line of unity closely except those
SNPs for which the null hypothesis is rejected. SNPs in the QQ plot for the platelet count meta-analysis do not follow the line of unity closely and this
appears to be due to large number of significant SNPs in the associated loci. When the chromosomal regions containing these loci are removed, the
appearance of QQ plot improves considerably.
doi:10.1371/journal.pgen.1002491.g002

GWAS of Platelet Count and MPV in African Americans
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encoded by another gene at this locus, PLCB3, is also known to be

present in platelets and its deficiency results in impaired platelet

function in mice [28]. This locus also contains SLC22A11 and

SLC22A12, two genes that encode solute carrier proteins and

previous GWAS have found association of genetic variants in

these genes with serum uric acid levels [20]. Of the two genes, the

transcript of SLC22A11 is present in significant amount in

platelets as is the transcript for BAD [29]. Interestingly, a

SNP about 20 kbp upstream of SLC22A11, rs4930420, almost

reached GWAS threshold (p = 9.1661028, r2 with rs477895

= 0.21) and four additional SNPs in complete LD with rs4930420

(r2 = 1) had p-values,1026. By examining the actual linkage

disequilibrium patterns in this region in COGENT, and by

performing conditional regression analysis in more than 8,400

African Americans from the WHI cohort simultaneously

adjusting for BAD rs477895 and SLC22A11 rs4930420, we

demonstrate that there are likely at least 2 independent platelet

count association signals in this region and that the BAD and

PLCB3 polymorphisms appear to represent the same association

signal (Table S6).

The fifth novel locus was on chromosome 20q13 where one

SNP in the SLMO2 gene exceeded GWAS significance threshold

(rs151361; p = 9.461029) while 2 other SNPs had p,1026. One

of these two SNPs was located in the first intron of TUBB1 gene

(rs6070696; p = 2.561027) and was 16.3 kbp downstream of the

lead SNP (YRI HapMap r2 = 0.6). The TUBB1 gene encodes a

beta1 tubulin, which plays an important role in megakaryopoiesis

[30]. All replication cohorts had effect sizes in the direction similar

to African Americans for rs151361 but only one European

American study reached statistical significance (p = 0.01). The

meta-analysis of the three European American replication cohorts

also found a statistically significant association between rs151361

and platelet count (p = 1.161023, Table 3).

Validation of previously reported loci for platelet count
In addition to identifying novel loci, we also replicated 5

previously reported loci at GWAS significance threshold and 3

other loci that were highly significant in our study but not at

GWAS significance level (Table S7). The strongest signal in our

platelet count meta-analysis was from chromosome 6p21 (SNP

with the lowest p-value = rs210134; p = 2.3610215) located in the

BAK1 gene, a locus that has been reported previously in

Caucasians, Japanese, and African American populations [13–

16]. We also found strong associations between platelet count and

loci on chromosomes 6q23 (rs9494145; p = 2.861029), 7q22

(rs342293; p = 1.661028), and 12q24 (rs6490294; p = 4.861029),

all of which have been previously reported for Caucasians but not

for African Americans [15]. Finally, we confirmed the association

of a genetic variant rs8109288 (p = 5.0610210) in the tropomyosin

4 (TPM4) gene at chromosome 19p13 that has been previously

reported for African Americans in a candidate gene study [16]. In

our replication cohorts, rs8109288 was associated with platelet

count in meta-analysis of European American cohorts and in

Hispanic Americans (p = 2.661028 and 0.02 respectively). We

were also able to confirm the association of all previously reported

SNPs (or a nearby SNP in the same LD block) with platelet count

at a p,0.05 (Table S5).

Identification of loci for MPV
Of the three loci we identified at GWAS significance level for

MPV, 2 have been previously reported to be associated with MPV

in Caucasians, and one has been reported previously in African

Americans. The association which has been previously reported in

African Americans was of the A-allele of rs8109288 in TPM4 with

increased MPV (p = 3.361029); the same SNP was also associated

with platelet count in this study. TPM4, a protein with a major role

in stabilizing the cellular cytoskeleton, is present in platelets [31].

Table 2. Novel and validated loci based on genome-wide association with platelet count and mean platelet volume in COGENT
(novel loci are in bold).

Locus
Significant
SNPs (N)*

Top SNP in
region Position Candidate gene

Maj/Min
Allele MAF Effect size (SE) p-value Het-P (I2)

PLATELET COUNT

6p22 1 rs12526480 25641513 LRRC16A G/T 30.5% 24.39 (0.76) 9.1561029 0.62 (0)

6p21 20 rs210134 33648187 BAK1 A/G 28.6% 26.16 (0.78) 2.32610215 0.18 (10.6)

6q23 4 rs9494145 135474245 HBS1L, MYB C/T 7.3% 8.19 (1.38) 2.7961029 0.99 (0)

7q11 2 rs13236689 80073950 CD36 G/T 43.6% 4.18 (0.70) 2.8461029 0.73 (0)

7q22 4 rs342293 106159455 PIK3CG G/C 38.6% 24.05 (0.72) 1.5861028 0.18 (9)

10q21 71 rs7896518 64774506 JMJD1C G/A 32.4% 5.18 (0.74) 2.26610212 0.14 (16)

11q13 1 rs477895 63805488 BAD C/T 45.3% 24.19 (0.77) 4.9161028 0.17 (11)

12q24 26 rs6490294 110674821 ACAD10 C/A 33.7% 24.38 (0.75) 4.7861029 0.71 (0)

19p13 1 rs8109288# 16046559 TPM4 A/G 9.7% 28.72 (1.40) 5.02610210 0.35 (0)

20q13 1 rs151361 57047397 SLMO2, TUBB1 G/A 25.7% 4.49 (0.78) 9.4461029 0.04 (40)

MEAN PLATELET VOLUME

7q22 4 rs342296 106160139 PIK3CG A/G 37.2% 0.16 (0.02) 1.44610211 0.25 (0)

17q11 1 rs11653144 24699352 TAOK1 C/T 44.2% 20.13 (0.02) 4.1761028 0.48 (0)

19p13 1 rs8109288 16046559 TPM4 A/G 8.4% 0.26 (0.04) 3.3061029 0.84 (0)

*SNPs in locus reaching GWAS significant threshold (561028).
MAF = minor allele frequency; Chr = chromosome; SE = standard error; effect size = age-sex adjusted change in platelet count (109 L) or MPV (fL) per copy of minor allele;
Maj = major; Min = minor; Het-P = Cochrane Q p-value to assess heterogeneity.
#excluding cohorts that were included in the previous study16 that reported this SNP, the p-value was 8.661027.
doi:10.1371/journal.pgen.1002491.t002
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In the 7q22 region, we found that the SNP with the lowest p-value for

MPV (rs342296; p = 1.4610211) was different from the SNP most

associated with platelet count (rs342293; p-value = 5.84610211)

although the two SNPs were only 684 bp apart and are in the same

LD block (r2 = 0.92 based on HapMap II YRI) [15]. We also

replicated a locus associated with MPV on 17q11 (rs11653144;

p = 4.261028) at GWAS significance threshold [15]. Of the 10

additional previously reported loci for MPV, we found statistically

significant associations with 7 of them although these associations did

not reach GWAS significance threshold (Table S8). For the loci that

we were unable to replicate, we found other nearby SNPs with

p,0.05. The direction of effect for all SNPs was not similar to the

previously reported study of individuals of European ancestry

suggesting that the alleles at the causal loci may be different between

the two populations.

Platelet aggregation studies
Three regions (7q11, 7q22, 10q21) containing four SNPs

(rs13236689, rs342296, rs342293, rs7896518) have already been

shown to be associated with platelet aggregation [24–26,32].

Therefore, the SNPs with the lowest p-values in each of the

remaining 8 regions (Table 4) identified for either platelet count or

MPV were examined for their association with platelet aggrega-

tion in 832 African-American individuals from the GeneSTAR

study. Of the 8 SNPs, 3 were associated with a significant change

in agonist-induced platelet aggregation but only one exceeded the

Bonferroni-corrected significance threshold of 0.005 (Table 4).

The minor allele (C) of rs6490294 in the ACAD10 gene (12q24)

was associated with increased ADP-induced platelet aggregation

(p = 0.002). Variants in this region have been previously reported

to be associated with coronary artery disease [15]. The minor

allele (A) of the 2nd SNP, rs8109288, in the TPM4 gene, was

associated with decreased arachidonic-induced platelet aggrega-

tion (p = 0.03) and a trend towards decreased aggregation with

ADP (p = 0.09). The minor allele (G) of the 3rd SNP, rs151361, in

the SLMO2 gene, was associated with increased ADP-induced

platelet aggregation (p = 0.008). The last 2 SNPs were nominally

significant but did not exceed the Bonferroni-corrected signifi-

cance threshold.

Discussion

We report the first meta-analysis of GWA studies of platelet

count and MPV in a large number of African American

participants from 7 population-based cohorts. We have identified

5 novel loci associated with platelet count of which three were

replicated in the European American cohorts and one in the

Hispanic cohort. None of these new African-American platelet loci

have been reported previously in any racial group. In addition, we

have confirmed that several loci previously reported in Europeans

or Japanese are also associated with these platelet phenotypes in

African Americans. We have further shown that 3 of the 8 loci

(with one exceeding Bonferroni-corrected threshold), for which

there have been no previously known association with platelet

aggregation, are also associated with differences in platelet

function using a subset of our African American sample.

Interestingly, the 5 novel platelet count loci are intragenic and 4

of these genes are known to have some role in platelet formation or

biology. Platelets are small anucleate blood cells that are released

from the cytoplasm of much larger bone marrow precursor cells

known as megakaryocytes. One of the novel findings is the

association of LRRC16A gene with platelet count. The protein

encoded by the LRRC16A gene, capping protein ARP2/3 and

myosin-I linker (CARMIL), plays an important role in actin-based
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cellular processes. Actin filaments are essential for end-amplifica-

tion of pro-platelet processes during megakaryocyte maturation

[33]. CARMIL exposes the barbed ends of actin filaments by

binding to and then dislodging the capping protein from the actin

filament [34]. Capping proteins are up-regulated during mega-

karyocyte maturation and LRRC16A is differentially expressed in

megakaryocytes compared to other blood cells [35,36]. The

capping protein binding region of the CARMIL protein resides in

the later part of the protein (940–1121 amino acid residues), which

is a highly conserved region from protozoa to vertebrates. The

majority of the residues in this region are critical for the anti-

capping protein activity of CARMIL [37]. The rs12526480

genetic variant identified in our study is located in the latter part of

the gene and may be in LD with a functional mutation in this

conserved region. Any mutation that decreases the ability of

CARMIL to dislodge capping protein from the barbed ends of the

actin filament may result in abnormal megakaryocyte maturation

and decreased platelet formation which is consistent with the

direction of effect we observed in our study.

Another novel finding not reported in earlier GWA studies is

the association of platelet count with CD36, a gene that encodes a

receptor present on the surface of platelets, megakaryocytes, and

several other cells. CD36 has a wide variety of ligands including

thrombospondin [23]. Both CD36 and thrombospondin genes are

up-regulated during megakaryocyte maturation and binding of

thrombospondin-I to CD36 inhibits megakaryopoiesis, thus

potentially providing a feedback mechanism for control of

megakaryopoiesis [34,36,38]. The exact mechanism through

which activation of CD36 inhibits megakaryopoiesis is unclear

but may involve activation of extrinsic apoptotic mechanisms [39].

The most significant SNP associated with platelet count

(rs210134 in BAK1) in our study is in complete LD with the most

significant BAK1 SNP reported to be associated with platelet count

in individuals of European ancestry (rs210135, r2 = 1 with

rs210134 in HapMap II YRI, p = 2.18610214 in the current

study). While the magnitude of effect is similar, the direction of

effect is opposite suggesting that the allele at the causal locus is

different in the two ethnic groups. A candidate gene study in

African Americans has reported another SNP (rs449242, r2 = 0.81

with rs210134 in HapMap II YRI) in BAK1 and the direction of

effect is similar to our study (Table S5) [16]. In addition to

confirming the association of genetic variants in the pro-apoptotic

BAK1 gene with low platelet count, we have identified and

replicated a variant in another pro-apoptotic gene, BAD, that is

associated with low platelet count. The protein encoded by BAD

acts as a sensor for apoptotic signals upstream of BAK and

activates BAK through indirect mechanisms [27]. The identifica-

tion of these two genes in the intrinsic apoptotic pathway

highlights the importance of the apoptotic process in modulating

platelet lifespan in the circulation, which is one of the mechanisms

that regulate platelet count [40]. Interestingly, this region also

contains genetic variants associated with serum uric acid levels

[20], however, the mechanism through which uric acid levels may

be associated with platelet count remains unclear.

Genetic variants in the JMJD1C gene have been previously

reported to be associated with MPV in Caucasians but not with

platelet count. Conversely, we found several SNPs in this region

that reached GWAS significance threshold for association with

platelet count but none with MPV and we replicated the lead SNP

in European Americans at GWAS threshold. In a GWAS study of

platelet aggregation in Caucasians, the minor allele (T) of

rs10761741 was associated with an increase in epinephrine-

induced platelet aggregation in Caucasians [26]. JMJD1C gene is

a histone demethylase and appears to be involved in steriodogen-

esis [41]. In addition to its association with platelet aggregation

and MPV, previous GWAS have found genetic variants in this

gene to be associated with serum levels of alkaline phosphatase and

lipoprotein particle size and content [42–44].

In addition to confirming the finding of association of A-allele of

rs8109288 in TPM4 gene with lower platelet count [16] and

replicating this finding in European Americans, we also confirmed

the association of the A-allele of this SNP with increased MPV and

found a nominally significant association with decreased platelet

aggregation. TPM4 gene expression is higher in megakaryocytes

than other blood cells or other hematopoietic cells [35,45].

Tropomyosin proteins play a central role in actin-based cytoskel-

etal changes and there appears to be biological plausibility for an

effect of genetic variants on megakaryocyte maturation and

platelet aggregation [46].

The final novel locus in the SLMO2 gene was also replicated in

European Americans but SLMO2 gene has no known role in

megakaryocyte biology. However, the variant is located within

13 kb of the TUBB1 gene, which is essential in the formation of

normal mature platelets. The TUBB1 gene encodes beta1-tubulin

that is exclusively expressed in platelets and megakaryocytes and

forms a component of microtubules [30]. Loss of function

mutations in TUBB1 gene have been reported in the literature

and result in thrombocytopenia, large platelets, and increased risk

Table 4. Association of the top SNP from each locus with agonist-induced platelet aggregation in whole blood.

SNP Candidate gene (s) Allele (MAF) Arachidonic acid ADP Collagen

P-value ES P-value ES P-value ES

rs12526480 LRRC16A G (0.30) 0.38 0.320 0.13 0.453 0.51 0.252

rs210134 BAK1 A (0.29) 0.42 20.272 0.94 20.024 0.46 20.304

rs9494145 HBS1L, MYB C (0.07) 0.85 0.117 0.41 0.412 0.87 20.121

rs477895 BAD C (0.45) 0.33 20.333 0.25 20.338 0.93 0.034

rs6490294 ACAD10 C (0.34) 0.14 0.460 1.7761023 0.827 0.07 0.580

rs11653144 TAOK1 C (0.44) 0.57 20.181 0.15 20.414 0.12 20.659

rs8109288 TPM4 A (0.10) 0.03 21.171 0.09 20.698 0.35 20.533

rs151361 SLMO2, TUBB1 G (0.26) 0.54 0.213 7.9561023 0.698 0.11 0.578

Arachidonic acid 0.5 mmol/L, ADP 10 mmol/L, and collagen 5 mg/mL; MAF = minor allele frequency; ES = effect size.
Maximal aggregation was measured in ohms with impedance aggregometry 5 minutes after introducing agonist.
doi:10.1371/journal.pgen.1002491.t004
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of intracranial hemorrhage in men [47,48]. The G-allele of the

rs1513691 variant is associated with increased platelet count,

decreased MPV, and increased aggregation, which may point

towards a gain in function mutation in this region.

All previously reported loci that were also significantly

associated with platelet count or MPV at GWAS threshold in

our study have known biological roles in platelet biology. Two of

these regions, 6q23 and 12q24, have pleiotropic effects with the

6q23 region associated with several hematological traits [13,15,49]

and the 12q24 region associated with celiac disease and coronary

artery disease [15]. More importantly, we also found that the

12q24 locus was associated with platelet aggregation after

Bonferroni adjustment for multiple comparisons and thus may

provide a mechanistic explanation of its role in development of

coronary artery disease. The GG genotype of the most significant

SNP in the 7q22 region, rs342293, is known to be associated with

higher PIK3CG mRNA levels in platelets [32]. SNPs at this locus

are also associated with platelet aggregation, pulse pressure, and

carotid artery plaque [26,50,51]. TAOK1 is an important regulator

of the mitotic progression and may also play a role in the apoptosis

of cells [52,53].

Our study included over 16,000 participants with platelet count

and over 4500 participants with MPV measured and we were able

to identify loci that explain between 0.16–0.33% of the variance in

platelet count and loci that explain 1–1.5% of the variance of

MPV (Table S9). Overall, the loci we identified explain up to 7%

of the variance in platelet count and up to 6% of the variance in

MPV, assuming that the each of these loci is independent.

However, for both platelet count and MPV, the estimated

heritability is .50%. Therefore, for each of these traits, the

majority of heritability remains unexplained. One of the

limitations of GWA studies is the limited power to detect effects

caused by genetic variants with frequency ,5%. We hypothesize

that a significant proportion of the heritability of platelet count

and MPV may be explained by variants with frequency ,5%.

Alternatively, there may be a large number of additional common

variants that affect these traits, but have more modest effects.

In conclusion, we have conducted a meta-analysis of GWAS

studies of platelet count and MPV in a large African American

population and identified novel genetic variants in regions with

genes that are likely to have a role in platelet formation.

Furthermore, we have replicated 3 of the 5 novel loci in European

Americans and one in Hispanic Americans. The novel regions

identified may provide a focus for further research in improving

our understanding of the biology of megakaryocyte maturation

and platelet survival. In addition, we examined the effect of the

genetic variants associated with platelet count and MPV on

platelet function, and found 3 of these genetic variants to be

associated with agonist-induced platelet aggregation of which one

crossed Bonferroni-corrected significance threshold. Whether

these newly identified genetic variants contribute to the risk of

coronary artery disease or myocardial infarction, or to disorders

associated with hyper- or hypo-aggregation of platelets, merits

further investigation.

Methods

Subjects
The 7 studies included in this meta-analysis belonged to

COGENT and enrolled 16,388 African American participants.

The supplementary text contains a detailed description of each

participating COGENT study cohort (Text S1). All participants

self-reported their racial category. Additional clinical information

was collected by self-report and clinical examination. All

participants provided written informed consent as approved by

local Human Subjects Committees. Study participants who were

pregnant or had a diagnosis of cancer or AIDS at the time of blood

count were excluded. We also excluded subjects who were outliers

in the analysis of genetic ancestry (as determined by cluster

analysis performed using principal component analysis or multi-

dimensional scaling) or who had an overall SNP missing rate

.10%.

Platelet count and MPV measurements
Fasting blood samples for complete blood count (CBC) analysis

were obtained by venipuncture and collected into tubes containing

ethylenediaminetetraacetic acid. Platelet counts and MPV were

performed at local laboratories using automated hematology cell

counters and standardized quality assurance procedures. Methods

used to measure the blood traits analyzed in this study have been

described previously for ARIC, CARDIA, JHS, Health ABC,

WHI, and GeneSTAR [54–58]. Platelet count was reported as 109

cells per liter, and was recorded in all 16,388 study participants.

Information on MPV was available in a subset of 4,612

participants from five COGENT study cohorts (ARIC, GeneS-

TAR, Health ABC, HANDLS, and JHS) and was reported in

femto liters (10215 L). All the phenotypes were approximately

normally distributed and we did not perform any data transfor-

mations.

Genotype data and quality control
Genotyping was performed within each COGENT cohort using

methods described in Text S1. Affymetrix chips were used in the

ARIC, CARDIA, JHS, and WHI studies and Illumina chips were

used in GeneSTAR, HANDLS, and Health ABC. DNA samples

with a genome-wide genotyping success rate ,95%, duplicate

discordance or sex mismatch between genetic estimates of gender

and self-report, SNPs with genotyping failure rate .10%,

monomorphic SNPs, SNPs with minor allele frequency (MAF)

,1%, and SNPs that mapped to several genomic locations were

removed from the analyses. Because African-American popula-

tions are recently admixed, we did not filter on Hardy-Weinberg

equilibrium p-value. Instead, significantly associated SNPs were

later examined for strong deviations from Hardy–Weinberg

equilibrium and/or raw genotype data was examined for

abnormal clustering. Participants and SNPs passing basic quality

control were imputed to .2.2 million SNPs based on HapMap II

haplotype data using a 1:1 mixture of Europeans (CEU) and

Africans (YRI) as the reference panel. Details of the genotype

imputation procedure are described further under Supplemental

Methods. Prior to meta-analyses, SNPs were excluded if

imputation quality metrics (equivalent to the squared correlation

between proximal imputed and genotyped SNPs) were less than

0.50.

Platelet aggregation assays
Differences in platelet count may affect platelet function and

aggregation [59]. In addition, younger platelets have higher MPV

than older platelets and are more reactive [60]. We hypothesized

that the genetic variants that determine platelet count and MPV

may also affect platelet aggregation. To examine this hypothesis,

we used agonist-mediated platelet aggregation assays, which can

provide information about the different aspects of platelet

aggregation. For these assays, platelet aggregation agonists, such

as collagen or ADP, are added to whole blood or platelet-rich

plasma and platelet aggregation is measured after a specified

amount of time (300 seconds). We performed platelet aggregation

assays in the participants of the GeneSTAR cohort. Blood samples

GWAS of Platelet Count and MPV in African Americans
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were obtained as described above, and platelet aggregation in

whole blood was measured as reported previously [57]. Briefly, in

vitro whole blood impedance in a Chrono-Log dual-channel

lumiaggregometer (Havertown, Pa) was performed after samples

were stimulated with arachidonic acid (0.5 mmol/L, intra-assay

CV = 24%), collagen (5 mg/mL; intra-assay CV = 9%), or ADP

(10 mmol/L; intra-assay CV = 46%). Maximal aggregation within

5 minutes of agonist stimulation was recorded in ohms.

Data analysis
For all cohorts, genome-wide association (GWAS) analysis was

performed using linear regression adjusted for covariates,

implemented in either PLINK v1.07, R v2.10, or MACH2QTL

v1.08 [61,62]. Allelic dosage at each SNP was used as the

independent variable, adjusted for primary covariates of age, age-

squared, sex, and clinic site (if applicable). The first 10 principal

components were also incorporated as covariates in the regression

models to adjust for population stratification (Text S1). For

GeneSTAR, family structure was accounted for in the association

tests using linear mixed effect (LME) models implemented in R

[63]. Although the JHS has a small number of related individuals,

extensive analyses have shown that results were concordant using

linear regression or LME, after genomic control [19]. Therefore,

results are presented for JHS using linear regression. For imputed

genotypes, we used dosage information (i.e. a value between 0.0–

2.0 calculated using the probability of each of the three possible

genotypes) in the regression model implemented in PLINK or

MACH2QTL (for cohorts with unrelated individuals) or the

Maximum Likelihood Estimation (MLE) routines (for GeneS-

TAR).

For both platelet phenotypes, meta-analyses were conducted

using inverse-variance weighted fixed-effect models to combine

beta coefficients and standard errors from study level regression

results for each SNP to derive a combined p-value and effect

estimate [64]. Study level results were corrected for genomic

inflation factors (lGC) by incorporating study specific lGC

estimates into the scaling of the standard errors (SE) of the

regression coefficients by multiplying the SE by the square-root of

the genomic inflation factor. The inflation factors for all completed

analyses are presented in Table S1. To maintain an overall type 1

error rate of 5%, a threshold of a= 561028 was used to declare

genome-wide statistical significance. Between-study heterogeneity

of results was assessed by using Cochrane’s Q statistic and the I2

inconsistency metric. Meta-analyses were implemented in the

software METAL [64] and were performed independently by two

analysts to confirm results. To examine whether there were any

differences between males and females, sex-specific GWAS were

conducted in each cohort. The results for each SNP were pooled

and heterogeneity of allelic effects between females and males was

examined using the meta-analysis methods as implemented in

GWAMA software [65].

To assess whether the loci previously reported to be associated

with the platelet phenotypes in Europeans, Japanese, and African

Americans were replicated in the COGENT African-Americans,

we examined the meta-analysis results for each index SNP in the

regions previously reported, including consistency of direction of

effect. If the reported index SNP was not significant at p,0.05 we

examined adjacent SNPs and reported the closest SNP with

p,0.05 along with its distance from the index SNP.

To examine the association of genotype on platelet aggregation

in the GeneSTAR cohort, linear mixed models were used with

additive models adjusting for age and sex, and taking into account

familial correlation between the individuals.

Supporting Information

Figure S1 Negative log(10) statistical significance plots of the

each local region with 500 kbp on either side of the top SNP

significantly associated with platelet count.

(PDF)

Figure S2 Negative log(10) statistical significance plots of the

each local region with 500 kbp on either side of the top SNP

significantly associated with mean platelet volume.

(PDF)

Figure S3 QQ plots of individual studies for platelet count

(PLT).

(PDF)

Figure S4 QQ plots of individual studies for mean platelet

volume (MPV).

(PDF)

Table S1 Genomic inflation factors for all GWAS analyses

included in the meta-analysis.

(PDF)

Table S2 List of all SNPs with p-values,1026 in the regions that

were significant at GWAS threshold in platelet count meta-

analysis.

(PDF)

Table S3 List of all SNPs that were significant at p-value,1026

in regions with at least one SNP with GWAS threshold in mean

platelet volume meta-analysis.

(PDF)

Table S4 Individual study results for the top significant SNP

from each region.

(PDF)

Table S5 Association analysis of rs12526480 SNP with selected

phenotypes.

(PDF)

Table S6 Conditional analysis of the significant SNPs in at the

11q13 locus for platelet count.

(PDF)

Table S7 Association of loci previously reported with platelet

count in Caucasians, Japanese, or African American populations

(from references 13, 15, and 16).

(PDF)

Table S8 Association of loci previously reported with mean

platelet volume in Caucasians (N = 13943)(from reference [15]).

(PDF)

Table S9 Percentage variance in phenotype explained by each

SNP for each study.

(PDF)

Text S1 Supporting Methods.

(DOCX)

Acknowledgments

The authors wish to acknowledge the support of the National Heart, Lung,

and Blood Institute and the contributions of the involved research

institutions, study investigators, field staff, and study participants of

Atherosclerosis Risk in Communities (ARIC), Coronary Artery Risk in

Young Adults (CARDIA), Jackson Heart Study (JHS), and Broad Institute

in creating the Candidate-gene Association Resource for biomedical

research (CARe; http://public.nhlbi.nih.gov/GeneticsGenomics/home/

care.aspx). The authors also wish to thank the investigators, staff, and

participants of GeneSTAR, Health ABC, Healthy Aging in Neighborhoods

GWAS of Platelet Count and MPV in African Americans

PLoS Genetics | www.plosgenetics.org 9 March 2012 | Volume 8 | Issue 3 | e1002491



of Diversity across the Life Span Study (HANDLS), and Women Health

Initiative (WHI) for their important contributions. A listing of WHI

investigators can be found at http://www.whiscience.org/publications/

WHI_investigators_shortlist.pdf. The authors also wish to acknowledge the

support of the GARNET Collaborative Research Group.

Author Contributions

Conceived and designed the experiments: RQ BMS MAN GL MAA DMB

SG ABZ ABS JGW LCB APR ERM. Performed the experiments: EZ YL

MAN WT LL MKE TBH MAA DMB ABZ ABS TBH JGW LCB APR

BAL ARF CK. Analyzed the data: RQ BMS LRY DMB TBH JGW APR

BAL CK. Contributed reagents/materials/analysis tools: BMS EZ MAN

YL WT LRY MKE SG MAA GL DMB ABZ ABS TBH JGW LCB APR

ERM BAL ARF CK. Wrote the paper: RQ DMB LCB APR. Interpreted

the results and revised the paper: RQ BMS EZ MAN YL WT LRY LL SG

MAA GL DMB JGW LCB ARF APR.

References

1. Davi G, Patrono C (2007) Platelet activation and atherothrombosis. N Engl J Med

357: 2482–2494.

2. Nikolsky E, Grines CL, Cox DA, Garcia E, Tcheng JE, et al. (2007) Impact of

baseline platelet count in patients undergoing primary percutaneous coronary

intervention in acute myocardial infarction (from the CADILLAC trial).

Am J Cardiol 99: 1055–1061.

3. Turakhia MP, Murphy SA, Pinto TL, Antman EM, Giugliano RP, et al. (2004)

Association of platelet count with residual thrombus in the myocardial infarct-

related coronary artery among patients treated with fibrinolytic therapy for ST-

segment elevation acute myocardial infarction. Am J Cardiol 94: 1406–1410.

4. Tucker EI, Marzec UM, Berny MA, Hurst S, Bunting S, et al. (2010) Safety and

antithrombotic efficacy of moderate platelet count reduction by thrombopoietin

inhibition in primates. Sci Transl Med 2: 37ra45.

5. Biino G, Balduini CL, Casula L, Cavallo P, Vaccargiu S, et al. (2011) Analysis of

12,517 inhabitants of a Sardinian geographic isolate reveals that predispositions

to thrombocytopenia and thrombocytosis are inherited traits. Haematologica 96:

96–101.

6. Buckley MF, James JW, Brown DE, Whyte GS, Dean MG, et al. (2000) A novel

approach to the assessment of variations in the human platelet count. Thromb

Haemost 83: 480–484.

7. Evans DM, Frazer IH, Martin NG (1999) Genetic and environmental causes of

variation in basal levels of blood cells. Twin Res 2: 250–257.

8. Traglia M, Sala C, Masciullo C, Cverhova V, Lori F, et al. (2009) Heritability

and demographic analyses in the large isolated population of Val Borbera

suggest advantages in mapping complex traits genes. PLoS One 4: e7554.

9. Bray PF, Mathias RA, Faraday N, Yanek LR, Fallin MD, et al. (2007)

Heritability of platelet function in families with premature coronary artery

disease. J Thromb Haemost 5: 1617–1623.

10. Chu SG, Becker RC, Berger PB, Bhatt DL, Eikelboom JW, et al. (2010) Mean

platelet volume as a predictor of cardiovascular risk: a systematic review and

meta-analysis. J Thromb Haemost 8: 148–156.

11. Goncalves SC, Labinaz M, Le May M, Glover C, Froeschl M, et al. (2011)

Usefulness of mean platelet volume as a biomarker for long-term outcomes after

percutaneous coronary intervention. Am J Cardiol 107: 204–209.

12. Klovaite J, Benn M, Yazdanyar S, Nordestgaard BG (2011) High platelet

volume and increased risk of myocardial infarction: 39 531 participants from the

general population. J Thromb Haemost 9: 49–56.

13. Kamatani Y, Matsuda K, Okada Y, Kubo M, Hosono N, et al. (2010) Genome-

wide association study of hematological and biochemical traits in a Japanese

population. Nat Genet 42: 210–215.

14. Meisinger C, Prokisch H, Gieger C, Soranzo N, Mehta D, et al. (2009) A

genome-wide association study identifies three loci associated with mean platelet

volume. Am J Hum Genet 84: 66–71.

15. Soranzo N, Spector TD, Mangino M, Kuhnel B, Rendon A, et al. (2009) A

genome-wide meta-analysis identifies 22 loci associated with eight hematological

parameters in the HaemGen consortium. Nat Genet 41: 1182–1190.

16. Lo KS, Wilson JG, Lange LA, Folsom AR, Galarneau G, et al. (2011) Genetic

association analysis highlights new loci that modulate hematological trait

variation in Caucasians and African Americans. Hum Genet 129: 307–317.

17. Segal JB, Moliterno AR (2006) Platelet counts differ by sex, ethnicity, and age in

the United States. Ann Epidemiol 16: 123–130.

18. Casto AM, Feldman MW (2011) Genome-wide association study SNPs in the

human genome diversity project populations: does selection affect unlinked

SNPs with shared trait associations? PLoS Genet 7: e1001266.

19. Lettre G, Palmer CD, Young T, Ejebe KG, Allayee H, et al. (2011) Genome-

wide association study of coronary heart disease and its risk factors in 8,090

African Americans: the NHLBI CARe Project. PLoS Genet 7: e1001300.

20. Kolz M, Johnson T, Sanna S, Teumer A, Vitart V, et al. (2009) Meta-analysis of

28,141 individuals identifies common variants within five new loci that influence

uric acid concentrations. PLoS Genet 5: e1000504.

21. Tore S, Casula S, Casu G, Concas MP, Pistidda P, et al. (2011) Application of a

new method for GWAS in a related case/control sample with known pedigree

structure: identification of new loci for nephrolithiasis. PLoS Genet 7: e1001281.

22. Benyamin B, McRae AF, Zhu G, Gordon S, Henders AK, et al. (2009) Variants

in TF and HFE explain approximately 40% of genetic variation in serum-

transferrin levels. Am J Hum Genet 84: 60–65.

23. Silverstein RL, Febbraio M (2009) CD36, a scavenger receptor involved in

immunity, metabolism, angiogenesis, and behavior. Sci Signal 2: re3.

24. Ghosh A, Murugesan G, Chen K, Zhang L, Wang Q, et al. (2011) Platelet

CD36 surface expression levels affect functional responses to oxidized LDL and

are associated with inheritance of specific genetic polymorphisms. Blood 117:

6355–6366.

25. Jones CI, Bray S, Garner SF, Stephens J, de Bono B, et al. (2009) A functional

genomics approach reveals novel quantitative trait loci associated with platelet

signaling pathways. Blood 114: 1405–1416.

26. Johnson AD, Yanek LR, Chen MH, Faraday N, Larson MG, et al. (2010)

Genome-wide meta-analyses identifies seven loci associated with platelet

aggregation in response to agonists. Nat Genet 42: 608–613.

27. Danial NN (2008) BAD: undertaker by night, candyman by day. Oncogene 27

Suppl 1: S53–70.

28. Lian L, Wang Y, Draznin J, Eslin D, Bennett JS, et al. (2005) The relative role of

PLCbeta and PI3Kgamma in platelet activation. Blood 106: 110–117.

29. Bugert P, Kluter H (2006) Profiling of gene transcripts in human platelets: an

update of the platelet transcriptome. Platelets 17: 503–504.

30. Italiano JE, Bergmeier W, Tiwari S, Falet H, Hartwig JH, et al. (2003)

Mechanisms and implications of platelet discoid shape. Blood 101: 4789–4796.

31. O’Neill EE, Brock CJ, von Kriegsheim AF, Pearce AC, Dwek RA, et al. (2002)

Towards complete analysis of the platelet proteome. Proteomics 2: 288–305.

32. Soranzo N, Rendon A, Gieger C, Jones CI, Watkins NA, et al. (2009) A novel

variant on chromosome 7q22.3 associated with mean platelet volume, counts,

and function. Blood 113: 3831–3837.

33. Italiano JE, Hartwig JH (2007) Megakaryocyte Development and Platelet

Formation. In: Michelson AD, ed. Boston: Elsevier. pp 27–34.

34. Yang C, Pring M, Wear MA, Huang M, Cooper JA, et al. (2005) Mammalian

CARMIL inhibits actin filament capping by capping protein. Dev Cell 9:

209–221.

35. Watkins NA, Gusnanto A, de Bono B, De S, Miranda-Saavedra D, et al. (2009)

A HaemAtlas: characterizing gene expression in differentiated human blood

cells. Blood 113: e1–9.

36. Raslova H, Kauffmann A, Sekkai D, Ripoche H, Larbret F, et al. (2007)

Interrelation between polyploidization and megakaryocyte differentiation: a

gene profiling approach. Blood 109: 3225–3234.

37. Uruno T, Remmert K, Hammer JA, 3rd (2006) CARMIL is a potent capping

protein antagonist: identification of a conserved CARMIL domain that inhibits

the activity of capping protein and uncaps capped actin filaments. J Biol Chem

281: 10635–10650.

38. Lim CK, Hwang WY, Aw SE, Sun L (2008) Study of gene expression profile

during cord blood-associated megakaryopoiesis. Eur J Haematol 81: 196–208.

39. De Botton S, Sabri S, Daugas E, Zermati Y, Guidotti JE, et al. (2002) Platelet

formation is the consequence of caspase activation within megakaryocytes.

Blood 100: 1310–1317.

40. Mason KD, Carpinelli MR, Fletcher JI, Collinge JE, Hilton AA, et al. (2007)

Programmed anuclear cell death delimits platelet life span. Cell 128: 1173–1186.

41. Kim SM, Kim JY, Choe NW, Cho IH, Kim JR, et al. (2010) Regulation of

mouse steroidogenesis by WHISTLE and JMJD1C through histone methylation

balance. Nucleic Acids Res 38: 6389–6403.

42. Chasman DI, Pare G, Mora S, Hopewell JC, Peloso G, et al. (2009) Forty-three

loci associated with plasma lipoprotein size, concentration, and cholesterol

content in genome-wide analysis. PLoS Genet 5: e1000730.

43. Wolf SS, Patchev VK, Obendorf M (2007) A novel variant of the putative

demethylase gene, s-JMJD1C, is a coactivator of the AR. Arch Biochem Biophys

460: 56–66.

44. Yuan X, Waterworth D, Perry JR, Lim N, Song K, et al. (2008) Population-

based genome-wide association studies reveal six loci influencing plasma levels of

liver enzymes. Am J Hum Genet 83: 520–528.

45. Komor M, Guller S, Baldus CD, de Vos S, Hoelzer D, et al. (2005)

Transcriptional profiling of human hematopoiesis during in vitro lineage-specific

differentiation. Stem Cells 23: 1154–1169.

46. Gunning P, O’Neill G, Hardeman E (2008) Tropomyosin-based regulation of

the actin cytoskeleton in time and space. Physiol Rev 88: 1–35.

47. Kunishima S, Kobayashi R, Itoh TJ, Hamaguchi M, Saito H (2009) Mutation of

the beta1-tubulin gene associated with congenital macrothrombocytopenia

affecting microtubule assembly. Blood 113: 458–461.

48. Navarro-Nunez L, Lozano ML, Rivera J, Corral J, Roldan V, et al. (2007) The

association of the beta1-tubulin Q43P polymorphism with intracerebral

hemorrhage in men. Haematologica 92: 513–518.

GWAS of Platelet Count and MPV in African Americans

PLoS Genetics | www.plosgenetics.org 10 March 2012 | Volume 8 | Issue 3 | e1002491



49. Ferreira MA, Hottenga JJ, Warrington NM, Medland SE, Willemsen G, et al.

(2009) Sequence variants in three loci influence monocyte counts and
erythrocyte volume. American Journal of Human Genetics 85: 745–749.

50. Bis JC, Kavousi M, Franceschini N, Isaacs A, Abecasis GR, et al. (2011) Meta-

analysis of genome-wide association studies from the CHARGE consortium
identifies common variants associated with carotid intima media thickness and

plaque. Nat Genet 43: 940–947.
51. Wain LV, Verwoert GC, O’Reilly PF, Shi G, Johnson T, et al. (2011) Genome-

wide association study identifies six new loci influencing pulse pressure and mean

arterial pressure. Nat Genet 43: 1005–1011.
52. Draviam VM, Stegmeier F, Nalepa G, Sowa ME, Chen J, et al. (2007) A

functional genomic screen identifies a role for TAO1 kinase in spindle-
checkpoint signalling. Nat Cell Biol 9: 556–564.

53. Wu MF, Wang SG (2008) Human TAO kinase 1 induces apoptosis in SH-SY5Y
cells. Cell Biol Int 32: 151–156.

54. Folsom AR, Rosamond WD, Shahar E, Cooper LS, Aleksic N, et al. (1999)

Prospective study of markers of hemostatic function with risk of ischemic stroke.
The Atherosclerosis Risk in Communities (ARIC) Study Investigators.

Circulation 100: 736–742.
55. Margolis KL, Manson JE, Greenland P, Rodabough RJ, Bray PF, et al. (2005)

Leukocyte count as a predictor of cardiovascular events and mortality in

postmenopausal women: the Women’s Health Initiative Observational Study.
Arch Intern Med 165: 500–508.

56. Nalls MA, Wilson JG, Patterson NJ, Tandon A, Zmuda JM, et al. (2008)
Admixture mapping of white cell count: genetic locus responsible for lower white

blood cell count in the Health ABC and Jackson Heart studies. Am J Hum

Genet 82: 81–87.

57. Qayyum R, Becker DM, Yanek LR, Moy TF, Becker LC, et al. (2008) Platelet

inhibition by aspirin 81 and 325 mg/day in men versus women without

clinically apparent cardiovascular disease. Am J Cardiol 101: 1359–1363.

58. Shimakawa T, Bild DE (1993) Relationship between hemoglobin and

cardiovascular risk factors in young adults. J Clin Epidemiol 46: 1257–1266.

59. Jennings LK, White MM (2007) Platelet Aggregation. In: Michelson AD, ed.

Platelets. 2nd ed. Boston: Elsevier. pp 495–507.

60. Harker LA, Slichter SJ (1972) The bleeding time as a screening test for

evaluation of platelet function. N Engl J Med 287: 155–159.

61. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR (2010) MaCH: using sequence

and genotype data to estimate haplotypes and unobserved genotypes. Genet

Epidemiol 34: 816–834.

62. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, et al. (2007)

PLINK: a tool set for whole-genome association and population-based linkage

analyses. Am J Hum Genet 81: 559–575.

63. Chen MH, Yang Q (2010) GWAF: an R package for genome-wide association

analyses with family data. Bioinformatics 26: 580–581.

64. Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of

genomewide association scans. Bioinformatics 26: 2190–2191.

65. Magi R, Lindgren CM, Morris AP (2010) Meta-analysis of sex-specific genome-

wide association studies. Genet Epidemiol 34: 846–853.

GWAS of Platelet Count and MPV in African Americans

PLoS Genetics | www.plosgenetics.org 11 March 2012 | Volume 8 | Issue 3 | e1002491


