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Abstract: 

Background - Ethnic differences in cardiac arrhythmia incidence have been reported, with a 

particularly high incidence of sudden cardiac death (SCD) and low incidence of atrial fibrillation 

in individuals of African ancestry. We tested the hypotheses that African ancestry and common 

genetic variants are associated with prolonged duration of cardiac repolarization, a central 

pathophysiological determinant of arrhythmia, as measured by the electrocardiographic QT 

interval.

Methods and Results - First, individual estimates of African and European ancestry were 

inferred from genome-wide single nucleotide polymorphism (SNP) data in seven population-

based cohorts of African Americans (n=12 097) and regressed on measured QT interval from 

electrocardiograms. Second, imputation was performed for 2.8 million SNPs and a genome-wide 

association (GWA) study of QT interval performed in ten cohorts (n=13 105). There was no 

evidence of association between genetic ancestry and QT interval (p=0.94). Genome-wide 

significant associations (p<2.5x10-8) were identified with SNPs at two loci, upstream of the 

genes NOS1AP (rs12143842, p=2x10-15) and ATP1B1 (rs1320976, p=2x10-10). The most 

significant SNP in NOS1AP was the same as the strongest SNP previously associated with QT 

interval in individuals of European ancestry. Low p-values (p<10-5) were observed for SNPs at 

several other loci previously identified in GWA studies in individuals of European ancestry, 

including KCNQ1, KCNH2, LITAF and PLN.

Conclusions - We observed no difference in duration of cardiac repolarization with global 

genetic indices of African ancestry. In addition, our GWA study extends the association of 

polymorphisms at several loci associated with repolarization in individuals of European ancestry 

to include African Americans.

Key words: electrocardiography; electrophysiology; genome-wide association studies; ion 
channels; repolarization
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Ethnic differences in cardiac arrhythmia incidence have been reported, with higher incidence of 

sudden cardiac death (SCD) and lower incidence of atrial fibrillation (AF) in African Americans 

compared to Americans of European ancestry.1-3 These differences have been independent of 

measured environmental and behavioral factors and therefore attributed to differences in genetic 

makeup, although the specific genetic determinants have not been identified.3,4 Rare non-

synonymous genetic variants in cardiac ion channel genes have been found more often in African 

Americans than European Americans,5 some of which have been associated with arrhythmia risk 

and myocardial electrophysiological characteristics.6

With regard to myocardial electrophysiological characteristics, myocardial repolarization 

time has been established to be of particular importance for arrhythmia risk. Prolongation of the 

myocardial repolarization time, as measured by the electrocardiographic QT interval, confers 

increased risk of SCD7, whereas shortening of the atrial repolarization time has been associated 

with AF8. Furthermore, QT interval has been shown to be highly heritable in individuals of both 

European9 and African ancestry,10 resulting from genetic determination by rare variants, 

common genetic variants, or both. Thus, ancestral differences in repolarization time might 

account for the observed pattern of ethnic differences in arrhythmia incidence. We therefore 

formed a consortium of African American cohorts with information on QT interval duration and 

genome-wide single nucleotide polymorphism (SNP) data. Two hypotheses—firstly whether

genetic ancestry is associated with QT interval and secondly whether common genetic variants 

are associated with QT interval duration in African Americans—were tested in a genome-wide 

association (GWA) study. 
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Material and Methods

Study samples 

The study included ten cohorts of self-reported African Americans with genome-wide SNP data, 

as part of the Continental Origins and Genetic Epidemiology Network (COGENT), the 

Candidate-gene Association Resource (CARe) consortium and the Women’s Health Initiative 

(WHI) SNP Health Association Resource. The four cohorts genotyped as part of the CARe 

consortium– Atherosclerosis Risk in Communities (ARIC),11 Cleveland Family Study (CFS),12

Jackson Heart Study (JHS)13 and Multi-Ethnic Study of Atherosclerosis (MESA)14 – have been 

described previously15, as have the COGENT cohorts; Bogalusa Heart Study (BHS),16 Baltimore 

Longitudinal Study of Aging (BLSA),17,18 Cardiovascular Heart Study (CHS),19 Health, Aging 

and Body Composition Study (HABC),20,21 Healthy Aging in Neighborhoods of Diversity across 

the Life Span (HANDLS)22 and Women’s Health Initiative (WHI).23 Additional cohort 

descriptions are available in the Supplementary Methods. Genotyping, quality control, 

calculation of eigenvectors and imputation in the four cohorts of the CARe consortium have been 

detailed previously15,24 and are summarized along with other cohorts in Supplementary Table 1.

The study protocol was approved by the Institutional Review Boards of participating institutions. 

Only individuals who provided informed consent for genetic testing were included. The authors 

had full access to the data and take responsibility for its integrity. All authors have read and 

agreed to the manuscript as written.

Electrocardiographic measurements 

12-lead electrocardiograms with standard electrode placements were recorded with a paper speed 

of 25 mm per second during ten seconds in all cohorts using either MAC PC, MAC6 (CFS), 

MAC5000 (BLSA), MAC5500 (HANDLS) or MAC1200 (MESA) machines (GE Healthcare, 
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Milwaukee, WI, USA). QT and RR interval durations were measured electronically using either 

the Marquette 12SL algorithm or the MC MEANS algorithm (JHS).

Phenotype modeling 

We excluded individuals on the basis of missing measurements of QT or RR interval duration, 

atrial fibrillation or flutter, left or right bundle branch block, QRS duration 

intraventricular conduction delay or a pacemaker implant. In both ancestry and GWA analyses, 

adjustment was performed for age, sex, RR interval and study site in multi-center cohorts (ARIC, 

CHS, HABC, MESA and WHI) in linear regression models. 

Ancestry analysis

In the four CARe cohorts, individual estimates of the proportion of African relative to European 

ancestry was calculated from 3192 independent ancestry informative markers included on the 

Affymetrix 6.0 array using the Markov Chain Monte Carlo algorithm implemented in 

ANCESTRYMAP25 as in previous studies.3,15 Ancestry estimates were calculated from 656,852 

autosomal markers using the maximum likelihood algorithm implemented in frappe26 (which has 

been demonstrated to be robust to linkage disequilibrium) in WHI and the model-based 

clustering algorithm of STRUCTURE27 in HABC and HANDLS including 1335 independent 

ancestry informative markers28 and 279,967 markers after linkage disequilibrium based pruning 

(r2<0.5) from the Illumina 1M array, respectively. To test the association of this measure of 

continental ancestry with QT interval, QT interval was regressed linearly on ancestry estimates 

with adjustment for the covariates listed above and association tested using likelihood-ratio or 

Wald tests. Heterogeneity was assessed across cohorts and results combined using the rmeta 

package for R (R Foundation for Statistical Computing, Vienna, Austria). 

CARe cohorts, individual estimates of the proportion of African relative to Euro
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Genome-wide association analysis 

Genetic association analyses were performed in each cohort using multiple linear regression 

models under an additive genetic model, using various statistical software packages as shown in 

Supplementary Table 1. Directly genotyped SNPs were tested where available, otherwise 

imputed genotypes were used to achieve a common set of SNPs across cohorts for the combined 

analysis and to improve coverage. For the family-based CFS study, association was assessed 

using linear mixed-effects models as implemented in the GWAF package for R.15 Pedigrees were 

confirmed using identity by state (IBS) or identity by descent (IBD) estimates. JHS contains a 

family-based subcohort, but use of family-based methods had minimal effects on inflation in 

preliminary analyses for a set of traits, so linear regression was used as in previous studies.15

Adjustment for the first ten or two (HABC) eigenvectors of genetic variation was performed in 

study-specific regression models to account for population substructure. Eigenvectors were 

calculated individually in each cohort using PLINK (HANDLS) or EIGENSTRAT (all other 

cohorts). Cohort-specific GWA results were combined using fixed effects meta-analysis with 

inverse variance weights. Genomic control was applied to results from each cohort prior to meta-

analysis and in the combined results. A genome-wide significance threshold of 2.5x10-8 was pre-

specified, based on a Bonferroni-adjusted threshold of p<0.05, assuming 2 million independent 

common variant tests in genomes of individuals of African ancestry as previously suggested.15,29

Effect heterogeneity across cohorts was ass 2 test of heterogeneity and the I2

test.30,31

 To identify multiple, independent signals within the same region, linkage disequilibrium 

(LD) pruning was performed, whereby independent signals were defined as at least two genome-

wide significant SNPs in low LD (r2 < 0.05) in the same 1,000 kb region. Starting with the index 
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SNP, defined as the most significant result, all surrounding genome-wide significant SNPs 

within 1,000 kb with a pairwise r2 ex SNP using LD 

patterns from a 1:1 ratio of the HapMap European CEU sample and the Yoruba YRI sample. The 

procedure was repeated until all genome-wide SNPs were assigned membership into a bin. 

Results

Baseline characteristics of the ten study cohorts are shown in Table 1. Hierarchical exclusions 

are shown in Supplementary Table 2. Participants were predominantly middle-aged and with a 

higher proportion of women. The proportion of variation in QT interval (r2) explained by basic 

covariates (age, sex, RR interval) was relatively high, largely attributable to RR interval, ranging 

from 0.44 to 0.67 as shown in Table 1.

Genetic ancestry and QT interval 

Ancestry estimates were available in seven cohorts, including 12 097 individuals. The 

distribution of estimated proportion of African ancestry relative to European ancestry was 

roughly similar across cohorts as shown in Table 2. Significant heterogeneity of effects was 

detected across cohorts (P for heterogeneity=0.03), as shown in Supplementary Figure 1, and 

hence cohorts were combined using random-effects meta-analysis. Overall, there was no 

association of continental ancestry with QT interval in the combined sample (p=0.94). 

Genome-Wide Association Study 

A meta-analysis of the ten GWA studies was performed, including a total of 13 105 individuals 

with typed or imputed genotypes for 2.8 million SNPs. Mild inflation of test statistics was 

GC) estimate of 1.03. After genomic control, 

there was a slight excess of low p-values (Figure 1). A total of 19 SNPs passed genome-wide 

significance (p<2.5x10-8), as shown in Table 3 and Figure 2. No evidence of significant 
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heterogeneity was observed, after accounting for 19 tests (p>0.0026), as shown in Table 3.

Cohort-specific results are shown in Supplementary Table 3. All 19 SNPs were non-coding and 

located on chromosome 1 at two loci separated by 7 megabases; 17 SNPs upstream of the 

NOS1AP gene and 2 SNPs upstream of ATP1B1.

 With linkage disequilibrium (LD) clustering of the 17 genome-wide significant SNPs 

upstream of NOS1AP, we identified two separate signals that were in very low LD (r2 < 0.05) in  

Yoruban (YRI) and European (CEU) HapMap samples; one signal marked by rs12143842 

(minor allele frequency, MAF=0.20) which was also the strongest SNP in GWA studies in 

individuals of European ancestry and with a similar effect,32-34 and a second signal marked by 

rs4657175 (MAF=0.33, r2 to rs12143842 <0.01 in YRI). rs4657175 was also strongly correlated 

with an independent signal previously reported in the QTGEN study32 (rs12029454, r2=0.81 in 

YRI), that also reached genome-wide significance in our study. Both SNPs were directly 

genotyped or imputed with high accuracy in all cohorts (observed/expected variance>0.9). No 

effect heterogeneity was observed for rs12143842 (I2=0.32, p=0.21) and nominally significant 

heterogeneity was observed for rs4657175 (I2=0.51, p=0.05). 

 The two genome-wide significant SNPs upstream of ATP1B1 were in very strong LD (r2

in YRI: 1.0), but were not correlated with the ATP1B1 variant previously identified in the 

QTSCD study33, rs10919071 (r2=0.02 in CEU, monomorphic in YRI). Indeed, rs10919071, was 

not significantly associated with QT interval in African Americans (MAF=0.03, p=0.07) 

although it had a similar effect estimate in the same direction (beta coefficient=2.08 msec per 

minor allele). The most significant SNP at the locus in the current study, rs1320976, showed no 

evidence of effect heterogeneity (I2=0, p=0.71) and was directly genotyped in all cohorts, except 

in four of the smaller cohorts (BHS, BLSA, HABC, HANDLS).

P in GWA studiessss iiiin nnn

econdddd siigii nallll markrkrkrkedededed

( 2 e

a

or imputed with high accuracy in all cohorts (observed/expected variance>0.9). 

rogeneit as obser ed for rs12143842 (Ir 2 0 32 p 0 21) and nominall signific

(MMMAFAFAF=0=00=0.33.33,333 rr222 to rs12143842 <0.01 in YRYRYRI). rs4657175 wawawas also strongly corre

epepepeendent signalalal prrevvviv ouuuusslsly reeepopoortted inn thhe QTTTGEGEGENN N stttuudy32323232 (((rsss1222202949494945444, r2=0=0=00.8

also rerereacacacachehehed gegenonomeme-widdde ee sisisisignifffficiicicananananccce iiiinn ouour sttststudududyyy. BBBototototh hhh SNNSNSNPs wwwweeere dididirerectcttlyllly 

or imppputed with hhh hihihih ghhghh accuracy yy iniii  alll cohhhhorts (((observ dded/e// xpppecteddd d variance>0.9).)  

ieit bbs dd ffor 1s121214343848422 (I(I22 00 3322 00 221)1) dnd iin lalll iig inififi

Copyright by American Heart Association, Inc. All rights reserved.



DOI: 10.1161/CIRCGENETICS.112.962787

10

 Several additional SNPs at loci identified in GWA studies in individuals of European 

ancestry also reached low p-values (p<10-5) in African Americans, including SNPs near LITAF 

(rs8049607), PLN (rs11752626), KCNQ1 (rs231906) and KCNH2 (rs3778872), as shown in 

Supplementary Table 4. The same SNP near LITAF showed the most significant association at 

the locus in African Americans (p=7x10-7) whereas SNPs near PLN (p=2x10-6), KCNQ1

(p=2x10-6) and KCNH2 (p=3x10-6) showed strong to modest correlation with the most significant 

SNPs at these loci in studies of individuals with European ancestry.32-34 Results in African 

Americans for top SNPs at each of the 12 loci from GWA studies in individuals of European 

ancestry are shown in Supplementary Table 5. 

Discussion

This study examined the association of genetically inferred continental ancestry and genetic 

polymorphisms on cardiac repolarization, as measured by the electrocardiographic QT interval, 

in several large cohorts of African Americans. We observed no overall evidence of association 

with QT interval with proportion of individual African ancestry inferred from genome-wide data. 

In a GWA study including 13 105 African Americans, we observed genome-wide significant 

associations with SNPs at two loci (NOS1AP, ATP1B1), and consistent associations (p<10-5) for 

SNPs at four additional loci (LITAF, PLN, KCNQ1 and KCNH2) previously associated with QT 

interval in individuals of European ancestry.32-34 While the p-values for association were modest, 

the direction of effect for the top SNP at each of the 12 previously reported loci was the same, 

consistent with modest power to detect mostly true underlying effects. The most significant 

association in NOS1AP, rs12143842, was the same SNP reported by three previous GWA studies 

of QT in populations of European descent.32-34 Furthermore, the variant we identified in the 

ndividuals of Europopopopeaeee
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ATP1B1 locus was independent from the previously reported SNP,33 consistent with a second 

signal of association. 

Genetic ancestry

In contrast to our findings, a shorter average QT interval in individuals of self-reported African-

American ancestry compared to self-reported European ancestry was observed in a small subset 

of the ARIC study35 and in a large cohort of inpatients and outpatients from the electronic 

medical records of the Vanderbilt University Medical Center.36 Both studies accounted for 

differences in heart rate using Bazett’s formula which is explicitly discouraged in current 

guidelines for ECG interpretation37 and can under or overcorrect the influence of heart rate on 

QT interval.38 A previous study from the WHI adjusting for heart rate using linear regression did 

not observe differences in QT interval by self-reported ancestry.39 Our study has some 

advantages over these previous studies. First, our derivation of ancestry from genome-wide 

genetic data reduced bias resulting from the ambiguity of self-reported ancestry and allowed 

treatment of ancestry as a continuous variable. Second, our use of multiple population-based 

cohorts reduced bias resulting from ethnic differences in access and utilization of health care and 

allowed consistency in methodology used for ascertainment and measurement of QT interval. 

Third, our meta-analysis of several large cohorts allowed adequate power to detect strong or 

modest ancestral effects. Fourth, our use of continuous ECG measurements of QT and RR 

intervals allowed adjustment for heart rate using regression modelling techniques, which are well 

known to be more stable across the entire range of QT interval than Bazett’s formula.37 Thus, our 

findings from several large population cohorts that QT interval adjusted for major covariates is 

not associated with the proportion of African ancestry based on whole-genome SNP suggests 

that observations in the two previous studies might reflect chance, selection bias, measurement 
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bias or other confounding influences that contribute to between race comparisons rather than 

within-race proportion genetic ancestry analyses. However, our findings do not rule out a small 

effect.

Common genetic variants and QT interval 

GWA studies in samples of European ancestry have to date reported 12 loci associated with QT 

interval (Supplementary Table 5), with multiple independent signals at least at one locus 

(NOS1AP).32-34,40 Our findings establish with genome-wide significance that SNPs at two of 

these loci on chromosome 1 – ATP1B1 and two signals at NOS1AP – associate with QT interval 

in African Americans as well, with the strongest association for the same SNP upstream of 

NOS1AP conferring a similar QT prolongation as in previous studies (~3msec per minor allele 

copy). Furthermore, we observed low p-values (p<10-5) for SNPs at four additional loci 

previously reported in populations of European descent. These observations provide additional 

support for a similar genetic architecture for myocardial repolarization time in African 

Americans and Europeans.  

For NOS1AP and LITAF, the identical SNP showed the strongest association, whereas top 

SNPs near PLN, KCNQ1 and KCNH2 were correlated with top SNPs from studies in individuals 

of European ancestry. In contrast, the two SNPs upstream of ATP1B1 of genome-wide 

significance were not correlated with the SNP from studies in individuals of European ancestry 

which itself was not associated with QT interval in African Americans. This finding could reflect 

ancestry-specific association signals at the locus or different degrees of LD across ancestries 

with a true, ungenotyped causal variant. In addition, this could also reflect the modest power to 

detect common variant associations of weak effect.  The current study is similar in size to the 

QTGEN and QTSCD studies and it is perhaps not unexpected that different equally powered 
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studies will identify different common variants when multiple variants exist at a locus, as has 

now been observed in many large-scale genetic association studies. Additional studies are 

needed to identify the causal variants and genes. Even though the most significant associations 

were observed with SNPs in potential regulatory regions upstream of NOS1AP and ATP1B1

(http://genome.ucsc.edu/ENCODE/), associations could be mediated by causal variants in 

longer-range LD blocks or located in regulatory motifs influencing more distant genes. However, 

NOS1AP and ATP1B1 are strong candidate genes; NOS1AP encodes a protein that may interact 

with neuronal nitric oxide synthase to accelerate cardiac repolarization by inhibition of L-type 

calcium channels41 whereas ATP1B1 encodes the cardiac beta-subunit of the membrane-bound 

Na,K-ATPase that is essential in the maintenance of the myocardial resting membrane potential, 

for which the alpha-subunit is targeted by digoxin.42

Potential clinical implications

QT interval is a strong determinant of arrhythmia risk. Substantial heritability estimates (h2) have 

been reported for QT-interval both in individuals of European and African ancestry, ranging 

from 0.35 in individuals of European ancestry9 to 0.41 in African Americans,10 after adjustment 

for basic covariates including age, sex and RR interval. A large proportion of QT variability has 

been shown to be explained by genetic factors, up to 40%, and about half of this was recently 

shown to be explained by common genetic variants.43 In the present and previous studies,15 we 

have shown that electrocardiographic markers of conduction and repolarization are not 

associated with genetic ancestry. These findings suggest that the reported ethnic differences in 

risk of cardiac arrhythmia may not be explained by an excess of common or rare variants 

influencing cardiac repolarization, but this has not been systematically tested. Indeed, in GWA 

studies we identify many of the same genetic associations with QT interval in individuals of 
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African ancestry as have been found among individuals of European ancestry. Ancestral 

differences in arrhythmia risk might therefore be mediated by differences that do not impact 

electrophysiological properties of global repolarization or conduction.  

Single polymorphisms have limited predictive ability individually, and are unlikely to 

individually have clinical utility. However, each novel locus can provide novel insights into 

pathophysiology and potentially therapeutic targets. Our analysis only found two genome-wide 

significant loci even though our sample size was similar to two previous studies in individuals of 

European ancestry, which identified ten loci each.32,33 Such a discrepancy could reflect the 

greater heterogeneity in populations of African ancestry or that admixed populations have lower 

effective sample sizes if locus-specific ancestry is associated with differing linkage 

disequilibrium patterns. Individuals of African ancestry have been shown to exhibit greater 

heterozygosity with more rare variants, lower proportion of common variants and shorter-range 

LD patterns44,45 resulting in lower coverage and power of GWA approaches compared to 

European-derived populations. 

Strengths and limitations 

In forming a consortium of large, population-based cohort studies of African American 

participants, our study was well powered to detect substantial ancestral and genetic effects and 

allowed linear modelling of ancestry on QT interval with adjustment for major covariates. 

Furthermore, our use of multiple African American population cohorts collected at several 

different locations makes our study likely to provide a broader coverage of African American 

populations. 

Our study also has limitations that merit consideration. First, our results cannot rule out a 

smaller effect of ancestry on QT interval duration. Second, participants with extreme 

ncy could reflect tttthehehehe

ed poppp lulllattttiiioi ns havavavaveee e l

a

ium patterns. Individuals of African ancestry have been shown to exhibit greater

s

s

deri ed pop lations

amppplelelele sssizizizizeseses iif lololoocus-specific ancestry is aaassssociated with diffffefefeering linkage 

iumumumm patterns. IIndddivviddddualslslss of AfAfAfA riiicaan anaancesstrry hhhavavvvee ee bbeb eneen shoownwnwn ttto exxxhihihihibiiit greeeattter

sity wwwitititith hhh morere rrararee vavariannntstssts, loweeerrr prprprpropoporortititionon ooooffff cococommmmmmonoonon varariantntntntsss and dd hhshshorortetter-r r

s44,45 resultinggg in loll wer coveragegg  a dnddd pppower of GWWWWA AAA apppprpp oachhhes compapp red to

d ii ded llatiio

Copyright by American Heart Association, Inc. All rights reserved.



DOI: 10.1161/CIRCGENETICS.112.962787

15

repolarization abnormalities may not have survived to the baseline visit of the cohorts studied. 

This limitation is likely to be of small impact, as participants of most cohorts were in the early 

middle age. Third, we did not have information on several clinical factors that are known to 

influence QT interval, including concurrent medications, myocardial ischemia, heart failure and 

timepoint on the day of ECG recording which potentially explain a large proportion of QT 

variation. Although such factors are unlikely to be determined by genotypic effects and thus 

unlikely to bias our observations, they could potentially dilute the effect of genetic associations.

 In conclusion, our results establish that QT interval does not differ substantially by 

ancestry and extended the association of genetic polymorphisms at several loci including 

NOS1AP and ATP1B1 to populations of African ancestry. Future studies aimed at identifying 

mediators of excess genetic arrhythmia risk in African Americans should focus on factors other 

than cardiac conduction and repolarization. 
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Table 1. Sample characteristics. 

ARIC

(n=1808)

BHS

(n=188)

BLSA

(n=153)

CFS

(n=316)

CHS

(n=667)

HABC

(n=1038)

HANDLS

(n=957)

JHS

(n=2057)

MESA

(n=1556) 

WHI

(n=4365)

Age (years) 53.7 (5.9) 35.6 (4.8) 64.2 (11.3) 44.3 (15.2) 72.7 (5.6) 73.4 (2.9) 48.4 (8.9) 54.6 (12.7) 61.9 (10.1) 61.6 (6.8)

Male sex (%) 36.3 32.4 36.9 39.3 33.9 42.0 44.2 36.7 44.7 0

QT interval (ms) 409.2 (30.8) 389.8 (30.5) 413.6 (25.7) 397.5 (30.0) 404.0 (35.6) 410.7 (35.1) 407.4 (32.1) 413.0 (30.9) 410.3 (31.8) 400.7 (34.0)

Heart rate (beats/min) 67.5 (11.3) 68.9 (11.0) 63.1 (13.4) 68.1 (9.8) 67.3 (11.5) 66.1 (11.2) 68.0 (11.4) 64.6 (10.5) 63.0 (10.3) 67.3 (10.9)

r2 0.52 0.57 0.53 0.51 0.67 0.56 0.44 0.52 0.65 0.65

GC 1.02 1.00 1.00 1.05 1.07 1.00 1.00 1.05 1.01 1.03

Mean and standard deviation are reported for continuous variables and percentage of cases for dichotomous traits. 
r2, coefficient of determination for a clinical model with age, sex and RR interval; GC, genomic inflation factor; ARIC, Atherosclerosis Risk in 
Communities Study; BHS, Bogalusa Heart Study; BLSA, Baltimore Longitudinal Study of Aging; CFS, Cleveland Family Study; HABC, Health, Aging and 
Body Composition Study; HANDLS, Healthy Aging in Neighborhoods of Diversity across the Life Span; JHS, Jackson Heart Study; MESA, Multi-Ethnic 
Study of Atherosclerosis; WHI, Women’s Health Initiative.
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Table 2. Genetic ancestry and QT interval.

Cohort Effect* P-value African ancestry**

ARIC 5.3 (4.8) 0.27 0.85 (0.78-0.89)

CFS 19.6 (10.2) 0.06 0.82 (0.74-0.87)

HABC -2.7 (5.7) 0.64 0.81 (0.72-0.88)

HANDLS -19.0 (8.2) 0.02 0.84 (0.78-0.89)

JHS -1.1 (5.5) 0.84 0.84 (0.79-0.88)

MESA -4.7 (3.5) 0.19 0.81 (0.70-0.88)

WHI 3.2 (2.0) 0.10 0.79 (0.69-0.87)

Overall -0.2 (-5.7, 5.3) 0.94

* Effect estimates are given as beta coefficients with standard errors for individual cohorts, with an 
overall effect estimate with 95% confidence interval. Beta coefficients refer to milliseconds with 
complete African ancestry compared to European ancestry. 
** African ancestry refers to the proportion of African compared to European ancestry, presented as 
median and interquartile range.
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Table 3. Results from GWA analysis of QT interval with p<2.5x10-8.  

SNP Position
on chr1

Alleles CAF Neff QT effect (SE) P-value Q I2 Locus

rs12143842 160300514 T/C 0.20 12812 3.14 (0.39) 1.79x10-15 0.21 0.32 NOS1AP
rs16847548 160301898 C/T 0.22 12629 2.17 (0.33) 1.84x10-10 0.02 0.58 NOS1AP
rs1320976 167339970 A/G 0.25 10767 -2.06 (0.32) 2.00x10-10 0.71 0 ATP1B1

rs12061601 167337074 C/T 0.29 12608 -1.89 (0.30) 5.88x10-10 0.65 0 ATP1B1
rs4657175 160462362 G/T 0.33 13077 1.74 (0.28) 7.24x10-10 0.05 0.51 NOS1AP
rs4391647 160453555 G/A 0.33 13077 -1.74 (0.28) 7.73x10-10 0.04 0.53 NOS1AP
rs6692381 160434508 T/C 0.34 13093 -1.71 (0.28) 1.23x10-10 0.05 0.51 NOS1AP
rs12123267 160465975 T/C 0.34 13115 -1.70 (0.28) 1.67x10-09 0.06 0.49 NOS1AP
rs12567315 160433270 A/G 0.33 13202 1.69 (0.28) 1.82x10-09 0.04 0.53 NOS1AP
rs6667431 160434545 A/G 0.33 13232 1.69 (0.28) 1.85x10-09 0.04 0.53 NOS1AP
rs3934467 160449301 T/C 0.34 13170 -1.69 (0.28) 2.58x10-09 0.03 0.54 NOS1AP
rs7534004 160413333 A/G 0.31 12902 1.73 (0.29) 3.11x10-09 0.006 0.64 NOS1AP
rs12027785 160447769 A/T 0.33 13203 1.67 (0.28) 3.45x10-09 0.03 0.55 NOS1AP
rs12116744 160447080 A/G 0.33 13220 1.67 (0.28) 3.56x10-09 0.03 0.55 NOS1AP
rs4480335 160440001 C/A 0.33 13104 -1.67 (0.28) 4.32x10-09 0.03 0.55 NOS1AP
rs12029454 160399741 A/G 0.31 12675 1.73 (0.29) 4.37x10-09 0.005 0.64 NOS1AP
rs10800352 160439313 G/A 0.33 13272 -1.66 (0.28) 4.70x10-09 0.02 0.57 NOS1AP
rs4306106 160438618 A/G 0.33 13270 1.66 (0.28) 5.07x10-09 0.02 0.56 NOS1AP
rs10127719 160422794 C/T 0.32 12746 1.64 (0.29) 1.75x10-08 0.02 0.58 NOS1AP

All SNPs are non-coding. positions are on the forward strand from the reference sequence in NCBI build 35. SNP IDs refer to dbSNP. All SNPs are 
on chromosome 1. Alleles are shown as coded/noncoded. CAF refers to coded allele frequency. Neff refers to the effective sample size in the meta-
analysis. defined as NxR2. and reflects the loss of power with poor imputation compared to the total sample size. Effects are milliseconds / coded 
allele copy with standard error within parentheses. Results of heterogeneity tests are presented as the p-value for Cochran’s Q test (Q) and the I2

statistic.
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Figure Legends: 

Figure 1. Quantile-quantile plot of GWA analysis of QT interval. Plotted are expected versus 

observed -log of all p-values after genomic control from QT interval GWAS. The measure of 

overdispersion of the test statistics, GC, was 1.03 before genomic control and, by definition, was 

1.0 after genomic control. 

Figure 2. Results of GWA analysis of QT interval. Each dot represents one SNP. On the y-axis 

is -log10 p-value and on the x-axis physical position by chromosome.

ts one SNP. On the e e e y-yyy
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