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Abstract  

Background:  Genome-wide association studies have identified several genetic loci 

associated with variation in resting heart rate in European and Asian populations.  No 

study has evaluated genetic variants associated with heart rate in African Americans. 

Objective:  We sought to identify novel genetic variants associated with resting heart 

rate in African Americans.   

Methods:  Ten cohort studies participating in the CARe and COGENT consortia 

performed genome-wide genotyping of single nucleotide polymorphisms (SNPs) and 

imputed 2,954,965 SNPs using HapMap YRI and CEU panels in 13,372  

participants of African ancestry.  Each study measured the RR interval (ms) from ten-

second resting 12-lead ECGs and estimated RR-SNP associations using covariate-

adjusted linear regression.  Random-effects meta-analysis was used to combine cohort-

specific measures of association and identify genome-wide significant loci (p≤ 2.5x10-8).   

Results:  Fourteen SNPs on chromosome 6q22 exceeded the genome-wide 

significance threshold.  The most significant association was for rs9320841 (+13 ms per 

minor allele, p=4.98 x 10-15). This SNP was approximately 350 kb downstream of GJA1, 

a locus previously identified as harboring SNPs associated with heart rate in Europeans.  

Adjustment for rs9320841 also attenuated the association between the remaining 13 

SNPs in this region and heart rate.  In addition, SNPs in MYH6, which have been 

identified in European GWAS, were associated with similar changes in the resting heart 

rate as this population of African Americans.  

Conclusion:  An intergenic region downstream of GJA1, the gene encoding Connexin-

43, the major protein of the human myocardial gap junction and an intragenic region 

within MYH6 are associated with variation in resting heart rate in African Americans as 

well as in populations of European and Asian origin.   
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Glossary of Abbreviations 

 

SNPs   single nucleotide polymorphisms 

ECG   electrocardiogram 

GWAS  genome-wide association study 

BMI  body mass index  
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Introduction 

 Multiple studies have found that an elevated resting heart rate is associated with 

mortality risk1-5 including that attributable to sudden cardiac death6 and cardiovascular 

disease.7  These findings suggest that function of the sinus node, the dominant 

pacemaker in the heart, and the autonomic nervous system are associated with adverse 

clinical outcomes.  

 Although non-genetic influences of nodal and autonomic function are well 

known,8 genetic factors account for 26% to 32% of the variation in resting heart rate in 

populations of European and Asian ancestry.9-11  Genome-wide association studies 

(GWAS) conducted in populations of European and Asian ancestry have recently 

identified single nucleotide polymorphisms (SNPs) associated with resting heart rate at 

several loci including GJA1 on chromosome 6, MYH6 on chromosome 14, CD34 on 

chromosome 1, and GPR133 on chromosome 12.12-15 To the best of our knowledge, 

however, no study has evaluated the association of genetic variants with heart rate 

among populations of African descent.  Such populations have greater genetic diversity 

compared to those of European and Asian origin, which may facilitate identification of 

additional associated loci.16-18  It is also unclear whether loci identified in populations of 

European and Asian ancestry are relevant in populations of African descent. 

 In an attempt to identify new loci and evaluate existing, known associations, we 

examined the association of genetic variants with resting heart rate as measured by the 

RR interval on the electrocardiogram (ECG) among 10 African American cohort studies 

participating in the Candidate-gene Association Resource (CARe) and the Continental 

Origins and Genetic Epidemiology Network (COGENT) ECG consortia.   

 

Methods 

Study Populations 
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 The CARe19 and COGENT20 consortia included 13,372 self-reported African 

Americans meeting inclusion criteria.  The participants originated in ten cohort studies:  

the Atherosclerosis Risk in Communities study (ARIC, n=2,391); Baltimore Longitudinal 

Study of Aging (BLSA, n=155); Bogalusa Heart Study (BHS, n=148); Cardiovascular 

Health Study (CHS, n=674); Cleveland Family Study (CFS, n=267); the Health, Aging, 

and Body Composition Study (Health ABC, n=1,054); the Healthy Aging in 

Neighborhoods of Diversity across the Life Span Study (HANDLS, n=945); Jackson 

Heart Study (JHS, n=1,962), Multi-Ethnic Study of Atherosclerosis (MESA, n=1,627); 

and Women’s Health Initiative clinical trials (WHI, n=4,149).  Additional information is 

provided in the Supplemental Methods, including cohort-specific genotype and 

imputation quality control methods (see supplements 1 and 2).  Participants with missing 

covariates, poor quality ECGs, pacemakers or implantable cardioverter-defibrillators, 

paroxysmal or persistent atrial fibrillation, heart failure, myocardial infarction, 2nd or 3rd 

degree atrioventricular block, and extremes of heart rate (>100 or <50 beats per minute) 

were excluded.  Participants on medications altering nodal or atrioventricular conduction 

(beta blockers, non-dihydropyridine calcium channel blockers, digoxin, type I or III 

antiarrhythmics) also were excluded. 

 The study was approved by the Institutional Review Boards at each participating 

center.  Written informed consent was obtained from all participants.  

 

ECG Recordings 

 A standard ten-second, resting ECG was obtained and recorded digitally on all 

participants from the ten cohorts included in this analysis.  Standard 12-lead positions 

were recorded at baseline in all cohort studies using a Marquette MAC PC, MAC6 or 

MAC1200 ECG machine system (GE Healthcare, Milwaukee, WI, USA).  RR interval 

(ms) was measured electronically as the unit-corrected inverse of heart rate 
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(beat/minute).  All ECGs were processed automatically using GE Marquette 12-SL 

version 2001 running under GE Magellan Research Work station or MC Means.  The 

ECG software is FDA approved.  Heart rate was calculated from the median RR interval 

during the 10-second recording.  Since ECG recordings were simultaneous in all 12 

leads, the rate was not affected by the lead from which the RR interval was recorded.  

The automated nature of calculating heart rate from the median RR interval ensures the 

highest repeatability with no inter- or intra- observer variability.  Poor quality ECGs were 

excluded by software algorithms.  As an added quality control measure, all ECGs were 

visually checked.  

 

 After a filtering process that results in signal conditioning and averaging, the 

program generates a median complex.  All QRSs of the same shape are aligned in time 

and the interval measurements depend upon the proper identification of fiduciary points, 

which are determined from an analysis of all 12 leads simultaneously.  The intervals are 

then measured according to published standards.21 

 

Genotyping and quality control 

 Genome-wide SNP genotyping was performed within each cohort using 

genotyping arrays from Affymetrix or Illumina (supplement 2).  Studies underwent similar 

quality control procedures (specific details in the supplemental materials).  DNA samples 

with an array-wide genotyping success rate <95% were excluded.  Autosomal 

heterozygosity rates were estimated to identify and exclude samples with poor DNA 

quality or contamination.  Duplicated or contaminated samples were identified from 

identity by descent estimates and excluded.   In addition, SNPs with a genotyping 

success rate < 90% per SNP within each cohort, SNPs that map to multiple locations, 

SNPs where missingness could be predicted from surrounding haplotypes and SNPs 
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associated with chemistry plates were excluded.  African ancestry was confirmed 

through either principal components22 or multidimensional scaling analyses.   

Population-based (i.e. non-family-based) studies utilized identity-by-descent estimates to 

exclude cryptically related individuals.  Subsequent identical SNP filters after imputation 

and GWAS analyses were applied to summary statistics at the meta-analysis level.  

 

Imputation and quality control 

 SNP imputation was performed in each cohort to facilitate the combination of 

results from different genotyping platforms and to increase genotype coverage. 

Genotyped SNPs passing quality control metrics described above and reference 

haplotypes from HapMap Phase 2 (release 22 on NCBI build 36) were utilized to impute 

~ 2.5 million SNPs using MACH v1.1623 or BEAGLE.  Untyped SNPs were imputed 

using a 1:1 ratio of CEU:YRI HapMap reference haplotypes based on consistency 

across other CARe-COGENT studies.  Imputed SNPs were excluded if imputation 

quality was below 0.30 as reported by MACH or BEAGLE.   

 

Statistical Analysis 

 GWAS analysis was performed in either PLINK (ARIC, BHS, CHS, JHS, WHI), R 

(HANDLS, Health ABC, MESA), ProbABEL (WHI) or MERLIN (BLSA) using linear 

regression with an additive genetic model based on allelic dosages accounting for 

imputation uncertainty. The family-based CFS study was analyzed using linear mixed-

effects models as implemented in the GWAF package for R.24  Pedigrees for CFS were 

confirmed using identity by state (IBS) or IBD estimates from PREST-Plus 

(http://www.utstat.utoronto.ca/sun/Software/Prest/).  Previously published analyses 

indicated that inclusion of related individuals from the JHS family-based sub-cohort had 

little effect on P-value inflation.20  As a result, these related individuals were included in 
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the present analysis.  Eigenvectors were used to adjust for global ancestry in population 

substructures.  Principal components were used to adjust for global ancestry in 

population stratification.    

 Cohort-specific genome-wide association was examined on a SNP-by-SNP basis 

using simple linear models regressing RR (ms) on allele dosage, age, sex, body mass 

index (BMI), global measures of African ancestry, and when relevant, study site.  Cohort-

specific SNP association estimates were combined using fixed- and random-effects 

meta-analysis, the latter to examine potential effects of among-cohort heterogeneity on 

the combined estimates and the extent to which it can support qualitative inference to 

other African American populations.  Given evidence of greater genetic and 

geographical diversity across African American cohorts compared to Europeans and 

initial evidence of heterogeneity across studies, random-effects estimates, which have 

wider 95% confidence intervals than fixed-effects estimates, were reported in the current 

meta-analysis.  Genomic control methods were applied when study-specific and 

combined distributions of test statistics suggested early departure from the null (lambda 

value > 1).  Genomic inflation factors were evaluated in each cohort before the random-

effects meta-analysis and in the combined results.25  We calculated X2 tests of 

homogeneity (Cochran’s Q) using METAL and I2 estimates with R.  Prior to conducting 

meta-analyses, SNP results with a minor allele frequency <0.01 or imputation quality 

scores <0.3 were excluded.  In addition, SNPs not seen in > 2 studies were excluded 

from the meta-analyses.   

 To confirm that the random-effects model was not overly conservative, standard 

fixed-effects meta-analyses were conducted on SNP association estimates for each 

cohort using METAL (and incorporating genomic control at the meta-analysis level). For 

the meta-analysis, we pre-specified a genome-wide significance threshold of 2.5 x 10-8 

as suggested for populations of African ancestry,26 accounting for ~2 million independent 
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common variant tests.  Other polymorphisms that were detected at the same locus as 

the initial SNP were subsequently analyzed in conditional regression models to assess 

statistical independence.  Finally, SNPs that have been identified in prior GWAS but not 

in the discovery phase of our analysis were evaluated using a less stringent threshold.  

Specifically, we evaluated thirteen genome-wide significant SNPs described by prior RR 

GWAS in individuals of European and Asian ancestry13-15 using a significance level of 

3.85 x 10-3 (Bonferroni corrected p-value calculated as 0.05/13). 

 

Results 

 This GWAS of the RR interval included 13,372 adults of African descent from ten 

cohort studies.  Each study contributed a widely varying number of participants (range 

148 to 4,149).  The ARIC, JHS and WHI studies accounted for the majority of 

participants in this analysis:  8,502 (64%) of the 13,372.  On average, the study 

population was middle-aged (mean 56.5 [range 35 to 73 years]), obese (mean BMI 30.8 

kg/m2), and 71% were women. 

Genomic inflation was minimal in most studies and modest in the family-based 

CFS (lambda 1.070) and JHS (1.071) (Table 1).  Specifically, the lambda estimates from 

the random-effects meta-analysis did not suggest inflation of the test statistic (0.868), 

and the secondary fixed-effects modeling did not show a significant departure from null 

expectations (lambda 1.017) (Figures 1A and 1B). 

A total of 2,954,965 SNPs were incorporated into this meta-analysis after data 

quality control.  Fourteen SNPs at a largely intergenic region on chromosome 6q22 

(Figure 2) reached genome-wide significance.  The most significant association at this 

locus was for rs9320841 (+13 ms per minor allele, SE 1.7 ms, random effects P=4.98 x 

10-15).  This SNP is located in a noncoding region, 350kb downstream from GJA1 and 64 

kb upstream from HMGB3P18.  The magnitude and direction of the association was 
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similar across most cohorts (Pheterogeneity = 0.45) as shown in Figure 3.  None of the other 

thirteen SNPs in this region were independent variants associated with resting heart 

rate.  The results for the regional association plot at the GJA1 locus are depicted in 

Figure 4.  This plot covers 1000 kb of the genomic region associated with the GJA1 

locus and demonstrates strong linkage disequilibrium with other SNPs in this gene 

cluster that were associated with variations in heart rate.  Adjustment for rs9320841, 

however, eliminated the significance of these additional SNPs. 

We also evaluated a series of SNPs from the chromosome 6q22 locus that were 

identified in prior European and Asian GWAS.  Both rs9398652 and rs12110693 in the 

6q22 locus were associated with the RR interval that were similar to estimates reported 

in prior studies of Asian14 and European13 populations; however, only rs9398652 

reached genome-wide significance in the current meta-analysis.  The rs9398652 SNP 

was approximately 30 kb downstream and in high linkage disequilibrium with the leading 

SNP from the present study (rs9320841; CEU r2 1.00; YRI r2 0.81).  In addition, 

rs12110693 was also in strong linkage disequilibrium with rs9320841 (rs9320841; CEU 

r2 1.00; YRI r2 0.76) (Table 2).  The final reported SNP from the 6q22 locus, rs11154022, 

did not reach genome-wide significance, was the greatest distance from rs9320841 

(approximately 365 kb upstream) and not in LD with it (CEU r2 0.01; YRI r2 0.01).     

 Other variants that were identified from prior European and Asian GWAS were 

also tested (Table 2).  The 2 SNPs that have been previously identified at the MYH6 

locus (rs452036 and rs365990) were associated with resting heart rate in African 

Americans using the replication threshold (3.85 x 10-3).  These variants are associated 

with a similar increase in the sinus cycle length across Europeans, Asians and African 

Americans.  We were unable to confirm associations for several previously published 

loci at replication thresholds:  CD46 on chromosome 1, SLC35F1 on chromosome 6, 

SLC12A9 and UfSp1 on chromosome 7, FADS1 on chromosome 11, an intergenic 
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region on chromosome 12, GPR133 on chromosome 12, and MYH7 on chromosome 14 

(Table 2).  These findings were consistent across the different cohorts analyzed through 

the CARe-COGENT consortium (Figure 5).  Further evaluation of these loci (the 1 Mb 

regions, 500 kb upstream and downstream of the SNPs in Table 2) did not identify any 

other genome-wide significant RR-SNP associations despite having adequate power 

(power >0.8).  

 
Discussion 

 In a large GWAS of African Americans, we generalized a previously reported 

association between a variant on chromosome 6q22.31 and resting heart rate to a 

population of African descent.  The present findings suggest that rs9320841, which is 

located in an intergenic region 350 kb downstream from GJA1, is the leading SNP at this 

locus associated with heart rate.  In addition, rs9320841 is in high LD with other 

intergenic SNPs from this region previously associated with heart rate in GWAS in 

populations of European and Asian ancestry.13 14   

 Multiple studies including the current report have demonstrated intergenic SNPs 

in proximity to rs9320841 that are associated with variation in heart rate among 

individuals of Asian, European and African ancestry.  The closest putative transcript to 

rs9320841 on chromosome 6q22.31 is HMGB3P18, which has no known function.  

However, GJA1, which is approximately 350 kb upstream of this SNP, encodes connexin 

43, the main cardiac gap junction channel that is found throughout the heart and is 

responsible for intercellular conductance in the atria and ventricles.27  Connexin 43 is 

expressed abundantly in the atria and permits the node to conduct impulses to the 

surrounding muscle.28  Experimental models have demonstrated that deletion of various 

gap junction subunits results in a sick sinus syndrome phenotype with bradycardia, sinus 

dysrhythmia and sinus node exit block.29, 30  As a result, these intergenic variants in the 



12 
 

6q22 locus, which are in close proximity to GJA1 and have been identified across 

different populations, may reduce sinus automaticity. 

 Although rs9320841 and previously identified 6q22.31 loci are 300-500 kb away 

from and in low LD with SNPs in GJA1, recent studies suggest that variations in 

intergenic regions may regulate transcription factor binding and chromatin modification.31  

Functional and translational studies focused on this intergenic region on chromosome 

6q22 will be required to understand its potential effect on GJA1. 

 In the portion of our study that restricted the analysis to previously identified 

variants, we observed an association between two SNPs located within the MYH6 gene 

and resting heart rate.  MYH6 encodes one of the myosin heavy chain subunits in the 

cardiac sarcomere and is a major component of the cardiac contractile system.  In 

addition, MYH6 encodes a cardiac-specific microRNA, miR-208a, which is a key 

regulatory molecule that is necessary for normal cardiac conduction.32  Specifically, miR-

208a regulates expression of connexin 40, a gap junction protein that is implicated in 

sinus automaticity and cardiac arrhythmias.29, 30, 33  As a result, changes in the MYH6 

genetic architecture could alter micro RNA production, gap junction formation and sinus 

node function.  Prior GWAS in European populations have identified common variants in 

this gene to be associated with resting heart rate13, 15 and rare variants, located 0.3 to 

4.4 kb from these SNPs, to be associated with sick sinus syndrome.34  Although the 

SNPs at the MYH6 locus were not identified in the discovery phase of our analysis at 

genome-wide significance thresholds (p<2.5x10-8), the similar magnitude and direction of 

the point estimates in our analysis suggest that the MYH6 gene affects sinus node 

automaticity in diverse populations.   

 While we were unable to replicate associations for other previously published loci 

at a threshold level of 3.85 x 10-3 (0.05/13), the similar magnitude and direction of the 

point estimates suggest consistency across ancestries.  Specifically, SLC12A9 and 
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UfSp1 on chromosome 7 and the MYH7 region on chromosome 14 had effects on heart 

rate similar to those described by prior studies.  Compared to individuals of European 

ancestry, however, African Americans have greater genetic diversity,18  which may lower 

the frequency of a particular allele and subsequently reduce the statistical likelihood of 

detecting an effect on the RR interval.  In addition, linkage disequilibrium is commonly 

lower in African Americans35 and subsequently reduces the likelihood that a common 

SNP is in linkage disequilibrium with a causal variant.  Further, these analyses were 

conducted in a population that was predominantly female, middle-aged and overweight.  

This demographic profile differs from that of prior studies and may have influenced the 

results. 

 A common limitation of meta-analyses is among-study phenotype heterogeneity; 

however, the current study followed similar electrocardiographic and clinical protocols 

when measuring heart rate and its correlates.  In addition, the statistical assessment of 

heterogeneity did not suggest large variation in SNP effects across studies.  Moreover, 

the random-effects meta-analysis of these effects was weighted for both their within- and 

among-study variation.  Another limitation of GWAS is potential for population 

stratification, including confounding by ancestry.  However, we attempted to minimize 

bias from population structure by excluding participants of non-African ancestry, 

adjusting for principal components in study-specific regression models, and applying 

genomic control methods.   

 

Conclusion 

 In summary, the genome-wide significance of an association linking resting heart 

rate and the GJA1 locus previously described in European and Asian populations has 

now been generalized to African Americans.  In addition, this analysis has replicated 

associations initially discovered in Europeans between common variants within the 
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MYH6 gene and a reduction in heart rate to an African American population.  

Generalizability across global populations and biological plausibility of the heart rate - 

GJA1 and heart rate – MYH6 associations highlight the potential importance of these loci 

in the intrinsic (nodal and myocardial) determination of resting heart rate.   
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Table 1  Description of contributing African American cohort studies 
 
Cohort 
Study 

 
n 

Age 
(y) 

Male
(%) 

BMI
(kg/m2) 

HR 
(beat/min)

RR 
(ms) 

 
λ 

ARIC 2391 53.3 (5.8) 39 29.4 (6.1) 67 (10) 896 1.023
BLSA 155 64.4 (11.4) 37 28.3 (5.2) 63 (8) 952 1.050
BHS 148 35.7 (4.8) 33 31.7 (8.9) 68 (11) 882 1.004
CHS 674 72.8 (5.6) 35 28.4 (5.5) 67 (11) 896 1.005
CFS 267 42.7 (14.9) 43 34.4 (9.3) 68.6 (9) 875 1.070
Health 
ABC 

1054 73.4 (2.9) 45 28.1 (5.3) 66 (8) 909 0.996

HANDLS 945 48.5 (9.0) 44 29.9 (8.1) 67 (11) 896 1.007
JHS 1962 49.3 (11.8) 37 32.4 (7.8) 66 (10) 909 1.071
MESA 1627 61.5 (10.1) 46 30.2 (5.9) 65 (9) 923 1.003
WHI 4149 61.7 (6.9) 0 31.6 (6.2) 66 (8) 909 1.017
All 
Studies* 

13372 56.5 29 30.8 66.3 906 1.029

 
Mean (standard deviation) is tabulated for age, body mass index (BMI) and heart rate 
(HR).  ARIC, Atherosclerosis Risk in Communities study; BLSA, Baltimore Longitudinal 
Study on Aging; BHS, Bogalusa Heart Study; CHS, Cardiovascular Health Study; CFS, 
Cleveland Family Study; Health ABC, Health Aging and Body Composition; HANDLS, 
Healthy Aging in Neighborhoods of Diversity across the Life Span Study; JHS, Jackson 
Heart Study; MESA, Multi-Ethnic Study of Atherosclerosis; WHI, Women’s Health 
Initiative clinical trials. 
 
*Sum (n), % (male) and weighted mean (age; BMI; HR; RR, λ) across studies.
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Figure Legend 

Figure 1.  QQ plots of meta-analysis utilizing either random effects (1A) or fixed effects 

(1B) modeling.  The x-axis marks the expected values and the left-hand y-axis marks the 

observed values.  A line originating from the origin and having a slope of 1 is depicted in 

red.      

 

Figure 2:  Manhattan plot of RR associations for all SNPs.  The P-values from random-

effects meta-analysis of 2,954,965 successfully imputed or genotyped SNPs in ≥ 2 

cohorts.  Red points=SNPs with P<2.5 x 10-8 (considered genome-wide significant).  

Orange points = SNPs with P values ranging from less than 1 x 10-5 to 2.5 x 10-8.  

Regions containing red points were considered genome-wide significant.  SNP=single 

nucleotide polymorphism. 

 

Figure 3:  Forest Plot depicting the effect (beta coefficient) of rs9320841 on RR in 

milliseconds per allele (95% confidence interval) across the individual cohort studies and 

overall using random-effects modeling (I2=0).   

 

Figure 4:  Regional association plots for the RR interval plotted using P- values 

estimated from 13,372 African Americans from ten studies. Positions are from NCBI 

build 36.  Linkage disequilibrium and recombination rates are estimated from HapMap 

phase II data.  SNPs are represented by circles.  The large blue diamond is the SNP 

with the lowest P- value. The circle color represents correlation with the top SNP: blue 

indicates weak correlation, and red indicates strong correlation.  Recombination rate is 

plotted in the background and known genes in the region are shown at the bottom of the 

plot. 
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Figure 5:  Forest Plot depicting the effect in milliseconds per allele of SNPs achieving 

genome-wide significance in European and Asian studies across the individual African 

American cohorts. 

 

 
 
 
 




