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Abstract:

Background - The PR interval (PR) as measured by the resting, standard 12-lead
electrocardiogram (ECG) reflects the duration of atrial/atrioventricular nodal depolarization.
Substantial evidence exists for a genetic contribution to PR, including genome-wide association
studies that have identified common genetic variants at nine loci influencing PR in populations
of European and Asian descent. However, few studies have examined loci associated with PR in
African Americans.

Methods and Results - We present results from the largest genome-wide association study to
date of PR in 13,415 adults of African descent from ten cohorts. We tested for association
between PR (ms) and approximately 2.8 million genotyped and imputed single nucleotide
polymorphisms. Imputation was performed using HapMap 2 YRI and CEU panels. Study-
specific results, adjusted for global ancestry and clinical correlates of PR, were meta-analyzed
using the inverse variance method. Variation in genome-wide test statistic distributions was
noted within studies (lambda range: 0.9—1.1), although not after genomic control correction was
applied to the overall meta-analysis (lambda: 1.008). In addition to generalizing previously
reported associations with MEISI, SCN5A, ARHGAP24, CAV1, and TBX5 to African American
populations at the genome-wide significance level (P<5.0x10"®), we also identified a novel locus:
ITGAY, located in a region previously implicated in SCN54 expression. The 3p21 region
harboring SCN54 also contained two additional independent secondary signals influencing PR
(P<5.0x107®).

Conclusions - This study demonstrates the ability to map novel loci in African Americans as
well as the generalizability of loci associated with PR across populations of African, European

and Asian descent.

Key words: electrocardiography; epidemiology; GWAS; single nucleotide polymorphism
genetics; PR interval
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Introduction

The PR interval (PR) is an electrocardiographic measurement of atrial conduction spanning the
onset of sinus depolarization through the atrioventricular node. PR is a predictor of incident atrial
fibrillation,' a common cardiac arrhythmia,” and a potent risk factor for pacemaker implantation,
heart failure, stroke, and all-cause mortality.l’ 3 Substantial evidence exists for a genetic
contribution to PR. Family-based studies have estimated the heritability of PR at approximately
34%"* and rare sodium channel mutations associated with atrial cardiac conduction defects have
been characterized.”” Recent genome-wide association (GWA) studies performed in populations
of European and Asian descent have identified common polymorphisms at nine loci that are
associated with variation in PR.>*!! For example, ARHGAP24, CAV1, SCN10A, and TBX5 have
been reported in at least two PR GWA studies.

To date, the majority of GWA studies examining PR were performed in populations of
European or Asian descent. The exception is a report by Smith and colleagues (2011),'* which
generalized four previously described PR loci identified in European and Asian populations
(SCN54, SCN10A4, MEIS1, and TBX5) to 6,247 African American participants from four cohorts.
However, Smith and colleagues neither detected novel associations nor identified genome-wide
significant associations with several previously replicated loci, including ARHGAP24, CAVI and
WNTI11.% ' 1t is therefore unclear whether these loci are relevant in African Americans.
Additionally, the increased genetic diversity in populations of African descent provides
opportunities for the identification of novel variants influencing PR. Epidemiologic studies have
also reported that PR is longer in individuals of African compared to European ancestry,'* '*
which provides additional motivation for GWA studies of PR in populations of African descent.

To further characterize genetic determinants of PR in populations of African descent, we
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extended the earlier efforts of Smith et al.'> by including GWA study data from six additional
African American cohorts (7,168 additional participants). These results were meta-analyzed with
those previously reported by Smith et al. to provide the largest GWA study of PR to date in

populations of African ancestry.

Results
We performed a GWA analysis of PR in 13,415 adults of African descent from ten cohorts,
including three studies from the Continental Origins and Genetic Epidemiology Network
(COGENT)" and four studies from the Candidate-gene Association Resource (CARe)
consortia.'® Four of the ten studies were included in the earlier study by Smith et al.:'* the
Atherosclerosis Risk in Communities (ARIC) Study, the Cleveland Family Study (CFS), the
Jackson Heart Study (JHS), and the Multi-Ethnic Study of Atherosclerosis (MESA). Variation in
study size was noted across cohorts (range: 191 — 4,149 participants) and the largest contributing
study was composed entirely of females (Table 1). Across studies, participants were
predominantly female (72%), middle-aged (overall mean age: 58 years), obese (overall mean
body mass index (BMI): 31 kg/m?) and pre-hypertensive (overall mean systolic blood pressure
(SBP): 130 mmHg). Modest evidence of test statistic inflation was noted for the family-based
CFS (A: 1.10) and JHS (A: 1.08), although inflation was neither observed in the remaining studies
(A range: 0.95, 1.04) nor in the overall meta-analysis after genomic control was applied (A:
1.008) (Supplemental Figure 1). A total of 2.8 million genotyped and imputed autosomal SNPs
were available for analysis after applying genotyping and imputation quality control measures
(Supplemental Table 1).

In the meta-analysis, 90 SNPs at six loci were associated with PR at the genome-wide

significance threshold of P < 5.0 x 10® after applying genomic control (Figure 1, Table 2). The
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strongest primary PR signal (P = 5.26 x 10™, primary signals defined as the locus-specific SNP
with the lowest P-value), was observed for rs3922844 in SCN54 (effect allele frequency (AF) =
0.58), and corresponded to a 4.5 ms decrease in PR per copy of the C allele (Figure 2¢). We also
identified two independent secondary signals at SCN54/10A4, a region characterized by low
patterns of linkage disequilibrium (LD) and multiple recombination peaks (Figure 2C); one in
SCN54 and a second in SCN10A, which was located 14.3 kb downstream of the SCN54 primary
signal (Table 2, secondary signals defined as the locus-specific SNP with the lowest genome-
wide significant P-value after conditioning on primary signals and successive secondary signals).
Estimates for the eight signals (six primary; two secondary) were generally consistent across
cohorts (Supplemental Table 2), and there was little evidence of among-study heterogeneity
(Cochran’s Q P > 0.05). The primary signals also were robust to adjustment for local ancestry
(Supplemental Table 3).

Five of the loci associated with PR were previously identified in populations of European
and Asian descent: SCN5A/SCN10A, MEISI, ARHGAP24, CAV1, and TBX5. Of note,
SCN5A4/SCN10A4, MEISI, and TBX5 were also reported by the earlier PR GWA study of African
Americans.'? The novel locus, ITGA9, was located on chromosome 3, greater than one Mb
upstream from the primary SCN54 signal. Several genes resided nearby /7GA9, although only
ITGA9 and C3orf35 harbored SNPs in strong to moderate LD with rs267567.

None of the primary or secondary signals reported here were the same as the index SNPs
reported in populations of European or Asian ancestry. Although we identified both a primary
and secondary SCN54 signal for PR, only one study of European ancestral populations identified
SCN54," and this study reported an index SNP (rs11708996) that was monomorphic in HapMap

YRI. The SCN10A4 SNP that we identified (rs6801957) was in low LD with both previously
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identified SCN10A variants (rs6800541 and rs6795970 (r* < 0.10, HapMap YRI)), which were
reported in European ancestral populations. The MEIS] index SNP rs3891585 was in moderate
LD with the previously described variant rs11897119 (r* = 0.62, HapMap YRI). Of the two
index SNPs reported for ARHGAP24 in populations of European descent, rs7692808 was in high
LD (r* = 0.94, HapMap YRI) and rs7660702 was in low LD (* =0.22, HapMap YRI) with our
ARHGAP24 primary signal. Both studies that previously identified CAVI as a PR-associated
locus reported the rs3807989 variant; this SNP was in very high LD with the primary CAVI SNP
presented herein (r* = 1.0, HapMap YRI). Finally, both GWA studies of PR that identified TBX5
reported the variant rs1895582, which also was in high LD with our 7BX5 primary signal,
rs1895585 (r* = 0.84, HapMap YRI).

We identified six loci associated with PR in populations of African descent, yet we were
unable to confirm associations at genome-wide significance thresholds for three PR loci that
were previously identified in individuals of European descent: NKX2-5, WNT11, and SOX5.2
Although the previously reported chromosome 5 and 11 loci had high minor allele frequencies
(MAF) across contributing studies, consistent directions of effect, and little evidence of
heterogeneity, neither previously reported index SNP was associated with PR (P> 0.01) (Table
3). Of note, all SNPs residing within a 1 Mb region of these loci had P-values that exceeded
0.0009 (results not shown). Data for the previously reported SOX5 index SNP were only
available in six contributing studies and the mean estimated MAF was 0.03. The SOX5 locus also
was monomorphic in the HapMap YRI population and all P-values within 1 Mb of this locus

exceeded 0.0002 (results not shown).

Discussion

This GWA study and meta-analysis of ten cohorts represents the largest effort in populations of
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African descent to identify genetic determinants of PR. By building on recent work from the
CARe consortium,'* we identify three additional loci associated with PR in African ancestral
populations; ARHGAP24, CAV1, and ITGA9. The ITGA9 locus represents a novel finding,
having not been identified in any prior GWA studies of PR to date.

ITGA?Y is located approximately 1.1 Mb upstream from SCN5A and encodes an alpha
integrin, an integral membrane glycoprotein that mediates diverse functions including cell—cell
and cell-matrix adhesion, proliferation, and apoptosis.'” '® ITGA9 also has been associated with
hypertension'® and several cancers.”’** Although, /TGA9 has not been previously implicated in
atrioventricular conduction, the extended 3p22-24 region has been shown to harbor variants
affecting SCN54 expression. It is therefore possible that /7GA9 marks a distal SCN54 regulatory

22 Interestingly, pathway analysis suggests a role for ITGA9 in cation binding,

element.
hypertrophic cardiomyopathy, and dilated cardiomyopathy.*® Expression QTL studies also have
associated variation in /T7GA9 with cis expression data from monocytes26 and lymphoblastoid
cell lines.”” However, the transferability of associations to cardiac myocyte and conduction tissue
warrants further investigation.

In addition to identifying /TGA9 as a potential cis-regulator of SCN5A4, we also reported
three independent SNPs influencing PR at the 3p21 locus. The 3p21 locus harbors both SCN54
and SCN10A, which encode integral membrane proteins and tetrodotoxin-resistant voltage-gated
sodium channel subunits. The NA, 1.5 sodium channel alpha-subunit (encoded by SCN54) is the
predominant alpha-subunit expressed in cardiac muscle, and is responsible for the initial
upstroke of the action potential in an ECG.”® SCN54 mutations are associated with Brugada

syndrome, long-QT syndrome, dilated cardiomyopathy, cardiac conduction disease, idiopathic

ventricular fibrillation and atrial fibrillation®® and have been identified in GWA studies of the
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QT** and QRS intervals®' in populations of European descent.

The NA, 1.8 sodium channel alpha-subunit (encoded by SCN10A4) is characterized by a
long-duration action potential and preservation of excitability during rapid and sustained
stimulation.®® Seven variants at 3p21 have been previously reported,” ' '* and by extending the
work of Smith et al.,'* we detected an additional independent signal at genome-wide significance
levels. The presence of numerous independent signals at the 3p21 region in African Americans
was previously reported by a SCN5A4 candidate gene study in approximately 3,000 JHS
participants, who also contributed to this analysis.*® By including nine additional studies, we
validate the previous work by Jeff and colleagues at genome-wide significance levels and
identify a neighboring genome-wide significant signal in SCN10A. The ability to identify
multiple SCN54/SCN10A signals may in part be attributable to the greater nucleotide diversity
and lower LD in African populations, as 3p21 is characterized by low LD and high
recombination.

In addition to SCN5A4, we generalized four additional PR loci to populations of African
ancestry: ARHGAP24, MEIS1, TBXS5, and CAV1, the latter of which was also detected by a
GWA study of atrial fibrillation.** Yet, the importance of NKX2-5, WNT11, and SOX5 in the
genetic architecture of PR in African Americans is less clear. Although the “winner’s curse” and
inflated genetic effect estimates from initial discovery35 may help explain the inconsistent
results, another possibility is that our study was underpowered to detect these loci, especially for
the SOX5 locus. In addition, our analysis was conducted in populations that were predominantly
female, obese and pre-hypertensive. The degree to which these characteristics influenced the
results presented herein remains unclear.

Several limitations of the present study warrant further consideration in order to inform
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future efforts examining the genetic architecture of PR. The first is study heterogeneity, a
common limitation of meta-analyses. In our meta-analysis, studies used common measurement
protocols for determining PR and its clinical correlates. In addition, statistical assessments of
heterogeneity did not suggest large variation in SNP effects across studies. Another limitation is
confounding, either from cryptic population stratification or unmeasured PR risk factors. For
example, one potential confounder we were unable to consider was atrial size, given widespread
unavailability of echocardiographs. However, we adjusted for BMI, height, and systolic blood
pressure, the major contributors to left atrial size. Regarding the potential for bias from
population substructure, we adjusted for principal components in study-specific regression
models and applied genomic control. These approaches are standard in GWA studies, yet the
potential for residual confounding to produce either false-negative or false-positive results
remains challenging to determine on a genome-wide level. Finally, we were unable to
independently replicate the association with /7GA9 in an independent population given
difficulties identifying additional studies of African American participants with ECG measures,
extant genotype data, and overlapping analytical timelines. Although results from other ancestral
population could provide confirmatory evidence of the association between PR and /7GA9,
failure to replicate could simply reflect allelic heterogeneity.

In summary, our results suggest that polymorphisms from six loci on five chromosomes
are associated with PR in African Americans, including a novel signal in /7TGA9 that may
function as a distal SCN5A4 regulatory element. Our expanded meta-analysis also demonstrates
the ability to map novel genes in African Americans and the generalizability of genetic variants
associated with PR across global populations. Future work to refine these signals is clearly

warranted, including additional examination of the extended chromosome 3p region that harbors
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SCN54, SCN10A and ITGA9. GWA studies in other admixed populations, as well as fine-
mapping efforts, would be especially useful for further characterization loci identified herein, as

well as the identification of new genes influencing atrial arrhythmogenesis.

Materials and Methods

Study populations

A meta-analysis of ten studies was performed to investigate the genetic determinants of PR.
Three cohorts were from COGENT including the Health, Aging, and Body Composition Study
(Health ABC n=1,054), the Healthy Aging in Neighborhoods of Diversity across the Life Span
Study (HANDLS, n=945), and the Women’s Health Initiative (WHI, n=4,149), and four cohorts
were available from the CARe consortium, including the ARIC study (n=2,391), the CFS
(n=267), the JHS (n=1,962), and MESA (n=1,627). The Baltimore Longitudinal Study of Aging
(BLSA, n=155), the Bogalusa Heart Study (BHS, n=191), and the Cardiovascular Health Study
(CHS, n=674) were the remaining contributing studies. Additional information on the
participating studies is provided in the Supplementary Material. All studies were approved by
local ethics committees and all participants provided written informed consent.

PR interval measurement

For each study, certified technicians digitally recorded resting, supine (or semi-recumbent),
standard twelve-lead ECGs using comparable procedures for preparing participants, placing
electrodes, recording, transmitting, processing and controlling quality (Supplemental Table 4).
Participants with the following characteristics were excluded: poor quality ECG, extreme PR
(320 ms< PR<80 ms), documented history of atrial fibrillation/flutter, heart failure, myocardial
infarction, pacemakers antedating ECG assessment, Wolff-Parkinson-White syndrome, and

second/third degree heart block.

11
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Genotype arrays and imputation

Genome-wide SNP genotyping was performed within each cohort using the Affymetrix or
[llumina genotyping arrays (Supplemental Table 1). First -degree relatives were excluded in all
studies except the family-based CFS and JHS. SNPs were excluded for genotyping call rate
thresholds between <95% and <99% and MAF < 1%, the determination of which was study-
specific.

Imputation was performed for ~2.5 million autosomal SNPs based on a 1:1 ratio of the
HapMap Phase 2 CEU and YRI populations (Supplemental Table 1). SNPs with imputation
quality< 0.3 or inconsistent allele designations as per HapMap forward strands were excluded. In
addition, SNPs not seen in > 2 studies were excluded from the meta-analyses. After exclusions,
2,845,108 genotyped and imputed SNPs were available.

Statistical analysis

Each study, with the exception of CFS, performed GWA analysis for PR across approximately
2.5 million SNPs based on linear regression under an additive genetic model. The family-based
CFS study was analyzed using linear mixed-effects models as implemented in the R GWAF
package.36 Specifically, the within pedigree random genetic effects were modeled using a kinship
coefficient matrix, with each family having a different covariance pattern. The full N x N kinship
variance covariance matrix was generated using the R kinship function within the GWAF
software package, according to the algorithm of K. Lange.*” Although the JHS has a limited
number of related participants, extensive analyses suggested that results from linear regression or
linear mixed effects models were concordant.'® Therefore, JHS results are based on linear
regression models unadjusted for family structure.

The association of each SNP with PR was adjusted for age, sex, height, BMI, systolic

12
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blood pressure, RR interval, and study site, when appropriate, to maintain consistency with
Smith et al.'* All studies included principal components in linear models to adjust for variation in
global ancestry (Supplemental Table 1).** Genotyped data were substituted for imputed data,
when available. Individual study results were corrected by their respective genomic inflation
factors (A);* genomic inflation factors > 1 may indicate sample duplications, unknown or poorly
specified familial relationships, a poorly calibrated test statistic, systematic technical bias, or
gross population stratification.*

A fixed effects inverse variance meta-analysis was performed to combine beta
coefficients and standard errors from study-level regression results for each SNP. Primary
signals were defined as the locus-specific SNP with the lowest genome-wide significant P-value
(P <5 x 10™). Between-study heterogeneity of results was assessed by Cochran’s Q statistic.
Meta-analyses were implemented in the software METAL*" and were confirmed by an
independent analyst.

A two-stage strategy was used to identify secondary signals. First, LD pruning was
performed using PLINK, whereby independent signals were defined as at least two genome-wide
significant SNPs in low LD (r* < 0.20) in the same 1 Mb region. Next, each study performed a
conditional analysis by adjusting for the most strongly associated SNP(s) at each locus with at
least two bins, restricting to SNPs with P-values < 5.0 x 10™®. SNPs outside 1 Mb of the primary
signal were not considered in conditional analyses because no loci exhibited LD patterns that
extended beyond 1 Mb, and because conditioning on potential mediators may induce bias, the
direction and magnitude of which are difficult to predict.* Results for secondary signals were
presented after conditional adjustment that adjusted for locus-specific primary signals.

Additional iterations adjusting for subsequent secondary signals as well as the primary signal

13
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were performed in the WHI, HABC, HANDLS, and CHS cohorts (n=5,768, 43% of sample size)
until no genome-wide significant associations remained.

As a sensitivity analysis, we assessed the impact of local ancestry by including SNP-
specific local ancestry estimates as a covariate in models for genome-wide significant signals.
Locus-specific ancestry (i.e. probabilities of whether an individual has 0, 1, or 2 alleles of
African ancestry at each locus) was only available for directly genotyped SNPs and was
estimated using a Hidden Markov Model and the local haplotype structure to detect transitions in

ancestry along the genome.®
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Table 1. Characteristics of 13,415 African-American participants from ten cohort studies.”

DOI: 10.1161/CIRCGENETICS.112.963991

ARIC BLSA BHS CFS CHS HABC® HANDLS JHS MESA WHI®
Variable” n=2,391 n=155 n=191 n=267 n=674 n=1,054 n=945 n=1,962 n=1,627 n=4,149
PR interval (ms) 172 +27 17225 16123 169 + 26 172 +29 171 +28 162 +25 171 +£26 171 +26 167 +25
RR interval (ms) 923 + 150 957 £ 130 896 + 149 903 + 131 921 + 158 931 + 154 907 + 154 949 + 148 975+ 155 915+ 146
Age (years) 53.2+8.8 644+11.4 357+4.8 443£152 72.6+5.5 73.4+29 48.6+9.0 493+11.7 62.1+10.1 61.6+6.8
Female sex (%) 1,480 (62) 98 (63) 127 (66) 154 (58) 431 (64) 609 (58) 527 (56) 1,203 (61) 887 (55) 4,149 (100)
BMI (kg/mz) 29.5+6.1 283+5.2 31.5+8.7 345+92 284 +£55 285+54 299 +8.1 323+7.8 30.2+5.9 31.6+£6.2
Systolic BP (mmHg) 128.1+£20.7 1337156  1243£17.9 1261144 14624215  1387£22.0  1208+21.9  1246+178 131.6+21.6  131.9+173
Genomic inflation factor (1) 1.023 0.969 0.989 1.099 1.043 1.014 0.947 1.079 1.008 1.010
% European ancestry* 15 (11,22) ND 18.(13,21) 18(13,26) 24 (16, 36) 19 (12, 28) 16(11,22) 16 (12,21) 19 (12, 30) 21(13,31)

“Sample sizes presented are the maximum number of participants with SNP data.

®Data are presented as mean (standard deviation) for continuous variables and percentages for categorical variables.

“The HABC and WHI studies replaced imputed data with genotyped data when available and therefore have a range of genotyped participants
(HABC minimum = 939 participants; WHI minimum = 3,898 participants).

presented as median (25™ percentile, 75™ percentile)

ARIC, Atherosclerosis Risk in Communities; BLSA, Baltimore Longitudinal Study on Aging; BHS, Bogalusa Heart Study; CFS, Cleveland Family
Study; CHS, Cardiovascular Health Study; HABC, The Health, Aging, and Body Composition Study; HANDLS, The Healthy Aging in

Neighborhoods of Diversity across the Life Span Study; JHS, Jackson Heart Study; MESA, Multi-Ethnic Study of Atherosclerosis; ND, not
determined. WHI, Women’s Health Initiative.
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Table 2. Summary of six primary and two secondary independent loci (P < 5.0x10™®) obtained for
PR in 13,415 African-American participants from ten cohort studies.

Position Effect allele ~ Study-specific

SNP Gene Chr (Build 36) Alleles® Frequency  direction of p° B (se) p Phet
Primary signals®

1s3891585 MEIS] 2 66,610,480 A/G 0.43 ettt 2.13(0.31) 1.42x 10 0.11
15267567 ITGAY 3 37,549,028 A/G 0.18 ot 2.73(0.41)  4.14x 101 0.54
13922844 SCN5A 3 38,599,257 T/C 0.58 - -4.54(0.33) 5.26x 0%  0.58

ARHGAP2
rs11732231 4 86,902,584 C/G 0.23 +H 2.28 (0.39) 296x 107  0.30
4

rs11773845 CAVI 7 115,978,537 A/C 036 - 229(033) 445x10" 0.3
rs1895585 TBXS5 12 113,286,521 A/G 0.30 -+ 3,19 (0.35)  1.36x 10 0.42
Secondary signals®

136763048 SCN54 3 38,656,398 A/G 0.73 T 2062 (0.38) 3.75x 10712 0.74
136801957 SCN10A4 3 38,742,319 T/C 0.27 -+ 3.36(0.58)  9.11x 107 0.15

*Coded allele listed first.

°Study-specific direction of B estimates are listed in alphabetical order by study. The + and - symbols represent an
increase and decrease, respectively, in the PR interval per copy of the minor allele.

“Defined as locus-specific SNP with the lowest P-value.

Defined as significant SNPs after conditional analysis that adjusted for locus-specific primary signal. The conditional

analysis for rs6801957 was performed in four cohorts (CHS, HABC, HANDLS and WHI) adjusting for successively
less significant SNPs until no genome-wide significant SNPs remained.
Chr, chromosome; se, standard error; p, meta-analysis p-value; py, Cochran’s Q heterogeneity p-value.

Table 3. Associations between PR and three previously reported PR loci' that were not genome-wide

significant in a meta-analysis of 13,415 African-American participants from ten cohort studiesi.

Position Effect Allele Study-specific
SNP Gene Chr (Build 36) Alleles® Frequency direction of B B (se) P DPhet
1251253 NKX2-5 5 172,412,942 T/C 0.36 A 0.77 (0.33) 1.84x 107 053
154944092 WNTI1 11 75,587,267 A/G 0.57 -+ 0.41 (0.32) 2.05x 10" 0.18
rs11047543 SOX5 12 24,679,606 A/G 0.03 -+72?--42 -2.49 (1.25) 4.57x10%  0.12

*Coded allele listed first.

°Study-specific direction of B estimates are listed in alphabetical order of the studies. The + and - symbols represent an
increase and decrease, respectively, in the PR interval per copy of the minor allele. A “?” denotes studies that did not
contribute to the SNP meta-analysis.

Chr, chromosome; se, standard error; p, meta-analysis p-value; py, Cochran’s Q heterogeneity p-value.
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Figure Legends:

Figure 1. Manhattan plot of the association of SNPs with PR in a meta-analysis of ten African
American cohorts. The x-axis represents the chromosomal position for each SNP, and the y-axis

represents the -log10 P-value for association with PR, which is truncated at 1x1072.

Figure 2. Regional association plots of six loci associated with PR interval in ten African
American cohorts. SNP P-values (represented by circles) at each locus are shown on the —
logo(P-value) scale as a function of chromosomal position. Strength of LD is indicated by the
color category. Purple diamonds denotes the locus-specific primary signal. Recombination rate is
plotted in the background and known genes are shown on the bottom of the plot. A) MEISI; b)

ITGAY; ¢) SCN54; d) ARHGAP24; ) CAVI: ) TBXS.
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SUPPLEMENTAL MATERIAL
The supporting information has the following sections in order:
|. Supplemental Figure and Tables
ll. Supplemental Materials and Methods

lll. Supplemental References

l. Supplemental Figure and Tables

Supplemental Figure 1. Quantile-quantile plot showing the association of SNPs with
PR interval in the meta-analysis of ten genome-wide association studies of African
Americans. The red line represents the expected distribution of -log10 p-values under
the null hypothesis. The blue dots represent the observed -log10 p-values.
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Supplemental Table 1. Genotyping characteristics for the genome-wide association analyses of ten studies in the meta-analysis.®

Study Genotyping array Genotype Study-specific filters Imputation N. autosomal
calling Sample SNP SNP HWE Imputation GWAS statistical quality (Median: ~ SNPs passing Method of PC
algorithm callrate call rate MAF® p-value® software analysis software 25%, 75%) QC estimation®
ARIC Affymetrix 6.0 Birdseed <95% <90% <1% NA MACH v1.16 PLINK 0.98 (0.91, 1.0) 796,384 EIGENSTRAT,
10 PCs
BLSA lllumina 550K BeadStudio <98.5% <99% <1% <10* MACH 1.0 Merlin 0.95 (0.86, 1.0 501,704 EIGENSTRAT,
2 PCs
BHS lllumina Human610 BeadStudio <99% <90% NA NA MACH v1.0.16 PLINK 0.96 (0.89, 0.99) 608,756 LAMP,
BeadChip, HumanCVD 10 PCs
BeadChip
CFs Affymetrix 6.0 Birdseed <95% <90% <1% NA MACH v1.16 R 0.99 (0.94, 1.0) 867,495 EIGENSTRAT,
10 PCs
CHS lllumina HumanOmnil-  lllumina <95% <97% NA <10°® BEAGLE version R 0.98 (0.94, 1.0) 963,248 R, 10 PCs
Quad_v1 BeadChip Genome 3.2.1
system Studio
HABC lllumina 1M BeadStudio <97% <97% <1% <10° MACH v1.16 R 0.97 (0.92, 1.0) 1,007,948 EIGENSTRAT,
2 PCs
HANDLS  lllumina 1M* BeadStudio <95% <95% <1% <107 MACH v1.16 R, MACH2QTL 0.98 (0.93, 1.0) 907,763 PLINKv1.06,
10 PCs
JHS Affymetrix 6.0 Birdseed <95% <90% <1% NA MACH v1.16 PLINK 0.98 (0.92, 1.0) 868,969 EIGENSTRAT,
10 PCs
MESA Affymetrix 6.0 Birdseed <95% <90% <1% NA MACH v1.16 PLINK 0.99 (0.93, 1.0) 881,666 EIGENSTRAT,
10 PCs
WHI Affymetrix 6.0 Birdseed <95% <95% <1% <10° MACH v1.0.16 PLINK, ProbABEL 0.97 (0.89, 1.0) 829,370 STRUCTURE,
4 PCs

Al studies used HapMap phase 2 release 22 build 36 and the HapMap Reference panel 1:1 CEU:YRI phase II.
"SNP MAF filter applied pre-imputation.
‘Genotyped SNP results used to replace imputed SNP results were not filtered by HWE P-value.

91024 HANDLS participants were successfully genotyped at the equivalent of lllumina 1M SNP coverage (709 samples using lllumina 1M and 1Mduo arrays, the remainder using a combination of

550K, 370K, 510S and 240S to equate the million SNP level of coverage).

°Software program used to estimate principal components (PC) and the number of top principal components used as covariates in the analysis.

ARIC, Atherosclerosis Risk in Communities; BLSA, Baltimore Longitudinal Study on Aging; BHS, Bogalusa Heart Study; CFS, Cleveland Family Study; CHS, Cardiovascular Health Study; HABC,
The Health, Aging, and Body Composition Study; HANDLS, The Healthy Aging in Neighborhoods of Diversity across the Life Span Study; JHS, Jackson Heart Study; MESA, Multi-Ethnic Study of

Atherosclerosis; WHI, Women’s Health Initiative.



Supplemental Table 2. Summary of study-specific independent genome-wide significant association results for PR interval obtained at 17 independent loci.

b

B
. Effect Allele c (se)
SNP Nearest Gene Chr  Alleles  Frequency  ARIC  BLSA  BHS CFs CHS  HABC  HANDLS JHS  MESA  WHI
Primary signals®
2.42 137 0.97 351 091 0.29 3.86 337 269 1.77
rs3891585 MEIS1 2 AIG 043 078)  (2.69)  (247)  (216)  (144)  (1.21) (111)  (0.83) (0.88)  (0.54)
2.72 6.61 3.01 -1.36 0.92 2.97 1.84 353 464 2.24
r$267567 ITGA9 s AIG 0.18 (1.07)  (364) (354 (279  (193)  (L57) (151)  (111) (1.17)  (0.68)
508  -456  -409 091  -535  -3.38 406 614 457  -412
1$3922844 SCNSA 3 Tic 0.58 (0.84)  (3.00)  (243)  (2.46)  (155)  (1.18) (113)  (0.86) (0.94)  (0.57)
1.59 4.42 1.89 0.28 221 5.08 3.04 070  4.08 1.88
rs11732231 ARHGAP4 4 cic 0.23 (1L00)  (314) (318)  (2.89)  (1.84)  (1.43) (131)  (1.01) (113)  (0.64)
033  -134  -366  -401 343  -2.29 188 251 307  -2.64
rs11773845 CAVL 7 AIC 0.36 083)  (2.83) (248  (2.25)  (162)  (1.25) (118)  (0.88) (0.95)  (0.55)
2.45 4.61 -0.42 2.78 5.37 457 1.08 404  2.90 3.36
rs1895585 TBXS 12 AIG 030 089  (307)  (275)  (248)  (167)  (1.35) (124)  (0.92) (1L01)  (0.59)
Secondary signals®
2.25 7.13 461 3.70 4.20 2.02 3.89 392 295 3.19
r$6763048 SCN5A 3 AIG 0.73 (0.93)  (326)  (291)  (26)  (184) (142 (138)  (0.94) (L06)  (0.64)
0.97 3.34 6.31 2.96
r$6801957 SCN10A 3 TIC 0.17 019 (o) o) ©79)

“Coded allele listed first.

PBeta (B) estimates represent the difference in PR interval (milliseconds) per copy of the minor allele, adjusted for the covariates in the model. ARIC, Atherosclerosis Risk in Communities;
BLSA, Baltimore Longitudinal Study on Aging; BHS, Bogalusa Heart Study; CFS, Cleveland Family Study; CHS, Cardiovascular Health Study; HABC, The Health, Aging, and Body
Composition Study; HANDLS, The Healthy Aging in Neighborhoods of Diversity across the Life Span Study; JHS, Jackson Heart Study; MESA, Multi-Ethnic Study of Atherosclerosis; WHI,
Women’s Health Initiative.

“The Bogalusa Heart Study did not have information on two SNPs (rs10049479 and rs7627552).

Defined as locus-specific SNP with the lowest P-value.

°Defined as significant SNPs after conditional analysis that adjusted for locus-specific primary signal. This approach was performed adjusting for successively less significant SNPs until no
genome-wide significant SNPs were identified.

Chr, chromosome; se, standard error.



Supplemental Table 3. Local ancestry analyses of primary and secondary PR loci that reached genome-wide significance (P < 5.0 x 10™) across up to seven studies of African American

participants.*

Pre-Local Post-Local
b Ancestry Ancestry
B (se) Analysis Analysis
a Effect Allele
SNP Nearest Gene  Chr  Alleles Frequency ARIC CFS HABC HANDLS JHS MESA WHI N p B (se) p
Primary signals®®
rs3891585 MEIS1 2.48 3.49 -0.12 3.85 3.44 2.66 1.81 2.36
2 A/G 0.43 078)  (222)  (119)  (111)  (0.83)  (088)  (058) 3% 728x10"  (032)  357x10%
rs267567 ITGA9 1.86 -2.57 2.76 1.84 3.80 3.36 1.73 2.26
3 A/G 0.18 (113)  (3.02)  (161)  (150) (121  (125)  (076)  *3 131x10"°  (046)  7.61x107
rs3922844 SCN5A -3.00 -4.05 -3.57
3 /G 0.58 - - (1.23)  (113) - - - 199 503x10%  (049) 1.78x10%
rs11732231 ARHGAP4 4.00 3.10 3.45
4 c/e 0.23 B B (1.65) (1.31) - - - 1999 425410 (1.03) 7.68x 10
rs11773845 CAV1 -0.35 -4.56 -2.69 -1.80 -2.40 -3.12 -3.19 -2.45
7 A/C 0.36 (0.86) (2.34) (1.30) (1.17) (0.90) (0.97) (0.58) 12395 ¢ e x10™ (0.35) 3.09x10™
rs1895585 TBX5 456 1.23 3.39 3.20
12 A/G 0.30 B B (1.33) (1.23) B B (0.59) 6148 5 b0x10™ (0.49) 9.15x 10

“Coded allele listed first.

®ocal ancestry estimates were not available for three studies (Baltimore Longitudinal Study of Aging, Bogalusa Heart Study, and Cardiovascular Health Study).
‘Defined as locus-specific SNP with the lowest P-value.
OISecondary signals were not presented because no cohort had local ancestry estimates for all relevant SCN5A/SCN10A loci.

ARIC, Atherosclerosis Risk in Communities; CFS, Cleveland Family Study; CHS, Cardiovascular Health Study; HABC, The Health, Aging, and Body Composition Study; HANDLS, The Healthy
Aging in Neighborhoods of Diversity across the Life Span Study; JHS, Jackson Heart Study; MESA, Multi-Ethnic Study of Atherosclerosis; WHI, Women'’s Health Initiative.
Chr, chromosome; se, standard error; p, meta-analysis p-value.



Supplemental Table 4. Phenotype details for the ten studies in the meta-analysis.

Study ECG machine Measurement system
ARIC Marquette MAC PC Marquette 12SL
BLSA GE Marquette MAC5000 Marquette 12SL
BHS Marquette MAC PC Marquette 12SL
CFS Marquette MAC6 Marquette 12SL
CHS Marquette MAC PC Marquette 12SL
HABC Marquette MAC PC Marquette 12SL
HANDLS GE Marquette MAC5500 Marquette 12SL
JHS Marquette MAC PC MC MEANS
MESA Marquette MAC1200 Marquette 12SL
WHI Marquette MAC PC Marquette 12SL

ARIC, Atherosclerosis Risk in Communities; BLSA, Baltimore Longitudinal Study on
Aging; BHS, Bogalusa Heart Study; CFS, Cleveland Family Study; CHS,
Cardiovascular Health Study; HABC, The Health, Aging, and Body Composition
Study; HANDLS, The Healthy Aging in Neighborhoods of Diversity across the Life
Span Study; JHS, Jackson Heart Study; MESA, Multi-Ethnic Study of Atherosclerosis;
WHI, Women'’s Health Initiative.



ll. Supplemental Materials and Methods - Description of Participating Studies

Atherosclerosis Risk in Communities Study (ARIC): The ARIC study is an ongoing,

prospective population-based cohort designed to examine the etiology of cardiovascular
and pulmonary disease, patterns of medical care, and disease variation over time (3).
The study includes 15,792 participants selected using probability sampling from four
United States communities (Forsyth County NC, Jackson MS, suburban Minneapolis
MN, and Washington County MD). Between 1987 and 1989, the study enrolled
participants aged 45—-64 years. Standardized physical examinations and interviewer-
administered questionnaires were conducted at baseline, and at three triennial follow-up
examinations. Blood was drawn for DNA extraction and participants consented to
genetic testing. After exclusions, 2,391 African Americans with genotype and phenotype
data were included in the analysis. This study was approved by the institutional review
board at each field center and all subjects provided written informed consent. This
analysis was approved by the University of North Carolina at Chapel Hill School of

Public Health Institutional Review Board.

Baltimore Longitudinal Study on Aging (BLSA): The BLSA study is a population-based

study aimed to evaluate contributors of healthy aging in the older population residing
predominantly in the Baltimore-Washington DC area (4, 5). Starting in 1958,
participants were examined every one to four years, depending on their age, during
visits to the NIA’s Gerontology Research Center in Baltimore. Currently there are
approximately 1,100 active participants enrolled in the study. Each man received an
extensive interim medical and psychological history and physical examination at each

visit. Blood samples were collected for DNA extraction, and genome-wide genotyping



was completed for 1,231 participants. After exclusions, 155 African Americans with
genotype and phenotype data were included in the analysis. The BLSA has continuing
approval from the Institutional Review Board (IRB) of the Johns Hopkins Bayview
Medical Center, the Gerentology Research Center, and Medstar Research Institute.

Informed consent was obtained from all participants.

Bogalusa Heart Study (BHS): The BHS is a long-term epidemiologic study of

cardiovascular risk factors from birth through the age of 38 years in a biracial population
with whites and African Americans. Between 1973 and 2008, nine cross-sectional
surveys of children aged 4-17 years and 10 cross-sectional surveys of adults aged 18-
48 years, who had been previously examined as children, were conducted for
cardiovascular disease risk factor examinations in Bogalusa, Louisiana (6). In the
ongoing Longitudinal Aging Study funded by NIH and NIA since 2000, there are 1,202
Caucasian and African American participants who have been examined 4-14 times from
childhood to adulthood with DNA available for genotyping. After exclusions, 191 African
Americans with genotype and phenotype data were included in the analysis. Study
protocols were approved by the Institutional Review Board of the Tulane University

Medical Center. Informed consent was obtained from all participants.

Cardiovascular Health Study (CHS): The CHS is a population-based, longitudinal cohort

designed to study risk factors for cardiovascular disease in the elderly (7). Starting in
1989, 244 African American adults aged 65 years or older were sampled from four

United States communities (Forsyth County, North Carolina; Pittsburgh, Pennsylvania;



Sacramento County, California; and Washington County, Maryland). Between 1992 and
1993, a second cohort of 687 African Americans was enrolled. Extensive physical and
laboratory evaluations were performed at baseline to identify the presence and severity
of CVD risk factors such as hypertension, hypercholesterolemia and glucose
intolerance; subclinical disease such as carotid artery atherosclerosis, left ventricular
enlargement, and transient ischemia; and clinically overt CVD. In 2010, genotyping was
performed for 844 African-American participants who consented to genetic testing and
had available DNA. After exclusions, 674 African Americans with genotype and
phenotype data were included in the analysis. The institutional review board at each of
the study sites approved the study protocols, and written informed consent was

obtained from all participants.

Cleveland Family Study (CES): The CFS is a family-based longitudinal study designed

to study the risk factors for sleep apnea (8). Participants include first-degree or selected
second-degree relatives of a proband with either laboratory diagnosed obstructive sleep
apnea or neighborhood control of an affected proband. ECG recordings used for the
present study were performed at the final exam cycle conducted in a Clinical Research
Unit between 2001 and 2006. Families were selected for genotyping on the basis of
genetic informativity, including multigenerational data or individuals from the extremes
of the distribution of apnea phenotype (9, 10). The 632 African Americans with available
DNA were genotyped as part of CARe. After exclusions, 267 African Americans with

genotype and phenotype data were included in the analysis. The institutional review



board approved the study, and written informed consent was obtained from all

participants.

The Health Aging and Body Composition (HABC): The Health ABC Study is a

longitudinal study of the factors that contribute to incident disability and the decline in
function of healthier older persons, with a particular emphasis on changes in body
composition in old age (11, 12). Between 1997 and 1998, 3,075 adults aged 70-79
years were recruited using mass mailings with telephone follow-up. White individuals
were identified through a random sample of Medicare-eligible residents and African
American individuals were identified from two clinical centers in Pittsburgh,
Pennsylvania, and Memphis, Tennessee. Participants had no reported difficulty in
walking a quarter of a mile, climbing 10 steps without resting, or performing mobility-
related activities of daily living. Exclusion criteria were any life-threatening condition,
participation in any research study involving medications or modification of eating or
exercise habits, plans to move from the geographical area within 3 years and difficulty in
communicating with the study personnel or cognitive impairment. The key components
of Health ABC included a baseline exam with blood specimen collection, annual follow-
up clinical exams, and phone contacts every 6 months to identify major health events
and document functional status between clinic visits. After exclusions, 1,054 African
Americans with genotype and phenotype data were included in the analysis. The
institutional review boards at both clinical centers approved the study, and written

informed consent was obtained from all participants.



The Healthy Aging in Neighborhoods of Diversity across the Life Span Study

(HANDLS): HANDLS is an interdisciplinary, community-based, prospective longitudinal
epidemiologic study examining the influences of race and socioeconomic status (SES)
on the development of age-related health disparities in overall longevity, cardiovascular
disease, and cognitive decline among socioeconomically diverse African Americans and
whites in Baltimore (13). A total of 3,722 (2200 African American and 1522 Caucasian)
participants between 30 and 64 years of age were recruited as a fixed cohort of
participants by household screenings from an area probability sample of Baltimore
based on the 2000 Census. Data were collected in two separate phases. Phase 1
consisted of screening, recruitment, a household interview (assessing
sociodemographic information and physiological and psychological chronic exposure)
and a first 24 hour recall; phase 2 consisted of an in-depth examination in a mobile
medical research vehicle (MRV) and included a second dietary assessment with a 24
hour recall, psychometric measures (e.g. for depressive symptoms and cognitive
function), anthropometric and body composition measurements. Genotyping was
performed for 1,024 participants who self-report as African Americans. After exclusions,
945 African Americans with genotype and phenotype data were included in the analysis.
The study protocol was approved by the human subjects review boards at both MedStar
Research Institute and the University of Delaware. All participants provided written

informed consent.

Jackson Heart Study (JHS): The JHS is a prospective population-based study of the

causes of the high prevalence of common complex diseases among African Americans



in the Jackson, Mississippi metropolitan area, including cardiovascular disease, type-2
diabetes, obesity, chronic kidney disease, and stroke (14). Between 2000 and 2004,
5,302 adult African American residents of a tri-county area near Jackson, Mississippi
(Hinds County, Rankin County and Madison County) were recruited from four sources,
including (1) randomly sampled households from a commercial listing; (2) ARIC
participants; (3) a structured volunteer sample that was designed to mirror the eligible
population; and (4) a nested family cohort. Unrelated participants were between 35 and
84 years old, and members of the family cohort were 221 years old when consent for
genetic testing was obtained and blood was drawn for DNA extraction. ECG recordings
and DNA extraction were performed at the baseline examination. Based on DNA
availability, appropriate informed consent, and genotyping results that met quality
control procedures, genotype data were available for 3,030 individuals, including 885
who were also ARIC participants. In the current study, JHS participants who were also
enrolled in the ARIC study were analyzed with the ARIC dataset. After exclusions, 1,962
African Americans with genotype and phenotype data were included in the analysis.
The institutional review board approved the study protocol, and written informed

consent was obtained from all participants.

Multi-Ethnic Study of Atherosclerosis (MESA): MESA is a multicenter, population-based

cohort initiated to investigate subclinical cardiovascular disease and the risk factors that
predict progression to clinically overt cardiovascular disease (15). Between 2000 and
2002, the study enrolled 6,814 asymptomatic males and females aged 45-84 from six

US field centers (Baltimore, MD; Chicago, IL; Los Angeles, CA; New York, NY; St. Paul,



MN; Winston-Salem, NC). Those with a history of CVD (defined as physician-diagnosed
myocardial infarction, angina, heart failure, stroke, transient ischemic attack or history of
invasive procedure for CVD) were excluded from participation. Approximately 28% of
the sample was African American participants. ECG recordings and blood for DNA
extraction were obtained at the baseline examination. After exclusions, 1,627 African
Americans with genotype and phenotype data were included in the analysis. This study
was approved by the institutional review boards of each study site, and written informed

consent was obtained from all participants.

Women’s Health Initiative (WHI): The WHI is a large and complex clinical investigation

of strategies for the prevention and control of some of the most common causes of
morbidity and mortality among postmenopausal women, including cancer,
cardiovascular disease, and osteoporotic fractures. The WHI comprises both
randomized clinical trials (CT) and an observational study (OS). This study is limited to
WHI CT participants, as ECGs were not available for WHI OS participants. The WHI
clinical trials were designed to allow randomized, controlled evaluation of estrogen with
or without progestin treatment, calcium/vitamin D supplementation, and dietary
modification on the risk of breast and colorectal cancer, cardiovascular disease, and
bone fractures (16). Between 1993 and 1998, the trials enrolled 68,132 postmenopausal
women aged 50-79 years who were followed at one of 75 US examination sites
(including satellites, remote sites, and their changes in location). Women were ineligible
if they had medical conditions predictive of survival time less than 3 years, if they were

known to have conditions inconsistent with study participation and adherence, or if they



were active participants in another randomized, controlled trial. Those who remained
eligible and interested were invited to follow-up examinations at 1, 3, 6, and 9 years. Of
the CT and OS minority participants enrolled in WHI, the WHI SNP Health Association
Resource (SHARe) GWA study project includes 12,157 (8,515 self-identified African
American and 3,642 self-identified Hispanic) women who consented to genetic
research. DNA was extracted by the Specimen Processing Laboratory at the Fred
Hutchinson Cancer research Center (FHCRC) using specimens that were collected at
enrollment. Specimens were stored at -80°C. After exclusions, 4,149 African Americans
with genotype and phenotype data were included in the analysis. Study protocols and
consent forms were approved by the Institutional Review Boards at all participating

institutions.
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